説明

Fターム[5H115TO22]の内容

車両の電気的な推進・制動 (204,712) | その他の検出 (15,876) | アクセル操作量 (2,927) | アクセル操作の変化量 (487)

Fターム[5H115TO22]に分類される特許

1 - 20 / 487


【課題】減速中に加速要求がなされたときに車両を迅速に加速させる。
【解決手段】減速からの加速と判定したときには、エンジンを始動して必要な回転数にするまでに要する時間に相当する時間などに設定された所定時間が経過するまでは、アクセル変化量ΔAccに係数αを乗じて得られる出力補正量ΔWを基本出力制限Wobaseに加えた値として出力制限Woutを設定する(S110〜S140)。これにより、基本出力制限Wobaseを出力制限Woutとした場合に比して、大きな出力制限Woutを用いてモータのトルク指令を設定して加速することができると共にエンジンを始動して必要な回転数まで上昇させてエンジンからのパワーを加えて加速することができる。この結果、減速中に加速要求がなされたときに車両を迅速に加速させることができる。 (もっと読む)


【課題】車両発進直後のブレーキ操作時には既に錆取りが行われていることを保証すること。
【解決手段】車両の主電源(イグニッションスイッチ43)オン時に、ディスクロータ15の摩擦面15Aの発錆が検出されている場合には、摩擦制動手段19が摩擦制動力を発生する制御を行う。 (もっと読む)


【課題】モータ走行時における燃費を向上できる車両用駆動システムを提供すること。
【解決手段】この車両用駆動システム1は、エンジン2と、モータ6と、入力軸41および出力軸42の間の変速比を変更できる変速機4と、エンジン2および変速機4の入力軸41の間に配置されるクラッチ3と、モータ6の接続先を変速機4の入力軸41および出力軸42の間で切り替える接続切替装置7と、接続切替装置7を駆動制御する制御装置9とを備える。また、車両用駆動システム1は、エンジン2を動力源とするエンジン走行と、モータ6を動力源とするモータ走行とを切り替え得る。そして、制御装置9は、モータ走行中におけるアクセル開度θが所定の条件を満たすときに、接続切替装置7を駆動制御してモータ6の接続先を変速機4の入力軸41および出力軸42の間で切り替える。 (もっと読む)


【課題】走行シーンにかかわらずエンジントルクを最良燃費点に維持して燃費の悪化を抑制する。
【解決手段】動力源としてエンジン及びモータジェネレータを備えるハイブリッド車両の制御装置であって、ドライバの要求駆動トルクを実現するように目標エンジントルク及び目標モータジェネレータトルクを算出する目標トルク算出手段(S1、S2)と、目標モータジェネレータトルクに遅れ処理を施して、エンジントルクの変化速度に従うようにモータジェネレータトルクの変化速度を所定の上限値に制限する遅れ処理手段(S7、S10)と、要求駆動トルクが増加し、発電量を減少させる方向へ目標モータジェネレータトルクが変化したときは、上限値を大きくする遅れ処理補正手段(S8)と、を備えることを特徴とする。 (もっと読む)


【課題】走行モードの切り替えを適切に実施し、運転性を向上させる。
【解決手段】動力源としてのエンジン及びモータジェネレータと、電力源としてのバッテリと、を備えるハイブリッド車両の制御装置であって、アクセル操作量に基づいてアクセル操作速度を算出するアクセル操作速度算出手段(S7)と、アクセル操作量に遅れ処理を施した補正アクセル操作量を算出する補正アクセル操作量算出手段(S7)と、少なくとも蓄電量及び補正アクセル操作量に基づいて、EVモード、又は、HEVモードへの移行を要求する走行モード移行要求手段(S10)と、EVモードへの移行要求があったときに、アクセル操作速度がアクセルペダル踏み込み中と判定できる正のEVモード移行禁止速度よりも大きいときは、EVモードへの移行を禁止するEVモード移行禁止手段(S11)と、を備えることを特徴とする。 (もっと読む)


【課題】走行中に内燃機関を停止する際の内燃機関での余分な燃料消費を抑制する。
【解決手段】車速Vが閾値Vpr未満である間欠許容車速条件を含む停止条件が成立したときであって吸気バルブの開閉タイミングVTが最遅角タイミングになっているときにエンジンを停止するものにおいて、車速Vが閾値Vpr以上かつ値(Vpr+α)未満で車速変化率ΔVが閾値ΔVref未満でアクセルオフのときには(S120〜S140)、停止条件の成立が予測されると判断し、吸気バルブの開閉タイミングVTが最も遅いタイミングである最遅角タイミングに変更されるよう可変バルブタイミング機構を制御する最遅角処理の実行を開始する(S160)。 (もっと読む)


【課題】冷機始動時に排気中のエミッション低減を行う処理が行われているか否かの診断を広範囲で実施する。
【解決手段】冷機始動時に、触媒7を速やかに活性化しつつその過程で生じるエミッションを少なくするような始動時目標トルクを算出し、エンジン1の実際のトルクができるだけ始動時目標トルクとなるようにしつつ、車両に要求される駆動力トルクを満足するようにエンジン目標トルクとモータ目標トルクとを決定する始動時排気ガス制御を行ない、始動時目標トルクと、エンジン指令トルクとを比較して、始動時排気ガス制御の機能診断を行う。これにより始動時排気ガス制御の実施中であれば、始動時目標トルクとエンジン指令トルクとの比較は可能なので、冷機始動時の広い範囲で始動時排気ガス制御の機能診断を実施可能となる。 (もっと読む)


【課題】バッテリが出力する電力で駆動するモータの動力で走行する車両において、ユーザの緊急的な加速の要求に応えつつ、バッテリの劣化を抑制する。
【解決手段】ECUは、バッテリの出力を制限する(S12)。一方、ECUは、ユーザが緊急スイッチをオン操作し(S10にてYES)かつアクセルペダル操作量Aが所定値αを超えている場合(S11にてYES)、緊急時であると判定し、通常時に行なわれていたバッテリの出力制限を解除する(S13)。出力制限の解除後、ECUは、バッテリの電圧Vbが下限値V1を下回る累積時間T1を算出し(S14)、累積時間T1が許容時間βを超えた場合(S15にてYES)、バッテリの出力を通常時よりも強く制限する(S16)。 (もっと読む)


【課題】発進クラッチが遮断されたモータ駆動走行モードから充電制動走行モードへ移行した場合でも、効率良くバッテリーを充電できるとともに大きな制動力が得られるようにする。
【解決手段】発進クラッチ26が遮断されたモータ駆動走行モードでの走行中にブレーキペダルが踏込み操作された場合に、前輪側要求制動力に対応する必要発電トルクTyoukyuが第2モータジェネレータMG2の最大発電トルクTMG2max を超える時には、その発進クラッチ26を締結し、第1モータジェネレータMG1および第2モータジェネレータMG2を何れも発電制御して上記前輪側要求制動力を発生させるとともに、得られた電気エネルギーでバッテリー46を充電する。これにより、2つのモータジェネレータMG1およびMG2を有効に用いてバッテリー46を効率よく充電できるとともに、大きな制動力が得られるようになり、エネルギー効率が向上する。 (もっと読む)


【課題】エイリアシングによる制振性能の低下を抑える。
【解決手段】駆動源たるエンジンや第2モータ/ジェネレータの駆動制御量を制御して車体に発生する振動の抑制を図る車両制御装置において、振動情報に係る信号又は当該振動情報に基づき演算された制振制御補償量に係る信号に対してエイリアシングが発生する場合に、そのエイリアシングによる前記振動に対する制振性能の低下を抑える制振性能低下抑制装置(入力信号処理部7o及び入力信号判定部7n)を設ける。例えば、その制振性能低下抑制装置は、ナイキスト周波数よりも高い周波数をカットするフィルタである。 (もっと読む)


【課題】フライホイールを小型化乃至は省略することが可能で軽量に構成できる車両用ハイブリッド駆動装置を提供する。
【解決手段】ベルト式無段変速機20の入力側プーリ42が入力軸18、ばね式ダンパ16等を介してエンジン12に機械的に連結され、常にエンジン12と共に回転および停止させられるため、入力側プーリ42のイナーシャによってフライホイールと同様の作用が得られる。これにより、エンジン12のトルク変動や回転変動を抑制するためのフライホイールを別途設ける必要がなくなり、軽量化によって燃費が向上するとともに、構造が簡単で安価に構成され、配置スペースや重量の点でも有利である。後進走行時には発進クラッチ26を解放し、第2モータジェネレータMG2を逆回転方向へ力行制御して後進走行するため、前後進切換装置が不要となり、装置が一層簡単で且つ安価に構成される。 (もっと読む)


【課題】複数の動力源を備えるハイブリッド車両において、バッテリ効率を向上する。
【解決手段】ドライバーの要求駆動力に基づき、モータの駆動力のみで走行するモータ走行モードの出力効率と、エンジン出力によりモータ発電を行いつつエンジンの駆動力で走行を行う発電走行モードの出力効率とをそれぞれ算出して比較する(S20)。効率の良い走行モードを選択する(S21およびS22)ことで、適切な走行モードを選択できる。モータ走行モードの出力効率を算出する場合、バッテリの充電に要した燃料消費に基づくエネルギー変換効率を考慮して効率を算出する。また、発電走行モードの出力効率を算出する場合、ドライバーの要求駆動力と要求発電量とに基づいて効率を算出する。 (もっと読む)


【課題】自動変速機の変速時に放出されるイナーシャトルクを電動モータで効率よく回生すると共に、回生トルクによって変速ショックを緩和するようにする。
【解決手段】運転者が変速機7の変速モードを手動変速モードにセットした後、アップシフト操作を行うと、駆動力制御ユニット14は、変速機7の入力軸7aに作用するエンジン1からのイナーシャトルクTMiを求め、このイナーシャトルクTMiを所定に配分されたモータトルク指示値TMから減算して目標モータトルクTMtrを設定する。変速機制御ユニット13はエンジン1の出力軸1aと変速機7の入力軸7aとの間に介装されている電動モータ4のトルクが目標モータトルクTMtrとなるように制御する。目標モータトルクTMtrからはエンジン1から放出されるイナーシャトルクTMi分のトルクが減算されているため、イナーシャトルクTMiが減衰されて変速ショックが緩和される。 (もっと読む)


【課題】実アクセル開度に対する駆動力を走行路に応じて適切に変えること。
【解決手段】走行路の状態を判定する走行路判定装置20と、運転者のアクセル操作に伴う実アクセル開度を駆動力制御用アクセル開度に変換し、この駆動力制御用アクセル開度に基づきエンジン110を制御して駆動力を発生させる走行制御装置10と、を備える。そして、走行制御装置10は、駆動力制御用アクセル開度における実アクセル開度に対する駆動力の発生量を抑制させる増加勾配の小さい駆動力抑制領域と当該駆動力の発生量を増加させる増加勾配の大きい駆動力増加領域との間の勾配変動点を走行路の状態に応じて実アクセル開度の小開度側又は大開度側に変化させること。 (もっと読む)


【課題】電気自動車などにおける安全性と静粛性を合理的に両立させる。
【解決手段】電動モータMを動力源として走行する車両に設置される車両用発音装置1であって、車両の存在音を車外に発するスピーカ手段10と、スピーカ手段から発する存在音を制御する発音制御手段20を備えるようにする。この発音制御手段20は、車両の走行状態を検知する車速検知部によって車両が少なくとも走行状態にあるか否かを検知し、走行中は存在音を発するようスピーカ手段10に指示し、更に、車両の車速が所定の基準値を超えた場合に、この存在音の停止又は減衰を指示するようにした。 (もっと読む)


【課題】アクセルオンからアクセルオフに移行したときの消費エネルギーを小さくし、エネルギー効率を高くすることができるようにする。
【解決手段】車両のボディと、複数の車輪と、所定の車輪に配設され、車輪にキャンバを付与するためのキャンバ可変機構と、キャンバ付与条件が成立したかどうかを判断するキャンバ付与条件成立判断処理手段と、キャンバ付与条件が成立した場合に車輪にキャンバを付与するキャンバ付与処理手段と、ニュートラル走行設定条件が成立したかどうかを判断するニュートラル走行設定条件成立判断処理手段と、ニュートラル走行設定条件が成立した場合に、駆動源と駆動輪との間のトルクの伝達を遮断するニュートラル走行設定処理手段とを有する。駆動源における摩擦、イナーシャ等が抵抗になって消費エネルギーが大きくなることがない。 (もっと読む)


【課題】コストアップが抑制された構成でモータを任意の回転速度で回転させて定速走行でき、モータの駆動に関して低消費電力化の向上が図られた駆動制御装置を提供する。
【解決手段】電動車両1のモータ13の駆動制御装置20は、モータ13の回転速度を計測する速度計測部25と、時間を計測する計時部24と、外部からモータ13の駆動についての加減速指令を受け付けるとともに、速度計測部25から得られるモータ13の回転速度が所定期間所定範囲内であるとき、モータ13の駆動制御を前記加減速指令に基づく制御から現在のモータ13の回転速度を目標速度とする定速走行制御に切り替える制御部21と、を備える。これにより、スロットル7を用いてモータ13を制御しているとき、モータ13の回転速度が所定期間所定範囲内である場合、現在のモータ13の回転速度を目標速度としたモータ13の定速走行制御が実現する。 (もっと読む)


【課題】車両に新たな遮音手段を搭載することなく、車両に生じるノイズ又は振動を低減することができる電気駆動式車両を提供する。
【解決手段】脱着可能な発電装置11Aを搭載する電気駆動式車両1Aにおいて、電気駆動式車両1A内の車両側ECU30が、電気駆動式車両1Aに生じるノイズ又は振動と逆位相のノイズ又は振動を発生させるように、発電装置11Aの運転状態(例えば、エンジンの回転数、エンジンの出力及び発電機の発電電力のうち少なくとも1つ)を制御する。 (もっと読む)


【課題】従来と同等なトルクと出力を得ながら、電動車両に用いられるモータとインバータ電源の体格を小さくする。
【解決手段】車両を電動駆動する電動駆動手段1、2に冷却媒体を循環させる冷媒循環路6と、冷却媒体と外気との間で熱交換を行う熱交換手段3と、冷媒循環路6を通して熱交換手段3と電動駆動手段1、2との間で冷却媒体を循環させる冷媒循環手段5と、熱交換手段3に送風する送風手段4と、冷媒循環手段5と送風手段4を制御して電動駆動手段1、2の冷却を制御する制御手段23とを備え、制御手段23によって、電動駆動手段1、2による車両の駆動力が第一作動領域にある場合は、冷媒循環手段5と送風手段4を第一冷却モードで制御し、電動駆動手段1、2による車両の駆動力が第一作動領域よりも高い第二作動領域にある場合には、冷媒循環手段5と送風手段4を第一冷却モードよりも冷却能力が高い第二冷却モードで制御する。 (もっと読む)


【課題】二次電池の入力制限が厳しい側に変化したときでも電動機による回生制動力と機械式ブレーキによる制動力とのすり替えをスムーズに行なう。
【解決手段】バッテリの入力制限Winが所定時間程度経過したときに連続充放電電流積算値が閾値に至って入力制限Winが厳しい方向に変化するのを予測したときには、そのときから所定時間が経過するまでは比較的小さなレート値Trt1を用いてモータMG2の制動時のトルク指令Tm2*を油圧ブレーキによる制動力にすり替え(S150)、所定時間が経過した以降は比較的大きなレート値Trt2を用いてモータMG2の制動時のトルク指令Tm2*を油圧ブレーキによる制動力にすり替える(S160)。これにより、モータMG2の制動トルクをスムーズに油圧ブレーキによる制動力にすり替えることができ、ドライバに与えるブレーキフィーリングの悪化を抑制することができる。 (もっと読む)


1 - 20 / 487