説明

Fターム[5H307DD11]の内容

流量の制御 (3,234) | 目的 (512) | 小型化、軽量化 (38)

Fターム[5H307DD11]に分類される特許

21 - 38 / 38


【課題】ガス供給源からガス流路を介してガスを安定供給するガスの供給制御装置において、ガス供給系内にバッファータンク等の緩衝装置を設置することなく、ガス供給系に悪影響を及ぼす急激な圧力上昇を防止することができるガスの供給制御装置を提供する。
【解決手段】ガス流路にステッピング・モータ4駆動方式の自動開閉弁5と、この自動開閉弁5の下流側に圧力計8を設け、この圧力計8の検出圧力値Pと時間の経過とともに増加する任意の目標圧力値との差分に基づいて自動開閉弁5を間欠的に開閉制御することを特徴とする。 (もっと読む)


【課題】流量比可変型ガス分流供給装置を小型化低コスト化すると共に、流量比の調整を簡単且つ高精度で出来るようにする。
【解決手段】流量制御装置6から供給された流量Qのガスを第1分流管路1及び第2分流管路2へ所定の流量Qで分流させ、両分流管路1、2から流量Qのガスをチャンバ内へ供給するように、前記第1分流管路1に第1オリフィス3を介設し、また、前記第2分流管路2を複数の分岐管路2a〜2nを並列状に直結した管路としてオリフィス4a〜4n介設すると共に、前記分岐回路の全部又は一部に開閉バルブVb〜Vnを介設し、当該開閉バルブVb〜Vnの開又は閉により第2分流管路2の流通可能なオリフィスの合計開口面積S2oを調整することにより、前記第1分流回路1の第1オリフィス3と前記第2分流路2の流通可能なオリフィスの合計開口面積との比に等しい流量比でもって、各分流管路1、2へ流量Qのガス流を分流させる。 (もっと読む)


1つの質量流量を複数N個の副次流に分割するシステムは、1つの質量流量を受けるように構成されている入口と、マスタFRC(流量比コントローラ)と、1つ以上のスレーブFRCとを含む。各FRCは、入口に接続されており、少なくとも1つの副次流導管を含む。マスタFRCおよびスレーブFRCは、組合せにおいて、N個の副次流導管を含む。各流導管i(i=1、...N)は、N個の副次流の内対応する1つを搬送するように接続されている。ホスト・コントローラから事前選択比率設定点に応答して、マスタFRCおよびスレーブFRCは、個々の流量Q(i=1、...N)と総流量Qとの間おける比率Q/Q(i=1、...N)を、事前選択比率設定点に維持する。 (もっと読む)


【課題】
【解決手段】マイクロ流体デバイス用の膜弁およびラッチ弁構造体を開示する。デマルチプレクサーをラッチ弁構造体に適用可能である。膜弁およびラッチ弁構造体を利用して、処理装置等の空圧論理回路を形成することができる。 (もっと読む)


【課題】 小型化を図りつつ、ロータ周面に対向した磁気受渡部の設定範囲を広げることができる空気流量制御弁を提供する。
【解決手段】 トルクモータ14を、ロータ41を有するシャフト15とロータ41の外周部に配設された円筒状のコイル42と、コイル42で励磁されるステータ43で構成する。ステータ43の第1構成部材61を、コイル42とロータ41間に配置される第1磁極部71と、コイル42の外周部に配置される第1磁気通路部72と、第1磁気通路部72の先端部を第1磁極部71に連設する第1連設部73で構成する。ステータ43の第2構成部材62を、コイル42とロータ41間に配置される第2磁極部81と、コイル42の外周部に配置される第2磁気通路部82と、第2磁気通路部82の基端部を第2磁極部81に連設する第2連設部83で構成する。 (もっと読む)


【課題】 本発明の課題は、流量を幅広い流量範囲で微細に制御することができ、半導体製造装置内などへの設置、配管及び配線接続が容易であり、脈動した流体が流れても問題なく流量制御することができる流体制御装置を提供することにある。
【解決手段】 本発明に係る流体制御装置は、制御用流体の圧力操作により流体の圧力を制御する流体制御弁5と、流体の流量を計測し該流量の計測値を電気信号に変換し出力する流量計測器4と、流量計測器4からの前記電気信号と設定流量との偏差に基づいて、前記流体制御弁5の開口面積を制御するための指令信号を、前記流体制御弁5または該流体制御弁を操作する機器103へ出力する制御部8と、開口面積が調節可能な絞り弁6と、を具備し、前記流体制御弁5と前記流量計測器4と前記制御部8と前記絞り弁6とが全て一つのケーシング2内へ収納配設されていることを特徴としている。 (もっと読む)


【課題】 締付けトルク管理等の取付作業者のスキルに左右されることなく、ネジ止め時に発生する応力歪の伝達を抑制して計測精度、質量流量制御精度の向上を図ることができ、かつ、全体の軽量化も図ることができるようにする。
【解決手段】 複数の凹部5内に静電容量型圧力計3を収容配置して固定し、肉厚部には各圧力計3に流体圧力を作用させるための流体流路10a〜10dが形成されている直方体形状のボディブロック2のうち、圧力計3の固定保持部分2A及び流体流路10a〜10d外周の取り囲み部分2Bを除く残りの肉厚部分2Dが切り落とし除去され、かつ、複数の圧力計3の固定保持部分2Aに対応させてマスフローコントローラの本体ボックスもしくはパネル11へのネジ止め固定用の複数の取付部12a〜12cを形成している。
(もっと読む)


【課題】 真空容器内を排気し、その後ガスを導入して一定の流量とガス圧に制御するような場合に、容易に制御出来る圧力・流量コントロールシステムを提供する。
【解決手段】圧力と流量の両方をセンシングできるセンサチップと、センサチップからの信号を設定値と比較して設定圧力・流量に制御するためのコントローラと、コントローラからの制御信号により圧力・流量を制御するコンダクタンスバルブとニードルバルブとで圧力・流量自動制御システムを構成した。
センサチップは、シリコン基板を用いて製作される。基板から熱分離された薄膜上に、薄膜ヒータと1個以上の温度センサを集積化させる。温度センサを用いて圧力または流量変化による温度差を検出できる。時分割で測定すれば、圧力・流量を1個のセンサチップで測定出来る。 (もっと読む)


【課題】 高い制御性を維持しつつ、高いレンジアビリティで流量を制御することができる流量制御装置及び方法を提供する。
【解決手段】 この流量制御装置は、流体管路1,2,4,5と、該流体管路の途中に配置された平板状の弁支持基板3とを備えている。弁支持基板3には、複数の個別に操作可能な開閉弁11が設置されている。複数の開閉弁11の内から適宜に選択したものを開閉することにより、レンジアビリティの高い流量制御を行うことができる。 (もっと読む)


装置(100)は、流体の流量を制御するために用いられる。前記装置は、入口(106)と出口(108)との間に流量制限器(110)を有する。第1および第2のマルチセンサ(120,124)は、前記流体の流量の圧力および温度を感知する感知表面(122,126)を前記入口および出口に有す。回路(130)は、前記入口の圧力と前記出口の圧力との間の差に基づいて質量流量出力(155)を生成する。前記質量流量出力は、前記入口および前記出口の感知温度の少なくとも1つの関数としての温度補正を含む。
(もっと読む)


【課題】さらなる微細化に対応でき、例えば信号流路の流量をゼロとして流量の制御及び調節が可能なマイクロバルブマイクロバルブを提供する。
【解決手段】分岐部Fにおいて2つに分岐する主流路の外壁面に少なくとも1つの信号生成部(12,13)が設けられており、信号生成部(12,13)は、閉空間で構成され、分岐後の主流路の一方に近く、他方に遠い位置における分岐部Fの近傍において閉空間から主流路に臨む開口部を有しており、信号生成部(12,13)の壁面には振動生成部(12a,13a)が設けられている構成とする。 (もっと読む)


【課題】 半導体製造装置内などへの設置、配管及び配線接続が容易であり、配管接続による圧力損失を低減し、各モジュールの配置変更を容易に行なえるもので、また流体に腐食性流体を使用しても腐食が起こることなく、スラリーを使用してもスラリーが固着しにくく、配管後の流量の設定変更や、流路の遮断が可能であり、流入する流体が脈動していても流量の制御が可能な流体制御装置を提供する。
【解決手段】 本発明の流体制御装置は、超音波を流体中に発信する超音波振動子12と超音波振動子12から発信した超音波を受信し信号を流量計アンプ部60に出力する超音波振動子13とを有する流量計センサ部4と、操作圧により流体の流量を調整する空気駆動式ピンチ弁5とを具備し、少なくとも流量計センサ部4と空気駆動式ピンチ弁5とが、流体流入口3と流体流出口6とを有する1つのケーシング2内に接続されて設置されてなる。 (もっと読む)


【課題】 部品数の増加を抑えるとともに、より一層のコンパクト化が果たされた集積化流体制御装置を可能とする継手部材を提供する。
【解決手段】 センサ付き継手部材10は、隣り合う流体制御機器16,20の下端開口同士を接続するV字状通路41aが形成された通路ブロック41と、通路ブロック41の側面に設けられた圧力センサ42とを備えている。通路ブロック41には、V字状通路41aから分岐して圧力センサ42に通じる分岐通路41bが形成されている。 (もっと読む)


マイクロ流体制御バルブ(100)は少なくとも1つのキャビティ(260)を規定する誘電体構造(105)を有する。電気活性ポリマーのような電気活性材料(305)がキャビティの一部に備えられている。電気活性材料は、電気活性材料の寸法が第1値を有する第1状態と、その寸法が第2状態を有する第2状態との間で動作可能である。2つの導体(240、250)は、第1状態と第2状態との間で電気活性材料を変化させるように、電気活性材料に電位を印加するために備えられている。第1流体ポート(310)は、電気活性材料が第1状態にあるときに、流体が第1流体ポートを通って流れ、電気活性材料が第2状態にあるときに、電気活性材料は第1流体ポートを少なくとも一部で遮るように、電気活性材料に近接して位置している。

(もっと読む)


【課題】 極めて小型の構成によって、加圧された流体を微小定流量の流量に制御、供給することを可能にする超小型減圧流量制御装置を提供する。
【解決手段】 超小型減圧流量制御装置100は、流体を流して流体の圧力を低減させる第1微細流体流路1と、第1微細流体流路1に連結され、第1微細流体流路1からの流体を流すためのN本(Nは2以上の整数)の第2微細流体流路3と、各第2微細流体流路3にそれぞれ設けられたマイクロバルブ2と、各第2微細流体流路3からの流体を合流させて外部へ排出するための流体集積流路4とを備える。 (もっと読む)


【課題】 装置全体を小型化して、特に占有面積を大幅に削減することが可能な質量流量制御装置を提供する。
【解決手段】 質量流量を制御する質量流量制御装置において、上下方向に延びて内部が中空になされたケーシング本体42と、流体出口に2次側空間を介して連通された弁口に着座可能になされた弁体を有する流量制御弁10と、弁体を押圧するためのアクチュエータ機構26と、アクチュエータ機構と並列に上下方向に配列されたバイパス流路12と、入口ヘッダ空間と流体入口とを連通する流体導入路74と、入口ヘッダ空間と出口ヘッダ空間との間に連通されると共に、アクチュエータ機構に沿って上方へ向かって延びた後に下方向へ屈曲されるようにして設けられたセンサ管14と、出口ヘッダ空間と流量制御弁の1次側空間とを連通する連通路48と、検出された質量流量が外部より入力される設定流量に一致するようにアクチュエータ機構を駆動するためにアクチュエータ機構の上方に設けられた制御回路部16と、を備える。 (もっと読む)


【課題】 機械的素子や特殊な材料を用いることなく、流路中を通る流体自体の物性を利用して微小流路の流量を制御しうる新規な方法を提供する。
【解決手段】 断熱性固体基板に穿設した微小流路に、熱により可逆的に固液相転移しうる流体を流しながら、相転移点以下に冷却して生成した固体をもって流路を閉塞し、また相転移点以上に加熱して流路を開放することにより微小流路内の流体の流量を調節する。またそれに用いるマイクロバルブとして、断熱性固体基板に穿設された微小流路、その流路内に充填された熱により可逆的に固液相転移しうる流体及びその微小流路の適所に配置された流体を加熱及び冷却しうる温度制御手段から構成されたものとする。 (もっと読む)


【課題】 複雑なバルブ構造を用いることなく、マイクロシステムにおける流体の流れを簡便に制御する方法を提供する。
【解決手段】 マイクロシステムの微小流路を流れる流体に、刺激によりゾル−ゲル転移する物質を添加し、微小流路上の所望の箇所に刺激を与え、流体をゲル化させて流れを制御する。 (もっと読む)


21 - 38 / 38