説明

Fターム[5H420NB16]の内容

電気的変量の制御(交流、直流、電力等) (13,664) | 出力部 (2,015) | 出力制御形式 (392) | オペアンプによる出力 (53)

Fターム[5H420NB16]に分類される特許

1 - 20 / 53


【課題】出力電圧の温度特性を補正し、出力電圧の変動を抑制することができるバンドギャップリファレンス回路及び電源回路を提供すること。
【解決手段】BGR回路100は、電源端子VDDとグランド端子GNDとの間に接続さ、ベースが出力端子TOUTと接続されるバイポーラトランジスタQ1及びQ2を有する。グランド端子GNDとバイポーラトランジスタQ1との間には抵抗R1が接続される。抵抗R1とバイポーラトランジスタQ2との間には抵抗R2a及びR2bが直列に接続される。抵抗R2a及びR2b間のノードとグランド端子GNDとの間には温度補正回路10が接続される。温度補正回路10は抵抗R2a及びR2b間のノードとグランド端子GNDとの間に接続され、ベースが抵抗R1のバイポーラトランジスタQ1側端とトランジスタQ11を有する。また、トランジスタQ11と直列に接続される抵抗R11を有する。 (もっと読む)


【課題】温度依存性が少ない低電圧(1.25V以下)の定電圧を発生する、基準電圧回路を提供すること。
【解決手段】二つのPN接合を有し、いずれかのPN接合に基づいた電圧Vkと、二つのPN接合の電圧の差に基づいた電流Ikと、を出力するバンドギャップ電圧発生回路と、電圧Vkを分圧する分圧回路と、を備え、分圧回路は入力する電流Ikにより分圧電圧を補正して、基準電圧として出力する、構成とした。 (もっと読む)


【課題】BGRとレギュレータの温度特性を正しく補正する機能を持つ基準電圧発生回路を提供する。
【解決手段】分圧回路50は、バンドギャップ基準電圧VBGRを分圧した電圧VT1およびVT2を出力する。レギュレータ6は、差動アンプAMP1と、差動アンプAMP1の出力とグランドとの間に直列接続された抵抗R4および抵抗R5とを含む。差動アンプAMP1の正の入力端子は、バンドギャップ基準電圧VBGRを受け、負の入力端子は、抵抗R1とR2の接続ノードND6と接続する。BGR回路4は、BGR回路4内を流れる所定量の電流と所定の抵抗とによって定まる温度に応じて変化する電圧VPTATを出力する。温度特性補正回路2は、電圧VPTATと電圧VT1との差、および電圧VPTATと電圧VT2との差に応じた大きさの補正電流ICORRECTを接続ノードND6に流れるように制御する。 (もっと読む)


【課題】電源瞬停時に出力ノードの電圧が低電位電源端子の電圧よりも大きく低下することを防止する。
【解決手段】基準電流発生回路10と、該基準電流発生回路10で発生した基準電流を基準電圧に変換して出力ノードN1から出力する電流電圧変換回路20とを備えた定電圧出力回路において、出力ノードN1と低電位電源端子2との間に、アノードが低電位電源端子1に接続されカソードが出力ノードN1に接続されるダイオードD1を接続する。 (もっと読む)


【課題】電源回路が発熱により破壊されることを抑制する、電源回路の発熱による破壊を抑制する保護回路を提供する、占有面積の小さい保護回路及び電源回路を得る、作製コストの低い保護回路及び電源回路を得る。
【解決手段】電圧変換回路と、分圧回路及び保護回路を有する制御回路とを有し、保護回路は、温度が上昇するとオフ電流が増大する第1の酸化物半導体トランジスタと、オフ電流を電荷として蓄積する容量素子と、第2の酸化物半導体トランジスタと、非反転入力端子に参照電圧が入力されるオペアンプとを有し、第1の酸化物半導体トランジスタは、電圧変換回路又は制御回路の発熱する素子に隣接して配置される電源回路に関する。 (もっと読む)


【課題】温度に対し高精度なリファレンス電圧の発生を実現する。
【解決手段】ダイオード接続されたトランジスタのベース−エミッタ間電圧を用いた、温度に対して負の特性を持つ電圧に、絶対温度に比例する正の特性を持つ電圧を加えて1次の温度補償を行うとともに、さらに前記トランジスタのベース−エミッタ間電圧に含まれる例えば2次の温度特性成分を打ち消す温度補償信号を発生するN次温度補償信号発生回路105を設け、ベース−エミッタ間電圧に、N次温度補償信号発生回路105からの温度補償信号Vcompを加えることにより、ベース−エミッタ間電圧に含まれる2次の温度特性成分による変動を抑制する。 (もっと読む)


【課題】出力トランジスタのリーク電流抑制と低消費電流化とのトレードオフや、内部電源電圧生成ブロックの小型化と低消費電流化とのトレードオフなどがある。
【解決手段】基準電流生成回路X10は、デプレッション型トランジスタN1を用いて基準電圧V1を生成する基準電圧生成部X11と、基準電圧V1から基準電流I2a及びI2bを生成する電圧/電流変換部X12と、を有する。 (もっと読む)


【課題】温度特性の良い基準電圧回路を提供する。
【解決手段】ゲートとソースが接続された第一のデプレッショントランジスタに流れる電流に基づいた電流を、同じしきい値の第三のデプレッショントランジスタに流して、ゲートとソース間に電圧を発生させ、ゲートとソースが接続された第二のデプレッショントランジスタに流れる電流に基づいた電流を、同じしきい値の第四のデプレッショントランジスタに流して、ゲートとソース間に電圧を発生させる。この二つの電圧の差電圧を基に基準電圧を発生させることで、温度変化に対して電圧変動の少ない基準電圧を得る。 (もっと読む)


【課題】温度依存性をもたない基準電圧を発生させる。
【解決手段】SOI層膜厚のみが異なることで互いにしきい値電圧が異なる2つの完全空乏型SOI−MOSFETMN1,MN2について、ソース及びボディを接地し、ゲート及びドレインを定電流源CCS1,CCS2とボルテージフォロア回路Amp1−1,1−2の入力端子に接続し、ボルテージフォロア回路Amp1−1,1−2の出力端子に第1抵抗R1−1,R1−2と第2抵抗R2−1,R2−2を直列に接続する。第2抵抗R1−2を接地し、第1抵抗R2−1と第2抵抗R2−1の間の端子を差動増幅器Amp2の非反転入力端子に接続する。第2抵抗R2−2を差動増幅器Amp2の出力端子に接続し、第1抵抗R1−2と第2抵抗R2−2の間の端子を差動増幅器Ampの反転入力端子に接続する。差動増幅器Amp2の出力電圧を基準電圧Vrefとして出力する。 (もっと読む)


【課題】回路規模が小さく、且つ負荷の消費電力を高い精度で一定に制御できる定電力制御回路を提供する。
【解決手段】定電力制御回路10は、ヒータHに電流を供給する電流源11と、ヒータHの両端電圧の大きさに相当する検出信号を生成するA/D変換器12と、A/D変換器12に第1の基準電圧を与える離散制御型BGR16と、電流源11の出力電流の大きさを制御するための離散的な制御信号を生成する制御回路13と、離散的な制御信号を連続的な制御信号に変換するD/A変換器14と、D/A変換器14に第2の基準電圧を与える連続制御型BGR15とを備える。制御回路13は、連続制御型BGR15からA/D変換器12を介して第2の基準電圧の大きさに関するモニタ信号を入力し、モニタ信号が示す第2の基準電圧の変動量に基づいて離散的な制御信号を補正する。 (もっと読む)


【課題】交流的な電源電圧変動による基準電圧への影響を抑え、かつ、半導体装置に内蔵する場合にレイアウト面積を小さくできる基準電圧生成回路を提供する。
【解決手段】それぞれカソードが基準電位に接続された第1、第2のダイオードと、第2のダイオードのアノードに一端が接続された第1の抵抗素子と、第2の抵抗素子と、第1の抵抗素子の他端に一端が接続された第3の抵抗素子と、第1のダイオードのアノードに一端が接続された第4の抵抗素子と、第1、第2の差動入力端子と差動出力端子とを有する差動増幅回路と、を備え、第1の差動入力端子に第1の抵抗素子の他端が接続され、第2の差動入力端子に第2の抵抗素子を介して第1のダイオードのアノードが接続され、差動出力端子に第3の抵抗素子の他端と第4の抵抗素子の他端とが接続されている。 (もっと読む)


【課題】
電源起動時の消費電力を抑制したバンドギャップレファレンス回路を提供する。
【解決手段】
バンドギャップレファレンス回路は,第1,第2の特性で変化する第1,第2の電圧を生成する第1,第2のPN接合素子回路と,第1及び第2の電圧を入力端子対に入力し第1及び第2の電圧との差電圧に応じて高電位電源から出力端子に供給される出力電流を増減するアンプとを有し,出力電圧が第1及び第2のPN接合素子回路に供給される。さらに,出力電圧が閾値電圧より小さいに,アンプに差電圧にかかわらず出力電流を出力端子に供給させる出力電流調整部を有する。 (もっと読む)


【課題】温度に対する変動幅が小さく所望の電圧値を有する出力電圧を生成する基準電圧生成回路を提供する。
【解決手段】基準電圧を生成する差動アンプA1の出力端子OUTとグランドとの間に,第1抵抗R1,第2抵抗R2と,第2抵抗R2にエミッタが接続されグランドにコレクタが接続された第1トランジスタB1とを有する第1の経路と,差動アンプA1の出力端子OUTとグランドとの間に,第3抵抗R1bと第3抵抗にエミッタが接続されグランドにコレクタが接続された第2トランジスタB2とを有する第2の経路とを有する。第1抵抗R1と第2抵抗R2との間の第1ノードN1と,第3抵抗R1bと第2トランジスタB2のエミッタとの間の第2ノードN2とが,差動アンプの入力端子対にそれぞれ接続され,第1トランジスタB1のエミッタサイズが第2トランジスタB2のエミッタサイズより大きく,さらに第4の抵抗R3を有する。 (もっと読む)


【課題】温度および外部電源電圧(あるいはアレイ電圧)に依存した参照電圧を生成し、データの誤検出を抑制することができる内部電圧生成回路を提供する。
【解決手段】内部電圧生成回路は、半導体メモリに格納されたデータを検出するために用いられる参照電圧を生成する内部電圧生成回路であって、半導体メモリに供給される外部電圧を第1のデジタル値に変換する第1のADコンバータと、半導体メモリの温度に応じて変化する温度特性電圧を第2のデジタル値に変換する第2のADコンバータと、参照電圧を指定する参照電圧トリミングアドレスと、第1のデジタル値と、第2のデジタル値とを受け取り、該参照電圧トリミングアドレス、該第1のデジタル値および該第2のデジタル値を重み付け加算した第3のデジタル値を出力する加算器と、第3のデジタル値に応じた前記参照電圧を出力するドライバとを備えている。 (もっと読む)


【課題】面積の大幅な増大なくレファレンス電圧生成回路を低消費電流化するとともに通常動作モード時とスタンバイモード時においてレファレンス電圧精度の大幅な劣化を抑制する。
【解決手段】スタンバイモード時に、分周制御回路14は発振回路5が生成したクロックから、基準電圧発生回路3、基準電圧生成回路4、容量充電レギュレータ11のON/OFFを決めるイネーブル信号VREFONと基準電圧発生回路3、基準電圧生成回路4、ならびに容量充電レギュレータ11がONの際に、保持容量回路6内の保持容量CHに充電し、OFF期間に保持容量CHに対してリーク電流パス以外は存在しないように制御するサンプリング/ホールド信号CHOLDSWを生成する。消費電流の大きい基準電圧発生回路3、基準電圧生成回路4、容量充電レギュレータ11を間欠動作させて低消費電流化を図る。 (もっと読む)


【課題】簡易な回路構成で、増幅手段から出力される電圧の温度変化を抑制する。
【解決手段】第1の大きさの負の温度勾配を有する電圧を電圧出力端子12Aから出力する定電圧回路12、電圧出力端子12Aが接続される非反転入力端子14A、増幅された電圧を出力する増幅電圧出力端子14C、及び反転入力端子14Bを有するオペアンプ14、抵抗16Aの一端が増幅電圧出力端子14Cに接続され、かつ他端が反転入力端子14Bに接続され、抵抗16Bの一端が抵抗16Aの他端に接続され、抵抗16Bの他端に接続されるNMOSトランジスタ20によって、絶対値が定電圧回路12から出力される電圧の温度勾配の大きさよりも大きい負の温度勾配を有する電圧が出力され、抵抗16Aと抵抗16Bとの抵抗値の比が、抵抗16Aに印加される電圧の温度勾配の絶対値が第1の大きさと同じ大きさの正の温度勾配となる値とされている。 (もっと読む)


【課題】高精度の定電圧を発生することができる定電圧発生回路を提供する。
【解決手段】本発明に係る定電圧発生回路1は、一対の不揮発メモリFM1・FM2と、平衡状態において各不揮発メモリFM1・FM2に互いに等しい電流を流す一対のトランジスタMP1・MP2と、トランジスタMP1・MP2の出力電圧を入力とするオペアンプAMP2と、オペアンプAMP2の出力電圧Voutの変化を検知して不揮発メモリFM1・FM2に流れる電流が平衡するように制御する抵抗R1・R2と、各不揮発メモリFM1・FM2の閾値電圧を制御する不揮発メモリ制御回路13と、を備え、不揮発メモリ制御回路13が不揮発メモリFM1・FM2の浮動ゲートに保持される電荷量を変化させるときに、不揮発メモリ制御回路13とオペアンプAMP2とを電気的に遮断するスイッチ回路SWと、を備える。 (もっと読む)


【課題】正の温度係数を有する電圧を出力すると共に、正の温度係数を任意に設定することができる電圧発生回路を提供する。
【解決手段】減算回路16のオペアンプOP1の反転入力端子(−端子)を第1抵抗R7aを介して第2の電圧源14に接続する。−端子と出力端子との間に第2抵抗R8aを接続する。OP1の非反転入力端子(+端子)を第3抵抗R8bを介して第1の電圧源12に接続する。+端子を第4抵抗R7bを介して接地する。第1の電圧源12から正の温度係数を有する電圧Vptatを+端子に入力し、第2の電圧源14から負の温度係数を有する電圧Vpnを−端子に入力する。電圧Vpnの負の温度係数は減算により符号が逆転し、電圧Vptatの正の温度係数に電圧Vpnの温度係数の絶対値が足されて、正の温度係数を有する電圧Toutが出力される。 (もっと読む)


【課題】回路面積及び消費電流を低減できる高精度の温度検出回路を提供する。
【解決手段】
トランジスタ1はしきい値電圧Vth1を有し、トランジスタ2a,2bはしきい値電圧Vth2を有する。スイッチA1〜A6とスイッチB1〜B5とは交互にオンするように制御される。スイッチA1がオンしているとき、トランジスタ1及び2aがオンしかつトランジスタ2bがオフし、第1の温度係数を有する基準電圧Vrefaが出力される。スイッチA1がオフしているとき、トランジスタ1,2a,2bがオンし、第2の温度係数を有する基準電圧Vrefbが出力される。出力回路30は、基準電圧Vrefaをサンプルホールドし、サンプルホールドされた基準電圧Vrefaと、基準電圧発生回路20からの基準電圧Vrefbとに対して所定の演算を行って出力する。 (もっと読む)


【課題】雑音を低減するローパスフィルタの容量を高速で充電して、高速に出力電圧を整定することが可能な基準電圧発生回路を提供する。
【解決手段】基準となる直流電圧を発生する基準電圧源1と、基準電圧源の出力に接続されたローパスフィルタ2と、基準電圧源の出力が入力端子に接続されローパスフィルタの出力が出力端子に接続された電圧ゲインが1倍の第1電圧バッファ回路10と、基準電圧源の出力が一方の入力端子に接続されローパスフィルタの出力が他方の入力端子に接続されたヒステリシスコンパレータ11とを備える。起動時に基準電圧源の出力とローパスフィルタの出力の電圧差が所定値を超えている期間は、ヒステリシスコンパレータの出力信号により第1電圧バッファ回路の出力インピーダンスが制御される。起動時にローパスフィルタを低インピーダンスで急速に充電することにより、整定の時間を早めることができる。 (もっと読む)


1 - 20 / 53