説明

Fターム[5H505GG04]の内容

交流電動機の制御一般 (51,584) | 制御系 (3,480) | 電流フィードバックするもの (1,845)

Fターム[5H505GG04]に分類される特許

61 - 80 / 1,845


【課題】モータの駆動を制御する駆動制御手段の制御内容を変更することなく、高トルク運転時にモータに対して十分な電力を供給することができるとともに、減速動作時にモータから生じる回生エネルギーを有効利用することを可能とする。
【解決手段】昇降圧回路29は、入力電圧を昇圧して出力する昇圧動作、入力電圧を降圧して出力する降圧動作、入力電圧の供給が遮断する電源遮断動作などを実行する。電源制御部26は、バス電圧の検出値に基づいて、モータMが加速動作状態であると判断される期間には昇圧動作を実行し、減速動作状態であると判断される期間には電源遮断動作を実行し、それらの期間を除く期間には降圧動作を実行するように昇降圧回路29の動作を制御する。 (もっと読む)


【課題】実際の負荷トルクの変動態様に一層一致するようにトルク変動を補償する。
【解決手段】電流演算手段は、モータの巻線電流に基づいてd軸電流およびq軸電流を求める。速度制御手段は、回転速度が指令回転速度に一致するように指令d軸電流および指令q軸電流を生成する。電流制御手段は、d軸電流およびq軸電流が指令d軸電流および指令q軸電流に一致するように制御する。トルクデータ演算手段は、モータの回転角度に応じて記憶手段から基準負荷トルクデータを読み出し、その基準負荷トルクデータからゼロ点設定値を減算するとともにゲインを与えた負荷トルクデータを求める。変化傾向判断手段は、速度変動幅演算手段が求める回転速度の変動幅の変化傾向を判断する。ゲイン調整手段は、回転速度の変動幅が減少傾向であると判断されるようにゲインの値を調整する。補正手段は、負荷トルクデータをモータのトルク定数で除算した電流に基づいて指令q軸電流補正値を演算し、その指令q軸電流補正値により指令q軸電流を補正する。 (もっと読む)


【課題】加速・減速や負荷トルク変動を含む広い動作領域で、磁束指令に対する磁束の追従遅れを補正し、所定のトルクを出力させ、加速性能および制御性能の向上が図れるモータ制御装置を得ること。
【解決手段】外部から入力される磁束指令Φcomと磁束推定部8が推定した推定磁束ΦSとの偏差が小さくなるようにする励磁電流指令を生成する磁束制御器13を備え、誘導モータ1をベクトル制御により駆動制御するモータ制御装置において、磁束指令Φcomに基づいて磁束遅れ補正指令Φhcomを生成する磁束遅れ補償器16aを設け、磁束遅れ補正指令Φhcomは、減算器20において磁束指令Φcomに代えて磁束推定部8が推定した推定磁束ΦSとの偏差を取るのに用いる。 (もっと読む)


【課題】過渡状態においても磁極位置検出回路を用いずに磁極位置と速度を正確に演算する。
【解決手段】回転子に同期した直交回転座標軸γδ軸を定義し、高周波電圧を前記γ軸基本波電圧指令値に加算してγ軸電圧指令値を印加する。検出した電動機電流δ軸成分から前記高周波電圧と同じ周波数の余弦波成分のフーリエ級数を演算し、位置推定誤差を演算する。 (もっと読む)


【課題】d軸電流フィードバック制御部32,q軸電流フィードバック制御部34とdn軸電流フィードバック制御部44,qn軸電流フィードバック制御部46とで干渉を生じ、ひいては制御が収束しないおそれがあること。
【解決手段】dn軸電流フィードバック制御部44,qn軸電流フィードバック制御部46では、実電流id,iqの高調波成分を高調波指令電流Σidkr,iqkrにフィードバック制御する。d軸電流指令値補正部24,q軸電流指令値補正部26では、基本波指令電流idr,iqrに高調波指令電流Σidkr,iqkrが加算される。d軸電流フィードバック制御部32,q軸電流フィードバック制御部34では、基本波指令電流idr,iqrおよび高調波指令電流Σidkr,iqkrの和と実電流id,iqとの差をゼロにフィードバック制御する。 (もっと読む)


【課題】インバータによりモータジェネレータを駆動して走行が可能な車両において、インバータに含まれるスイッチング素子に短絡故障が生じた場合の車両搬送時に、車両内の機器の二次故障を抑制しつつ車両の移動を可能とする。
【解決手段】車両100は、モータジェネレータ140と、インバータ130と、ECU300とを備える。インバータ130は、各々が上下アームを構成する2つのスイッチング素子を有する三相の駆動アーム131,132,133を含み、蓄電装置110からの直流電力を交流電力に変換してモータジェネレータ140を駆動する。ECU300は、車両100がモータジェネレータ140からの駆動力で自走していない場合に、インバータ130に一相短絡故障が生じたときには、車速に応じてインバータ130のスイッチング状態を変更する。 (もっと読む)


【課題】過渡状態においても磁極位置検出回路を用いずに磁極位置と速度を正確に演算する。
【解決手段】回転子に同期した直交回転座標軸γδ軸を定義し、高周波電圧を前記γ軸基本波電圧指令値に加算してγ軸電圧指令値を印加する。検出した電動機電流δ軸成分微分値から前記高周波電圧と同じ周波数のフーリエ級数を演算し、位置推定誤差を演算する。 (もっと読む)


【課題】矩形波制御実行中にコンバータによる昇圧動作の開始を適時に行ってシステム損失の増加を抑制することができるモータ制御システムを提供する。
【解決手段】モータ制御システムは、電源、コンバータ、インバータおよび交流モータと、コンバータおよびインバータの作動を制御することにより、正弦波PWM制御、過変調制御および矩形波制御のいずれかの制御方式でモータを駆動させる制御部とを備える。制御部は、電源から供給される直流電圧をコンバータで昇圧せずにインバータに供給し、モータについて、モータ電流のd軸q軸平面上における電流ベクトルの電流位相が最適電流進角またはその近傍で矩形波制御が実行されるように制御する。この場合において、制御部は、電流ベクトルが昇圧開始前後でシステム損失が等しくなるモータトルクT2に相当する電流位相になったときにコンバータによる昇圧動作を開始させる。 (もっと読む)


【課題】電流センサの出力値に実際の電流の振幅に対して所定の比率(≠1)だけ相違する誤差であるいわゆるゲイン誤差が含まれる場合、これに起因してモデル予測制御の制御性が低下するおそれがあること。
【解決手段】偏差算出部40,44では、予測電流ide,iqeのそれぞれと同位相の実電流id,iqとの差が算出される。フィードバック制御部42,46のそれぞれでは、偏差算出部40,44の出力値をゼロにフィードバック制御するための操作量(補償量idcomp,iqcomp)が算出される。これら補償量idcomp,iqcompによって、予測部33によって予測される予測電流ide,iqeが補正される。 (もっと読む)


【課題】インバータの大型化を抑えつつインバータの故障を防止できかつモータの巻線を円滑に切り替えることができる、乗り心地の良い鞍乗型車両を提供する。
【解決手段】自動二輪車10は、切り替え可能な巻線を有するモータ18と、アクセルグリップ22と、アクセルグリップ22からの指示に基づいて制御信号を出力する制御部20と、制御部20からの制御信号に基づいてモータ18に出力電圧を供給するインバータ14と、巻線を切り替えるスイッチ16a〜16cと、モータ電流を検出する電流センサ24a,24bと、モータ18の位相を検出するエンコーダ26とを備える。制御部20は、巻線の切り替え条件が成立したとき、アクセルグリップ22からの指示に係わらずモータ電流が0になるように、モータ電流とモータ18の位相とに基づいてインバータ14のデューティー比を調整する。デューティー比調整期間中に巻線を切り替える。 (もっと読む)


【課題】制御装置の演算負荷の増加を抑制しつつ、エイリアシングに起因して検出される周波数成分が、電流フィードバック制御に与える影響を抑制して、回転電機を制御する。
【解決手段】交流周波数成分を含む実電流をサンプリングして検出電流を取得するサンプリング周期STを設定するサンプリング周期設定部と、サンプリング周期STに応じて実電流をサンプリングして検出電流を取得する電流サンプリング部と、所定の周波数領域の周波数成分の入力に応答するように応答領域Rが設定され、検出電流と目標電流とに基づいて電流フィードバック制御を行う電流制御部とを備え、サンプリング周期設定部は、エイリアシングに起因して検出される検出電流の複数のエイリアシング周波数の少なくとも1つが、電流制御部の応答領域R外となるように、回転電機の回転速度に応じてサンプリング周期STを設定する。 (もっと読む)


【課題】モータジェネレータ10を流れる電流が大きくなることで、モデル予測制御の制御性が低下すること。
【解決手段】予測部33では、モード設定部31によって仮設定されたスイッチングモードのそれぞれに応じた予測電流ide,iqeを算出する。モード決定部34では、予測電流ide,iqeと指令電流id*,iq*との乖離が小さいものを最終的なスイッチングモードに決定する。操作部28では、インバータINVのスイッチングモードをモード決定部34の決定に従わせる。ここで、予測部33は、予測電流ide,iqeの予測に用いる電圧方程式における電流の時間微分の係数として、過渡インダクタンスLdt,Lqtを用いる。それらは、電流と電気角速度ωとの積の係数としての定常インダクタンスLds,Lqsとは相違する。 (もっと読む)


【課題】装置の小型化を図りつつ、スイッチング素子の短絡故障時にモータジェネレータで発生した逆起電力から装置を保護することができる回転駆動装置を提供する。
【解決手段】回転駆動装置1は、三相交流式のモータジェネレータ2と、このモータジェネレータ2とパワーケーブル3を介して接続された三相式のインバータ4とを備えている。インバータ4は、正共通線7と負共通線8との間に直列接続されたトランジスタ9a,10a、トランジスタ9b,10b及びトランジスタ9c,10cを有している。トランジスタ9a〜9cのコレクタ端子と正共通線7との間にはシャント抵抗14a〜14cが接続され、トランジスタ10a〜10cのエミッタ端子と負共通線8との間にはシャント抵抗15a〜15cが接続されている。シャント抵抗14a〜15cは、ヒューズ機能を有し、所定量以上の電流が流れるとオープン故障を起こすような素子である。 (もっと読む)


【課題】アナログ変換処理の実行周期はアナログ変換処理を行う制御装置内で定められる所定周期ではなく、インバータ等の制御対象に入力される信号と共通のタイミングでアナログ変換処理を行わなければ、電流制御の精度やモータ制御の効率低下を招いてしまう。
【解決手段】電子制御装置内において一定周期で発生する動作開始トリガにより、予め登録されているアナログ信号のアナログ変換処理をシーケンシャルに実行する、第一のアナログ変換機能と、前記電子制御装置外部と共通のタイミングで発生する動作開始トリガにより、予め登録されているアナログ信号のアナログ変換処理をシーケンシャルに実行する、第二のアナログ変換機能と、を備え、前記第一のアナログ変換機能よりも前記第二のアナログ変換機能の処理機能の優先度を高くする。 (もっと読む)


【課題】モデル予測制御を用いる場合、スイッチングモードの更新可能タイミングの都度、スイッチングモードを最適なものに変更することが可能であることから、スイッチングモードの切り替え頻度が高くなるおそれがあること。
【解決手段】予測部33では、モード設定部31によって仮設定されたスイッチングモードのそれぞれに応じて、モータジェネレータ10を流れる電流と指令電流id*,iq*との差ベクトルのノルムが閾値rとなるまでの所要時間Tsを予測する。モード決定部34では、所要時間Tsが最も長いものを最終的なスイッチングモードに決定する。操作部28では、インバータINVのスイッチングモードをモード決定部34の決定に従わせる。 (もっと読む)


【課題】トルク応答性の遅れを抑制するモータ制御装置を提供する。
【解決手段】モータ10の回転速度を検出するモータ回転速度検出手段と、外部から入力されるトルク指令値及び前記回転速度に基づき、所定の上限電流値の範囲内である、第1の励磁電流指令値及びトルク電流指令値をそれぞれ演算する電流指令値演算手段と、前記第1の励磁電流指令値の位相を進めて第2の励磁電流指令値を演算することで、前記モータのロータ磁束の遅れを補償する補償手段と、前記上限電流値及び前記トルク電流指令値に基づいて、前記励磁電流指令値の上限値である上限励磁電流指令値を演算する上限励磁電流指令値演算手段と、前記第2の励磁電流指令値を、前記上限励磁電流指令値以下に制限することで、第3の励磁電流指令値を演算する励磁電流指令値制限手段と、前記第3の励磁電流指令値及び前記トルク電流指令値に基づいて前記モータを制御するモータ制御手段と、を備える。 (もっと読む)


【課題】ロボットの制御装置の大型化を抑制しつつ、三相交流モータの駆動に伴う発熱を抑制する。
【解決手段】ロボットの制御装置は、インバータ回路と、ハイサイド側スイッチング素子駆動回路と、ローサイド側スイッチング素子駆動回路と、ハイサイド側スイッチング素子駆動回路に切り替え動作のための電力を供給するチャージポンプと、外部電源から電力の供給を受け、ローサイド側スイッチング素子駆動回路に切り替え動作のための電力を供給すると共に、オフ状態のハイサイド側スイッチング素子に対応するチャージポンプを充電する制御電源と、を備える。また、制御部は、各チャージポンプの充電量を特定し、充電量に基づき各スイッチング素子の状態の各組み合わせの選択可否を特定し、選択可能な組み合わせについて現在電流値に基づき将来の予測電流値を算出し、予測電流値と将来の目標電流値とに基づき1つの組み合わせを選択する。 (もっと読む)


【課題】回生制御の実行時においてもモータの各相電流値を検出することができるモータ制御装置を提供すること。
【解決手段】マイコンは、三角波δが山となるタイミングTbで上段側の各FETを全てオンにするような制御信号を出力する第1周期C1、及び下段側の各FETを全てオンにするような制御信号を出力する第2周期C2を交互に繰り返すことにより、その回生制御を実行する。そして、この回生制御の実行時、マイコンは、第1周期C1において三角波δが山となるタイミングTbで取得された各電流センサの出力値をオフセット電流値Ix0として、第2周期C2において第1周期C1と同じタイミングTbで取得された補正前電流値Ix1を補正することにより、モータの各相電流値を検出する。 (もっと読む)


【課題】
同期電動機を120度通電方式から180度通電方式に切り替える際に、切換速度より小さい速度付近で120通電方式のでは電流位相が進んで力率が悪化する問題があった。停止状態から中高速域に至る広い速度範囲において、トルクショックの小さいシームレス駆動を行うことができる同期電動機の制御システムを提供する。
【解決手段】
同期電動機を120度通電方式で起動し、その後、180度通電方式に切り替えて駆動する制御システムで、120度通電方式から180度通電方式へ切り替える際に、120度通電中の力率を改善する力率改善手段を設け、この力率の改善された120度通電方式から180度通電方式に切り替えて同期電動機を駆動する。 (もっと読む)


【課題】弱め界磁電流指令値の急変による異音や振動の発生が許容範囲となる立ち上がり、立下りが的確に設定できる電動パワーステアリング装置を提供する。
【解決手段】時点t1での基準値0から弱め界磁電流指令値Idに到達するまでの立ち上がり区間での時間微分値を、時点t2での弱め界磁電流指令値Idから基準値0に到達するまでの立ち下がり区間での時間微分値に比較して大きな値に設定することで、時点t1における立ち上がり区間では、トルク変動を低減して異音や振動の発生を抑制しながら高速時に急に操舵された場合等における弱め界磁制御の効果の発生が間に合うようになり、時点t2における立ち下がり区間では、時間微分値を小さな値に設定しているので、より一層トルク変動を低減して異音や振動の発生をより抑制することができる。 (もっと読む)


61 - 80 / 1,845