説明

Fターム[5H730FG01]の内容

DC−DCコンバータ (106,849) | 制御態様 (8,760) | オンオフ制御 (1,962)

Fターム[5H730FG01]に分類される特許

61 - 80 / 1,962


【課題】負荷電流に応じて昇圧能力を調整することにより、過剰な昇圧回路出力リップルを抑制する。
【解決手段】昇圧回路1は、昇圧部出力CPOの電圧を変動させて昇圧回路出力VPPを生成し、昇圧回路出力VPPの負荷電流の大きさに応じて制御電圧CON1を生成する制御部2と、制御電圧CON1に応じて電源VDDP1の電圧を変動させることにより昇圧部電源VDDPを生成する電源降圧部3と、昇圧回路出力VPPの電圧と目標電圧との差分に応じて昇圧部電源VDDPの電圧を変動させることにより昇圧部出力CPOを生成する昇圧部4とを備える。 (もっと読む)


【課題】負荷が外された場合でも出力電圧が過電圧となることを防止することができる電源装置及び照明装置を提供する。
【解決手段】電源装置100は、交流電源1からの交流電圧を整流する整流回路10、整流後の電圧を昇圧して電圧変換部30の入力側電圧Vinを生成する昇圧回路11、入力側電圧Vinを降圧して光源2に供給するための所要の電圧Voutを出力する電圧変換部30、光源2が接続されているか否かを判定するための電圧電流検出部17、光源2に対して並列に接続される第1の抵抗50、第2の抵抗40、光源2が接続されていないと判定された場合に、第1の抵抗50の電圧Voutを所定値以下に制御する出力電圧制御部20などを備える。 (もっと読む)


【課題】ワイドギャップ半導体のターンオフの速度を高速化できるゲート駆動回路。
【解決手段】負極が接地された正電源E1と、正極が接地された負電源E2と、正電源の正極と負電源の負極との間に設けられ、制御信号を生成する制御回路11と、正電源の正極と負電源の負極との間に設けられたトランジスタQ1とトランジスタQ2との直列回路と、ドレイン端子、接地されたソース端子及びQ1とQ2との接続点に接続されたゲート端子を備えたワイドバンドギャップ半導体からなるスイッチング素子GaNFETと、制御信号のオフ時にQ1を所定時間だけオンさせQ1を介して負電源の電圧をスイッチング素子のゲート端子に印加するターンオフ制御回路13と、スイッチング素子のゲート端子と接地との間に設けられ、制御信号のオフ時にそのゲート端子とソース端子を短絡させるトランジスタQ3とトランジスタQ4との直列回路を備える。 (もっと読む)


【課題】遷移期間においてハイサイドトランジスタQ1がオンしないようにする。
【解決手段】高電位電源ラインと低電位電源ラインとの間に直列に接続されたハイサイドトランジスタとロウサイドトランジスタと,両トランジスタの接続ノードと出力端子との間に設けられたインダクタとを有する電源装置の前記両トランジスタを駆動する駆動回路であって,前記ハイサイドトランジスタのゲートを駆動する第1のゲートドライバと,前記ロウサイドトランジスタのゲートを駆動する第2のゲートドライバとを有し,前記ハイサイドトランジスタがオンでロウサイドトランジスタがオフの第1の状態から,前記ハイサイドトランジスタがオフでロウサイドトランジスタがオンの第2の状態に遷移する遷移期間で,前記第1のゲートドライバは前記ハイサイドトランジスタのゲートを前記低電位電源ラインの電位より低い第1の電圧に駆動する電源装置の駆動回路。 (もっと読む)


【課題】スタンバイモードにおけるスイッチング電源の消費電力をより一層低減すること。
【解決手段】制御回路1は、制御部10および間欠制御部20を備える。制御部10は、制御電力が供給されている期間に、スイッチ素子Q1、Q2をスイッチング制御する。間欠制御部20は、スタンバイモードにおいて、ダイオードD1およびキャパシタC2で整流および平滑された補助巻線W2の巻線電圧VW2が第1の閾値電圧VON以上であれば、制御部10への制御電力の供給を停止させる。 (もっと読む)


【課題】スイッチングロスを低減し電力変換効率を向上することができるとともに装置の小型化を実現できる2コンバータ方式電源装置の制御方法及び電源装置を提供する。
【解決手段】第1のコンバータCV1と第2のコンバータCV2との間に選択スイッチング素子Qsを接続するとともに、整流回路2と第2のコンバータCV2との間に逆止用ダイオードDsを接続する。電圧検出回路10は、整流回路2からの電源電圧が予め定めた値以上かどうかを判定し、電源電圧が予め定めた値以上と判定したとき、選択スイッチング素子Qsをオフさせて整流回路2からの電源電圧Vddを逆止用ダイオードDsを介して第2のコンバータCV2に入力させる。 (もっと読む)


【課題】最大電力点追従制御を実現することができる電力制御装置を提供する。
【解決手段】電力制御装置1は、太陽電池50から入力された電力を変換して負荷60に供給する電力変換手段11と、電力変換手段11から出力する出力電圧Voutを制御する制御手段40と、電力変換手段11を構成する電子素子13と、電子素子13の温度を検知する温度検知手段20と、出力電圧Voutを変更する電圧変更手段31と、出力電圧Voutを変更する前後で電子素子13の温度を比較する温度比較手段32とを備える。電圧変更手段31は、出力電圧Voutを変更した後に電子素子13の温度が上昇したとき、出力電圧Voutを同一方向に変更し、出力電圧Voutを変更した後に電子素子13の温度が下降したとき、出力電圧Voutを反対方向に変更する。 (もっと読む)


【課題】外部端子を削減することで、スイッチング電源装置の設計を容易化することができ、かつ、小型化や低コスト化が可能となるエネルギー伝達装置およびエネルギー伝達制御用半導体装置を提供する。
【解決手段】スイッチング素子1のドレイン電圧から所定の電圧以上の部分をクランプした電圧信号を出力する電圧制限回路6と、その電圧信号からスイッチング素子1をターンオンさせるタイミングを検出するターンオン検出回路7を備えることで、外部端子を追加することなく、スイッチング素子1をドレイン電圧の極小値でターンオンさせる。 (もっと読む)


【課題】位相制御型の入力電圧変換装置で出力電流が調整可能な電源装置であり、2次側に出力電流を検出するエラーアンプ部を持ち1次側制御部で発振周波数又はデューテイ等を制御する絶縁トランス型定電流電源装置において、入力電圧変換装置を前段においた状態で、商用入力電圧が変動した時に出力電流が変動する問題がある。
【解決手段】入力電圧変換装置を使用した時のみ動作する入力電圧補正回路を設けて、入力電圧変換装置を使用した場合に、入力電圧が変動することによる出力電流変動を2次側基準電圧補正することにより出力電流が変動しないようにする。又、絶縁トランスの2次側電圧で入力電圧を擬似的にモニタし入力電圧補正を行なう。 (もっと読む)


【課題】昇圧効率を向上させた昇圧回路を提供することを課題の一とする。または、昇圧効率を向上させた昇圧回路を用いたRFIDタグを提供することを課題の一とする。
【解決手段】単位昇圧回路の出力端子に当たるノード、または当該ノードに接続されたトランジスタのゲート電極をブートストラップ動作により昇圧することで、当該トランジスタにおけるしきい値電位と同等の電位の低下を防ぎ、当該単位昇圧回路の出力電位の低下を防ぐことができる。 (もっと読む)


【課題】DC/DC変換器及び電源モジュールにおいて、電力変換効率を向上させる。
【解決手段】入力電圧Vinに対し出力電圧Vout=(s/r)×Vinを出力するDC/DC変換器であって、N個のキャパシタと、3N−2個のスイッチとを備え、3N−2個のスイッチのオンオフを切り替えることにより、r≦2(N−1)の場合、入力電圧Vinの2(N−1)分の1の整数倍を掛け合わせた電圧で、N個のキャパシタを充電し、r≦Tri(N+1)の場合、入力電圧VinのTri(N+1)分の1の整数倍を掛け合わせた電圧で、N個のキャパシタを充電し、r≦Fib(N+1)の場合、入力電圧VinのFib(N+1)分の1の整数倍を掛け合わせた電圧で、N個のキャパシタを充電し、r≦Nの場合、入力電圧VinのN分の1を掛け合わせた電圧で、N個のキャパシタを充電し、第1〜第Nキャパシタの充電電圧を単独にもしくはいくつか加算して、出力電圧Voutを生成する。 (もっと読む)


【課題】複数の蓄電デバイスの充放電を制御して電気負荷へ電力供給および回生の双方向電力移行を行うとともに、複数の蓄電デバイス間で電圧に依らず電力授受を可能にする。
【解決手段】電力変換装置の主回路3が、それぞれ蓄電デバイス10、15および複数の半導体スイッチング素子11〜14、16−17から成る複数の電力変換ユニットA、Bの交流側を直列接続した蓄電デバイス充放電装置4と、それに接続され、双方向に電力変換するDC/DCコンバータ5とを備える。そして、各蓄電デバイス10、15を選択的に蓄電デバイス充放電装置4の入出力線に直列接続して充放電して、負荷との間で双方向電力移行を行い、その電力移行停止時に、DC/DCコンバータ5内のリアクトル6および第1の半導体スイッチング素子7を用いて、2つの蓄電デバイス10、15間で昇降圧を伴う電力授受を行う。 (もっと読む)


【課題】 様々な特長を有するチャージポンプ方法及び装置を提供する。
【解決手段】 チャージポンプから他の回路へのノイズ注入は、クロックの立ち上がり及び立ち下がり変化率を制限すると同時に、クロック生成駆動回路内の駆動電流を制限することにより、また、特定の転送コンデンサ結合スイッチの制御端子ACインピータンスを増加させることによっても減少できる。単相クロックは、チャージポンプ内の全ての能動スイッチを制御するために用いられ、容量性結合は、バイアスと転送コンデンサ結合スイッチを制御するクロック信号のタイミングを簡単化する。前記方法及び装置の特長の如何なる組合せも、多種多様なチャージポンプに関し、チャージポンプの設計を簡素及び/簡単化するために利用される。 (もっと読む)


【課題】小型・高効率な絶縁型の双方向DC−DCコンバータを提供する。
【解決手段】双方向DC−DCコンバータの第1のスイッチング回路は、スイッチング素
子H1とスイッチング素子H2とを直列接続した第1のスイッチングレッグと、スイッチ
ング素子H3とスイッチング素子H4とを直列接続し、かつ第1のスイッチングレッグに
並列接続された第2のスイッチングレッグとを備え、第1のスイッチングレッグの両端間
を直流端子間とし、スイッチング素子H1とスイッチング素子H2との直列接続点と、ス
イッチング素子H3とスイッチング素子H4との直列接続点との間を交流端子間とし、制
御手段は、第2の直流電源から第1の直流電源へ電力を送る場合に、前記スイッチング素子H1〜H4の全てをオン状態に保つモードを備える。 (もっと読む)


【課題】スイッチング素子耐圧を超えずゼロ電圧スイッチングを実現し高効率なスイッチング電源回路。
【解決手段】巻線L1-1と巻線L1-2とが直列に接続された第1リアクトルに直列に接続された第2リアクトルLr、直流電源Vinの一端と他端との間に接続され第1リアクトルとリアクトルLrとコンデンサC1とダイオードD1と出力コンデンサCoとの直列回路、巻線L1-1と巻線L1-2との接続点と直流電源の一端との間に接続されたスイッチング素子Q1、一端が巻線L1-1と巻線L1-2との接続点に接続され他端がコンデンサC1とダイオードD1との接続点に接続されスイッチング素子Q2とコンデンサC2との直列回路、コンデンサC1とダイオードD1との接続点と直流電源の一端との間に接続されたリアクトルL2、スイッチング素子Q1のターンオンがゼロ電圧スイッチングとなるようにスイッチング素子Q2のオンオフを制御する制御回路10を有する。 (もっと読む)


【課題】外部電圧に応じた能力にて内部電圧を生成すること。
【解決手段】昇圧部20は直列接続された3つのポンプ回路21〜23を備える。各ポンプ回路21〜23は、発振部31にて生成されたクロック信号CLK1に基づいてポンピング動作し、入力電圧を昇圧した電圧を生成する。従って、昇圧部20は、外部電圧Vddを、各ポンプ回路21〜23により昇圧して内部電圧Vppを生成する。制御部32は、内部電圧Vppの変化量を検出し、その検出結果(変化量)に応じて昇圧部20に含まれるポンプ回路21〜23の段数を制御する。 (もっと読む)


【課題】安定した調光制御を実現できる電源装置および照明器具を提供する。
【解決手段】電源装置10において、DC−DCコンバータ20は、半導体発光素子6に接続されたインダクタ22と、制御信号CSの論理レベルに応じてオン・オフするスイッチング素子21とを含む。電流検出部25は、スイッチング素子21を流れる電流を検出する。制御回路40は、半導体発光素子6の光出力の設定値に対応した基準信号VRと電流検出部25による電流検出信号とを受ける。制御回路40は、スイッチング素子21をオフ状態にする第1の論理レベルからスイッチング素子21をオン状態にする第2の論理レベルに制御信号CSの論理レベルを切替えた後、インダクタ22を流れる電流が次第に増加することによって電流検出信号の大きさが基準信号VRの大きさを超えたときに、制御信号の論理レベルを第2の論理レベルから第1の論理レベルに切替える。 (もっと読む)


【課題】消費電力が小さく、小型で低コストのスナバ回路を提供する。
【解決手段】スナバ回路9は、スイッチング電源装置のダイオード8に発生するサージ電圧を抑制するものであり、ダイオード8のカソードおよびアノード間に直列接続されたダイオード10およびコンデンサ11を含む。サージ電圧のエネルギーは、ダイオード10を介してコンデンサ11に吸収された後、ダイオード10の逆回復時間内にダイオード10を介して放出される。したがって、簡単な構成でアクティブスナバ回路と同じ機能を実現できる。 (もっと読む)


【課題】入力電圧を上げ、電気的な負荷に、その閾値電圧よりも低い低電圧の入力から電力供給し、従来技術による回路よりも消費電流が少なく製造が安価で小型である、電圧増倍回路を提供すること。
【解決手段】電圧Vdcが回路の第1の入力に印加される増倍回路(100)であって、第1のキャパシタ(104)および第2のキャパシタ(106)と、第1の状態において、各キャパシタの第1の端子をゼロ電位に、各キャパシタの第2の端子をVdcに等しい電位に電気的に結合でき、第2の状態において、第1のキャパシタの第1の端子を電位Vdcに、第2のキャパシタの第2の端子をゼロ電位に、第1のキャパシタの第2の端子を第1の出力端子に、第2のキャパシタの第1の端子を第2の出力端子に電気的に結合できる、結合手段(108、110、112、114)と、一方の状態からもう一方の状態への変化を制御できる、制御手段(116)と、を含む、増倍回路。 (もっと読む)


【課題】
保安動作を行うとともに、部品点数を低減して直流制御電圧を生成する際の電力損失が少なくて、しかも小形で安価な電源装置を提供する。
【解決手段】
電源装置は、スイッチング電源と、直流制御電圧生成手段、駆動信号発生手段、保安動作モード切替手段および保安動作信号出力端子を備えていて、駆動信号発生手段は入力電源投入の所定時間後にスイッチング電源のスイッチング素子に駆動信号を供給してスイッチング電源を起動し、保安動作モード切替手段は駆動信号発生手段を保安動作モードに切り替え、保安動作信号出力端子から保安動作信号を出力する制御ICと、電源投入時から所定時間後に駆動信号のスイッチング素子への供給を開始させ、保安動作信号の入力時には低消費電力モードに切り換わるマイコンと、スイッチング電源の動作中に直流電圧を生成して制御ICに供給する補助電源回路とを具備している。 (もっと読む)


61 - 80 / 1,962