説明

Fターム[5H730FG01]の内容

DC−DCコンバータ (106,849) | 制御態様 (8,760) | オンオフ制御 (1,962)

Fターム[5H730FG01]に分類される特許

41 - 60 / 1,962


【課題】電力変換回路において、ノーマリオン型トランジスタを利用したスイッチング素子への貫通電流を抑制する。
【解決手段】本発明による電力変換回路は、相互に直列接続されハーフブリッジ回路を構成するハイサイドトランジスタ11及びローサイドトランジスタ12と、ハイサイドトランジスタ11及びローサイドトランジスタ12のゲートを相補に駆動する2つの駆動回路21、22とを具備する。ハイサイドトランジスタ11はノーマリオフ型トランジスタであり、ローサイドトランジスタ12は、ノーマリオン型トランジスタである。 (もっと読む)


【課題】フィードバック制御によるオーバーシュートの発生を抑制する。
【解決手段】直流電源回路110は、光源回路830(負荷回路)に供給する直流電力を生成する。負荷電流検出回路140は、光源回路830を流れる負荷電流を検出して、負荷電流検出電圧を生成する。目標電圧生成回路170は、光源回路830を流れる負荷電流の目標値に基づいて、目標電圧を生成する。帰還信号生成回路180は、負荷電流検出電圧と目標電圧とを比較して、帰還信号を生成する。目標電圧生成回路170の積分回路172は、負荷電流の目標値が高くなった場合に、所定の時間が経過するまでの間、目標値に対応する電圧値よりも小さい電圧値の目標電圧を生成し、所定の時間が経過したのち、目標値に対応する電圧値の目標電圧を生成する。 (もっと読む)


【課題】フィードフォワード制御方式のDC/DCコンバータにおいて、従来よりも電力変換効率を向上させる。
【解決手段】DC/DCコンバータ1において、制御回路20は、負荷電流Iloadおよび入力直流電圧Vinに基づいてインダクタ電流ILの上限値を決定し、検出したインダクタ電流ILがこの上限値を超えないようにスイッチング素子n_drのオン時間およびオフ時間の少なくとも一方を変化させる。 (もっと読む)


【課題】出力電流の可変範囲を広げたスイッチング電源及び照明装置を提供する。
【解決手段】スイッチング素子8は、オンのとき第1のインダクタ13に電源電圧を供給して電流を流す。定電流素子9は、スイッチング素子8に直列に接続され、スイッチング素子8の電流が所定の上限値を超えたときスイッチング素子8をオフさせる。整流素子10は、スイッチング素子8および定電流素子9のいずれかに直列に接続され、スイッチング素子8がオフしたとき第1のインダクタ13の電流を流す。第2のインダクタ14は、第1のインダクタ13と磁気結合し、第1のインダクタ13の電流が増加しているときスイッチング素子8をオンさせる電位が誘起され、スイッチング素子8の電流が減少しているときスイッチング素子8をオフさせる電位が誘起され、誘起された電位をスイッチング素子8の制御端子に供給する。制御回路11は、定電流素子9の制御端子に電位を出力する。 (もっと読む)


【課題】インダクタを備える昇降圧スイッチング回路の昇降圧動作によって、インダクタで発生する電磁ノイズが撮影画像に影響を与えないようにする。
【解決手段】撮像素子モジュールの電源回路5-4であって、スイッチングトランジスタ22,23及びインダクタ6により入力直流電圧を降圧して出力する降圧回路部20と、降圧回路部20と並列に設けられトランジスタ31のリニア定電圧動作によって入力直流電圧を降圧して出力するリニアレギュレータ回路部30と、降圧回路部20の前段又は後段に直列に接続され入力直流電圧をチャージポンプ動作又はチャージポンプ動作と昇圧スイッチング動作の切替によって昇圧して出力する昇圧回路部40と、撮像素子モジュールの撮影記録モード時に降圧回路部20の動作を停止させると共にリニアレギュレータ回路部30を動作させて撮像素子の駆動に必要な定電圧を供給させる制御コントロール部56とを備える。 (もっと読む)


【課題】フィードバック制御によるオーバーシュートの発生を抑制する。
【解決手段】直流電源回路110は、光源回路830(負荷回路)に供給する直流電力を生成する。負荷電流検出回路140は、光源回路830を流れる負荷電流を検出して、負荷電流検出電圧を生成する。目標電圧生成回路170は、光源回路830を流れる負荷電流の目標値に基づいて、目標電圧を生成する。帰還信号生成回路180は、負荷電流検出電圧と目標電圧とを比較して、帰還信号を生成する。目標電圧生成回路170は、負荷電流の目標値が低くなった場合に、目標電圧を所定の減少率よりも低い減少率で徐々に減少させる。 (もっと読む)


【課題】負荷電流の変動による導通損失を減らし、変換効率を向上させる。
【解決手段】電源の出力側に接続されたコンデンサC62を一端とするチョークコイルL61と、電源の入力側とチョークコイルL61の間に接続され、チョークコイルL61を介して出力電圧を制御する主スイッチング素子Q61と、回生ダイオードD61と、出力電圧に比例した電圧と基準電圧を比較して主スイッチング素子Q61をオン又はオフするコンパレータI61と、主スイッチング素子Q61のオン状態が所定の時間、継続されるように、コンパレータI61に入力される出力電圧に比例した電圧を所定の時間、変更するワンショットマルチバイブレータと、を具備する。 (もっと読む)


【課題】アンプに対する電源電圧を好適に制御する。
【解決手段】メインアンプ4は、オーディオ信号S1を増幅する。電源回路2は、アンプの上側電源ラインに正の電源電圧CPVDDを、下側電源ラインに負の電源電圧CPVSSを供給する。電圧検出部32は、アンプにより増幅されたオーディオ信号S2の振幅が所定のしきい値より大きいときアサートされる電圧検出信号S21を生成する。電流検出部34は、メインアンプ4の出力段に流れる負荷電流ILが所定のしきい値電流ITHより大きいときアサートされる電流検出信号S22を生成する。電圧制御部30は、電圧検出信号S21がネゲートされると、電源回路2が生成する正および負の電源電圧の絶対値を低下させる。また電圧検出信号S21がアサートされ、または電流検出信号S22がアサートされると、電源回路2が生成する正および負の電源電圧の絶対値を増大させる。 (もっと読む)


【課題】多くの感知された電圧および電流を減少させることを可能とするマルチレベルコンバータのための制御方法を提供すること。
【解決手段】コンバータ1に関し、このコンバータ1は、AC入力におけるAC入力電圧uinを中間DC電圧Uに変換するためのアクティブステージ2と、DC出力における出力DC電圧Uoutに中間DC電圧Uを変換するためのDC/DCコンバータ3であって、共振回路32および変圧器33によって形成される、共振変圧器32、33を有するDC/DCコンバータ3と、DC/DCコンバータ3の出力DC電圧Uout、入力電圧uinおよびコンバータ1の入力電流のみに基づいて、アクティブステージ2をアクティブに操作するように構成され、開ループモードでDC/DCコンバータ3を操作するように構成された制御ユニット5と、を具備する。 (もっと読む)


【課題】損失を抑制すると共により迅速に昇圧を行なう。
【解決手段】チャージポンプ20からの出力電圧VCがトリガ電圧を超えると、スイッチ70がオンし、クロック信号供給回路30は出力電圧VCの振幅のクロック信号CKmos,CKBmosをチャージポンプ20に出力し、クロック信号供給回路40は出力電圧VCの振幅のクロック信号CKmosを用いてクロック信号CKcap,CKBcapを生成してチャージポンプ20に出力し、チャージポンプ20では、各トランジスタのゲートへ出力電圧VCの振幅のクロック信号CKmos,CKBmosが供給され、各キャパシタの他端へ立ち上がり時間の小さいクロック信号CKcap,CKBcapが供給される。これにより、昇圧回路10全体の損失を抑制すると共により迅速に出力電圧VCを目標出力電圧に昇圧することができる。 (もっと読む)


【課題】昇圧率の切りかえの際に、電流の逆流を防止する。
【解決手段】コントローラ10は、第1スイッチSW1から第7スイッチSW7のオン、オフ状態を制御することにより、(1)第1モードにおいて、第3端子P3に入力電圧VDDを、第4端子P4に入力電圧VDDを反転した負電圧−VDDを発生させ、(2)第2モードにおいて、第3端子P3に入力電圧VDDの略1/2倍の電圧を、第4端子P4に、入力電圧VDDの略1/2倍の電圧を反転した負電圧−VDD/2を発生させる。コントローラ10は、第1モードから第2モードへの移行を指示されると、遷移期間にわたり、第3スイッチおよび第5スイッチをオンする第1状態と、第2スイッチおよび第4スイッチをオンする第2状態と、を交互に繰り返す第3モードで動作し、その後、第2モードで動作する。 (もっと読む)


【課題】従来よりも高速な過渡応答を実現するリップル制御のDC−DCコンバータ回路を提供する。
【解決手段】DC−DCコンバータ回路は、トランジスタP1及びN1と、トランジスタP1及びN1とDC−DCコンバータ回路の出力端子6との間に接続されたインダクタL1と、インダクタ電流のリップルに応じて変化するリップル電圧を生成するリップル生成回路1と、帰還電圧を生成するフィードバック回路5と、帰還電圧が所定の電圧範囲内にあるか否かを検出する検出器と、基準電圧を生成する基準電圧源と、基準電圧と帰還電圧とを比較する比較器3と、トランジスタP1及びN1を制御するドライバ駆動回路4とを備える。帰還電圧が電圧範囲内にあるとき、比較器3によって比較される帰還電圧にリップル電圧が重畳され、帰還電圧が電圧範囲外にあるとき、比較器3によって比較される帰還電圧にリップル電圧が重畳されない。 (もっと読む)


【課題】送電装置におけるパルス発生のタイミングと受電装置におけるパルス受信のタイミングとの同期をとる。
【解決手段】MERS受電装置500は、MERS受電装置500が必要とする電力量を示す電力量情報を、MERS直流パルスルータ400に送信する。MERS直流パルスルータ400は、受信された電力量情報に基づいて、MERS直流パルス変換器300が備える送電側スイッチの切替時刻と、MERS受電装置500が備える受電側スイッチの切替時刻と、を決定する。MERS直流パルス変換器300は、決定された送電側スイッチの切替時刻に基づいて、パルス電流を生成する。MERS受電装置500は、決定された受電側スイッチの切替時刻に基づいて、パルス電流を受信する。 (もっと読む)


【課題】キャパシタプリチャージ回路における損失(発熱)を低減させ、回路を小型化する。
【解決手段】本発明に係るキャパシタプリチャージ回路は、スイッチドキャパシタ分圧回路を用いて電源電圧を分圧することにより、チャージ対象であるキャパシタの両端電圧を抑制しながら充電する。 (もっと読む)


【課題】低電圧で動作するとともに高電圧が入力された場合でも破壊することがないチャージポンプ回路を備えているとともに、通常の量産用の半導体製造プロセスが適用可能な半導体装置を提供する。
【解決手段】半導体装置において、チャージポンプ回路30は、薄膜トランジスタで構成され、外部電源電圧を昇圧する。スイッチ制御部11は、外部電源電圧が基準電圧を超えている場合には、チャージポンプ回路30への外部電源電圧の供給が遮断されるようにするとともに外部電源電圧がチャージポンプ回路30を介さずに負荷回路50に直接供給されるようにする。基板電圧制御部14は、外部電源電圧が基準電圧以下の場合に、チャージポンプ回路30を構成するトランジスタの基板領域に順方向となるバイアス電圧を供給する。 (もっと読む)


【課題】広範囲な入力電圧に対し効率低下を抑えつつ高力率を達成可能な電源回路を提供する。
【解決手段】実施形態によれば、電源回路は、第1のフライバックコンバータと、第2のフライバックコンバータと、制御回路100とを含む。第1のフライバックコンバータは、第1のキャパシタC1に接続され、第1のスイッチトランジスタQ1及び第1のトランスT1を含む。第2のフライバックコンバータは、第1のフライバックコンバータと並列に第1のキャパシタC1に接続され、第2のスイッチトランジスタQ2及び第2のトランスT2を含む。制御回路100は、第1のトランスT1のリセットを検出した後に第1のスイッチトランジスタQ1をオンして、第1のスイッチトランジスタQ1がオフし、かつ、第2のトランスT2のリセットを検出した後に第2のスイッチトランジスタQ2をオンにする。 (もっと読む)


【課題】等価直列抵抗の小さな出力キャパシタを使用した場合でも安定動作するコンパレータ制御方式のDC−DCコンバータ回路を提供する。
【解決手段】DC−DCコンバータ回路は、PMOSトランジスタと、NMOSトランジスタと、各トランジスタのドレインとDC−DCコンバータ回路の出力端子との間に接続されたインダクタと、基準電圧と、DC−DCコンバータ回路の出力端子における出力電圧に比例した帰還電圧とを比較する比較器と、各トランジスタを制御するドライバ制御回路と、インダクタを流れる電流を検出して電流の大きさに対応する電圧に変換する電流−電圧変換回路と、電流−電圧変換回路によって変換された電圧からインダクタを流れる電流の交流成分と相似な電圧を抽出して生成する重畳電圧生成回路とを備える。DC−DCコンバータ回路は、重畳電圧生成回路によって抽出された電圧を、比較器によって比較される帰還電圧に重畳させる。 (もっと読む)


【課題】
チャージポンプにおいて電流をクランプする回路が開示される。
【解決手段】
チャージポンプは、複数のスイッチング回路トランジスタを有するスイッチング回路を備える。同回路における第1及び第2の対のトランジスタの各々は、スイッチング回路トランジスタの内の対応する1つからの電流に対して、電流におけるスパイクが、同スイッチング回路トランジスタとチャージポンプのキャパシタとの間を通る経路を通って部分的にだけ伝送されるように、そのトランジスタがオフに切り替わっている間に追加経路を提供することができる。 (もっと読む)


【課題】電圧変換時の損失を低減し、効率の低下を抑えることができる力率改善回路を提供する。
【解決手段】整流手段Rcで整流された直流の整流電圧Vpfcと、与えられた目標電圧Voとを比較し、整流電圧Vpfcが目標電圧Voよりも低いとき、第2スイッチング素子Tr2をオフにし、第1スイッチング素子Tr1をスイッチングする制御信号を出力し、整流電圧Vpfcが目標電圧Voよりも高いとき、第1スイッチング素子Tr1をオンに、第2スイッチング素子Tr2をスイッチングする制御信号を出力する制御手段Contを備えた力率改善回路。 (もっと読む)


【課題】微細な電力を高電圧、高容量のバッテリーへ充電する手法の開発。
【解決手段】被充電バッテリーと同じ電圧の小容量バッテリーを用意し、このバッテリーへ微小電力を直列に接続し、被充電バッテリーと並列に接続することによって微小電力は被充電バッテリーへ充電される。 充電側に発生する電源電圧が大きく変動する要因がある場合は、被充電側バッテリーへの接続直前に抵抗器とコンデンサーを使用した電気的衝撃緩和回路を設置し、被充電側バッテリーの組織破壊を防止する。 (もっと読む)


41 - 60 / 1,962