説明

Fターム[5J056DD29]の内容

論理回路 (30,215) | 構成要素(素子) (5,667) | トランジスタ(UJT、IGBT他) (4,294) | トランジスタの組合せ (2,266) | P型FETとN型FETの組合せ (1,723) | 相補動作するもの、CMOS (940)

Fターム[5J056DD29]に分類される特許

101 - 120 / 940


【課題】出力バッファのI−V特性が出力バッファ用の電源電圧に応じて変化しても、出力バッファのI−V特性に対して規定を満足させることを可能にする。
【解決手段】レプリカ回路(110、120、130)は、インピーダンスが可変であり、当該インピーダンスに応じた電圧を出力する。参照電圧生成部(141、142)は、出力バッファ用の電源電圧に依存する参照電圧を出力する。比較部(151、152)は、レプリカ回路の出力電圧と参照電圧とを比較する。調整部(160、170、180、191、192、110a、120a、130a)は、比較部の比較結果に応じて、レプリカ回路のインピーダンスを調整する調整部(160、170、180、191、192、110a、120a、130a)。 (もっと読む)


【課題】回路規模を増大させることなくトランジスタの閾値電圧に応じた制御電圧を精度良く生成することが可能な制御電圧生成回路を提供すること。
【解決手段】本発明にかかる制御電圧生成回路は、高電位側電源と低電位側電源との間に直列に接続された同一導電型の複数のMOSトランジスタを有し、何れかのMOSトランジスタのドレイン電圧を参照電圧Vp1として生成する参照電圧生成部11と、高電位側電源と低電位側電源との間に直列に接続され参照電圧生成部11と同一導電型の複数のMOSトランジスタを有し、何れかのMOSトランジスタのゲートに参照電圧が供給され、何れかのMOSトランジスタのドレイン電圧を制御電圧(バイアス電圧)として出力する電圧変換部12と、を備える。 (もっと読む)


【課題】簡易な構成で電荷の再利用効率を高め、複数のLSIを搭載したシステム全体のエネルギー効率を向上することが可能な半導体回路および半導体装置を提供する。
【解決手段】入力端子20にLレベルの信号が入力されたとき、回路素子10の出力端子22に接続される信号線24の配線容量Cpに正の電荷が充電される。入力端子20にHレベルの信号が入力されたとき、NMOSトランジスタNr1は、論理素子のNMOSトランジスタN1が導通するのと同時に導通する。これにより、信号線24から放電される電荷の一部が、NMOSトランジスタNr1およびダイオードD1を介して、電荷回収線2に移動する。電荷回収線2が回収した電荷は、電荷再利用端子3を介して半導体チップ1Aの外部に放出されると、電荷再利用線30に接続された電荷回収用の容量素子Cextに蓄積される。蓄積され電荷は、他の半導体回路等の電源端子に供給される。 (もっと読む)


【課題】 電源ノイズを緩和しながら、内部回路が動作を開始するまでの時間を短縮する。
【解決手段】 内部回路は、基板電圧が供給されるトランジスタを含み、内部電源電圧を受けて動作する。電源スイッチは、内部回路を動作させるための電源オン信号の活性化中に外部電源線を内部電源線に接続する。基板電圧制御回路は、電源オン信号の活性化により上昇する内部電源電圧が目標電圧を超えたときに、基板電圧を第1電圧から第2電圧に変更する。第1電圧を基板電圧として受けているトランジスタのソース・ドレイン間電流は、第2電圧を基板電圧として受けているトランジスタのソース・ドレイン間電流より少ない。このため、電源スイッチがオンした後、内部電源電圧が低い期間にトランジスタのソース・ドレイン間電流を少なくでき、内部回路を流れる貫通電流を少なくできる。 (もっと読む)


【課題】バイアス調整回路やプリドライバ回路が不要で、しかも出力波形の波形歪みを低減することが可能なドライバアンプ回路および通信システムを提供する。
【解決手段】スイッチングトランジスタM11〜M14を駆動するゲート電圧を均一にするため、スイッチングトランジスタM11〜M14を電源およびGND側に配置し、さらに、スイッチングトランジスタM11〜M14の駆動振幅を安定させるために、各スイッチングトランジスタM11のドレインと出力ノードND11、ND12間にそれぞれ第1から第4の抵抗素子R11〜R14を接続している。 (もっと読む)


【課題】解像度が小さく測定精度が高い時間測定を行うことができるTDC回路を提供する。
【解決手段】TDC回路1は、共通の構成を有する32個の単位セル11〜1131がリング状に接続されたリング部10等を備える。単位セル11は、第1インバータ回路111,第2インバータ回路112,スイッチSW,スイッチSWおよびスイッチSWを含む。第1インバータ回路111のPMOSトランジスタのゲート幅は、第2インバータ回路112のPMOSトランジスタのゲート幅のα倍である。第2インバータ回路111のNMOSトランジスタのゲート幅は、第1インバータ回路112のNMOSトランジスタのゲート幅のα倍である。αおよびαの双方が1より大きいか又は双方が1より小さい。 (もっと読む)


【課題】しきい値が従来例では動作しないような値でも動作させることが可能な半導体装置である。
【解決手段】第1乃至第3のN型トランジスタと、第1乃至第3のP型トランジスタと、アナログスイッチと、容量手段とを有し、容量手段の一方は、アナログスイッチ、第3のN型トランジスタのソース又はドレインの他方、及び第3のP型トランジスタのソース又はドレインの他方と電気的に接続され、容量手段の容量は、第1のP型トランジスタ及び第1のN型トランジスタで発生する容量より大きく、アナログスイッチには、第1のラッチ信号、第2のラッチ信号、及びデータ信号が入力され、第1のラッチ信号は、第2のP型トランジスタのゲート、及び第3のN型トランジスタのゲートに入力され、第2のラッチ信号は、第2のN型トランジスタのゲート、及び第3のP型トランジスタのゲートに入力される半導体装置である。 (もっと読む)


【課題】しきい電圧Vが小さくてもリーク電流が小さく、また高速にかつ小さな電圧振幅で動作するCMOS回路さらには半導体装置を提供することである。
【解決手段】ゲートとソースを等しい電圧にしたときにドレインとソース間に実質的にサブスレショルド電流が流れるようなMOST(M)を含む出力段回路において、その非活性時には、前記MOST(M)のゲートとソース間を逆バイアスするように該MOST(M)のゲートに電圧を印加する。すなわち、MOST(M)がpチャンネル型の場合にはp型のソースに比べて高い電圧をゲートに印加し、また、MOST(M)がnチャンネル型の場合にはn型のソースに比べて低い電圧をゲートに印加する。活性時には、入力電圧に応じて該逆バイアス状態を保持するかあるいは順バイアス状態に制御する。 (もっと読む)


【課題】従来技術によるスイッチ回路装置では、ドライバ回路がアンテナ端子とポートとの間に振幅の大きい高周波信号を入力した際に、ドライバ回路内部でリーク電流が発生し、スイッチ回路装置の消費電力が増大する、という問題がある。
【解決手段】ドライバ回路の出力部に、リーク電流抑制回路部を設ける。本発明のスイッチ回路装置によれば、リーク電流抑制回路部が高周波信号の侵入を抑制するので、ドライバ回路は出力状態を保持することが出来て、リーク電流の問題が解決される。 (もっと読む)


【課題】半導体装置のデータ入力回路における消費電力を削減すること。
【解決手段】半導体装置は、クロック信号の立ち上がりエッジおよび立ち下がりエッジの少なくともいずれか一方の近傍の期間において活性状態となる制御信号を生成して出力する制御信号生成回路と、制御信号が活性状態である期間においてデータ信号を受信可能な活性状態となり、それ以外の期間において非活性状態となるデータ入力回路と、を備えている。 (もっと読む)


【課題】MTCMOS回路を用いた半導体デバイス回路において、アクセススピードを損なわず、スタンバイ電流が少なく、スタンバイ状態からの復帰が早い半導体デバイス回路を提供する。
【解決手段】第1のPMOSFETと第1のNMOSFETとを含む機能回路を備えた半導体デバイス回路において、アクティブモード時に第1のPMOSFETを電源電圧源に接続し、スタンバイモード時に電源電圧源に接続しないように制御する第2のPMOSFETと、アクティブモード時に第1のNMOSFETを接地側電圧源に接続し、スタンバイモード時に接地側電圧源に接続しないように制御する第2のNMOSFETと、電源電圧源に接続されかつ第1のPMOSFETに並列に接続されその出力信号を保持する第3のPMOSFETと、接地側電圧源に接続されかつ第1のNMOSFETに並列に接続されその出力信号を保持する第3のNMOSFETとを備えた。 (もっと読む)


【課題】中間電位の電源を必要としない1段のレベルシフトで、しかもN型トランジスタのON電流が十分にとれるレベルシフタ回路を提供する。
【解決手段】入力端子と、出力端子と、高電圧レベル用の高電源と、を有し、前記高電源とその接地点の間にP型トランジスタP1、P2とN型トランジスタN1、N2を備えた回路を構成し、P型トランジスタP1とN型トランジスタN1を1ないし複数個のN型トランジスタVnを介して直列接続し、同様にP型トランジスタP2とN型トランジスタN2を1ないし複数個のN型トランジスタWnを介して直列接続し、更に、前記N型トランジスタVnのゲートと前記N型トランジスタWnのゲートの接続点にバイアス電位を印加して、前記入力端子に入力された低電圧のレベルの信号から前記高電圧レベルの信号にシフトして前記出力端子から出力することを特徴とするレベルシフタ回路。 (もっと読む)


【課題】追加の大きなハードウェア要件なしに、ブースト電圧レベルを提供できるようにする。
【解決手段】第1の電圧レベルから第2の電圧レベルに、次に追加のブーストされた第2の電圧レベルに出力信号をシフトするための電圧レベルシフタが開示される。電圧レベルシフタは、入力信号を受信するための入力、出力信号を出力するための出力、前記第1の電圧レベルを供給する第1の電圧源に接続するための第1のパワーサプライ入力、前記第2の電圧レベルを供給する第2の電圧源に接続するための第2のパワーサプライ入力、前記ブーストされた第2の電圧レベルを供給する第3の電圧源に接続するための第3のパワーサプライ入力を含み、前記電圧レベルシフタは、前記出力から前記第1のパワーサプライ入力を隔離するため、及び前記出力に前記第2のパワーサプライ入力を接続するために前記入力信号の所定の変化に応える。 (もっと読む)


【課題】従来技術に比較して、回路ブロック間の電源電圧の差電圧が大きい場合でも安定に動作可能でありかつ低消費電力で動作するレベルコンバータ回路を提供する。
【解決手段】差動増幅回路30及びソース接地増幅回路40は、入力信号INを増幅して出力信号OUTに出力し、電流生成回路10は、入力信号INの信号レベルが変化するとき差動増幅回路30及びソース接地増幅回路40に流れる動作電流IA2,IA3に対応する制御電流IA1を生成し、電流検出回路20は、電流生成回路10によって生成された制御電流IA1を検出して、動作電流IA2,IA3が制御電流IA1に対応するように制御し、電流生成回路10は、電流検出回路20と接地との間に挿入されかつ直列に接続されたnMOSトランジスタMN11,MN12を備え、nMOSトランジスタMN11は、入力信号INに応答して動作しかつnMOSトランジスタMN12は入力信号INBに応答して動作する。 (もっと読む)


【課題】TFT特性のばらつきにかかわらず画像ムラがなく、高精細・高解像度の良好な画像を得ることができる半導体表示装置の駆動回路および半導体表示装置を提供する。
【解決手段】半導体表示装置はソース信号線側駆動回路と、ゲイト信号線側駆動回路とを有し、駆動回路はシフトレジスタ回路からのタイミング信号をバッファする複数のインバータ回路を有するバッファ回路を有し、インバータ回路は複数のインバータ回路を並列に接続して構成される。 (もっと読む)


【課題】高電圧出力トランジスタまたは回路のゲートを駆動するのに必要な電圧に達することができる。
【解決手段】電圧レベル変換回路は、デジタル論理回路と、第1および第2接続部を有するキャパシタであって、第1および第2接続部のうちの一方がデジタル論理信号へ電気的に結合された、少なくとも1つの高電圧キャパシタと、インバータ対であって、インバータ対のうちの少なくとも1つのインバータの出力が、少なくとも1つの高電圧キャパシタの他方の接続部へ電気的に結合された、たすき掛け結合型インバータ対とを備える。高電圧駆動回路は、2つの低電圧入力信号と、2つの信号であって、第1信号が高位側駆動信号であり、第2信号が低位側駆動信号である、2つの高電圧出力信号と、2つのレベル変換部であって、第1レベル変換部が高位側駆動信号に対応し、第2レベル変換部が低位側駆動信号に対応する。 (もっと読む)


【課題】レベルシフト回路の入力側の電源電圧が通常より低くなった場合でも出力が不定とならないレベルシフト回路を提供する。
【解決手段】レベルシフト回路50は、第1の電源電圧VDDの電圧レベルの入力信号を第1の電源電圧VDDよりも高い第2の電源電圧VCCの電圧レベルの出力信号に変換するための回路であって、第1の導電型の第1および第2のトランジスタ51,52、第2の導電型の第3および第4のトランジスタ53,54、および第1〜第3のインバータ55〜57を含む。第1および第2のインバータ55,56は、第3の電源電圧VBATによって駆動される。 (もっと読む)


【課題】2つのクロック信号を切り替えて出力する切替回路において、出力信号のデューティ比を、入力されるクロック信号のデューティ比に保つこと。
【解決手段】切替回路100は、制御信号CONTに応じて、入力信号IN1,IN2を切り替えて出力信号OUTとして出力する。具体的には、制御信号CONTが「Lレベル」のときには、クロックドインバーターX2が動作し、信号IN1が信号OUTとして出力され、制御信号CONTが「Hレベル」のときには、クロックドインバーターX4が動作し、信号IN2が信号OUTとして出力される。 (もっと読む)


【課題】電圧レベルシフト回路において、入力信号の信号レベルによる応答特性の差違を抑制する。
【解決手段】電圧レベルシフト回路は、入力信号とは異なる電圧振幅を有する出力信号VOUTを生成する。インバータINV2は、入力信号にしたがってVSS〜VDDIの範囲の電圧V1を生成する。インバータINV3は、入力信号にしたがってVSS〜VPERIの範囲の電圧V2を生成する。インバータINV4は、V1およびV2にしたがって出力信号VOUTを生成する。 (もっと読む)


【課題】外部電圧が変動したときにも半導体装置の動作安定性を維持する。
【解決手段】入力信号判定部116は、第1電流源122から供給される電源電位によって動作する。入力信号判定部116は、入力信号VINと参照電位Vrefを比較する。比較結果はインバータINV1により反転され、出力信号V0となる。電源センサ回路120は、第1の電源ラインVDDIの電位を監視する。外部電位VDDIが基準電位VXよりも低くなると、電源センサ回路120は第2電流源124をオンする。第2電流源124がオンされると、判定部126には、第1電流源122に加えて第2電流源124からも動作電流が供給される。 (もっと読む)


101 - 120 / 940