説明

Fターム[5J500AK01]の内容

増幅器一般 (93,357) | 回路要素 (18,409) | 演算増幅器(オペアンプ) (1,028)

Fターム[5J500AK01]に分類される特許

141 - 160 / 1,028


【課題】素子特性の相違に起因するドレイン電流のばらつきを低減することが可能な増幅装置を得る。
【解決手段】増幅装置3Bは、入力端子12に入力された入力信号S1を増幅することにより、出力端子14から出力信号S2を出力する増幅素子10と、増幅素子10の近傍に配置され、増幅素子10の温度に応じて出力値が変化する温度検出素子41と、温度検出素子41の出力値に基づいて、増幅素子10を流れるドレイン電流Idの電流値を既定値に近付けるための出力電圧V6を生成し、当該出力電圧V6に基づくバイアス電圧V7を増幅素子10のゲート電極Gに印加するオペアンプ11と、を備える。 (もっと読む)


【課題】 可動部分の変位に容量が比例する変位検出用コンデンサ、及び、可動部分の変位に容量が反比例する変位検出用コンデンサのいずれを用いる場合でも、可動部分の変位に比例する検出出力を得ること。
【解決手段】 前置増幅器は、第1クロック信号とオペアンプQ1から帰還された振幅変調信号とを増幅し、第1出力信号を出力し、第2クロック信号と振幅変調信号とを増幅し、第2出力信号を出力するクロック増幅手段3a、第1出力信号が供給されるコンデンサC1と、第2出力信号が供給されるコンデンサC2と、反転入力端子が第1コンデンサ及び第2コンデンサに接続され、非反転入力端子が接地電位に接続され、出力端子がクロック増幅手段の入力に接続されているオペアンプQ1とを備える。 (もっと読む)


【課題】本発明は、サンプルホールド回路及びA/D変換装置に係り、ホールド出力を行ううえでオペアンプの入力オフセット分の除去性能を向上させることにある。
【解決手段】ホールド出力を行うオペアンプを備えるサンプルホールド回路において、所定複数の異なるタイミングで入力電圧をサンプリングするサンプリングキャパシタと、サンプリングキャパシタでサンプリングされた各入力電圧を加減算する加減算手段と、加減算手段により各入力電圧が加減算された後、該加減算により得られる電圧に含まれるオペアンプの入力オフセット電圧分を除去するオフセット電圧除去手段と、を備え、オペアンプは、オフセット電圧除去手段によりオペアンプの入力オフセット電圧分が除去された電圧をホールドして出力する。 (もっと読む)


【課題】出力電圧に含まれる直流オフセット成分の増幅分の調整精度を確保しつつ、回路面積の増大を抑制可能な、スイッチトキャパシタアンプ回路の提供。
【解決手段】オペアンプ31の反転入力端子に一端が接続されたキャパシタ21と、反転入力端子に一端が接続されオペアンプ31の出力部に他端が接続されたキャパシタ22と、反転入力端子に一端が接続されたキャパシタ23とを備え、キャパシタ21が、入力電圧Vinに応じた電荷を第1の期間に蓄積し、アナログ電圧VDACに応じた電荷を第2の期間に蓄積するものであり、キャパシタ22が、第2の期間に蓄積した電荷を第1の期間に放出するものであり、キャパシタ23が、アナログ電圧VDACに応じた電荷を第1の期間に蓄積し、第1の期間に蓄積した電荷を第2の期間に放出するものであり、キャパシタ23の容量C3がキャパシタ21の容量C1よりも小さい、スイッチトキャパシタアンプ回路。 (もっと読む)


【課題】出力インピーダンスを大きくしつつ、出力オフセット電圧を低減する。
【解決手段】非反転入力端子に基準交流電圧V1が入力されると共に反転入力端子が基準抵抗12を介してグランド電位に接続された演算増幅器11aを少なくとも有する増幅回路11、および増幅回路11の出力部3aと反転入力端子との間に接続された帰還抵抗13を有し、基準交流電圧V1と基準抵抗12とで規定される交流定電流I1を出力部3aから出力する増幅部3と、交流定電流I1に含まれている直流電流成分を除去して出力するコンデンサ4とを備え、増幅回路11の出力部3aから出力される電圧V2に含まれている直流電圧成分を検出してその直流電圧成分の大きさに応じた直流補償電圧を演算増幅器11aの非反転入力端子にフィードバックすることにより、電圧V2における直流電圧成分を低減する補償部5を備えている。 (もっと読む)


【課題】電流源から出力される電流信号を入力信号とする並列−直列形電流帰還増幅器において、ノイズを低減しつつ、帯域も維持しかつ信号歪も抑制する。
【解決手段】並列−直列形電流帰還増幅器2aは、ベースが電流源の出力端に接続され、エミッタが抵抗20を介して接地端に接続され、コレクタが抵抗12を介して電源配線に接続されるトランジスタ10と、ベースがトランジスタ10のコレクタに接続され、コレクタが電源配線に接続されるトランジスタ30と、ベースがトランジスタ30のエミッタに接続され、エミッタが抵抗22を介して接地端に接続され、コレクタから出力信号が取り出されるトランジスタ11と、一端がトランジスタ11のエミッタに接続され、他端がトランジスタ10のベースに接続される帰還抵抗16と、抵抗20と並列に接続されるキャパシタ21と、抵抗22と並列に接続されるキャパシタ23とを備える。 (もっと読む)


【課題】受光部への外乱光の入射を防止する手段を簡素化する。
【解決手段】発光ダイオードの出射光のフォトダイオードによる受光量に応じて、フォトダイオードにより変換された入力電流を電圧に変換する電流電圧変換回路であって、入力された第1の入力電流を出力電圧に変換して出力し、入力された第2の入力電流を出力電圧に変換して出力し、当該出力されたそれぞれの出力電圧を受けて当該各々の出力電圧の平均値成分に相当する平均電圧を出力し、フォトダイオードにより出力された電流に直流成分が含まれる場合に、出力された各々の平均電圧に応じて直流成分に相当するドレイン電流を流すことにより当該直流成分をそれぞれ打ち消すように制御する。 (もっと読む)


【課題】大信号入力後に小信号が入力される際の自動利得制御応答時間を短縮する。
【解決手段】利得可変増幅器は、フォトダイオード(PD)から入力される電流信号INを帰還抵抗RFの値に比例する利得によって増幅すると同時に電圧信号に変換するインピーダンス変換増幅器コア回路(TIACORE)と、TIACOREの出力を入力として出力信号OUTを出力する出力バッファ(BUF)と、TIACOREの出力電圧に基づいてTIACOREの利得が所望の値になるようにフィードバック制御し、外部から与えられるリセット信号ResetをトリガとしてTIACOREの状態を初期化してTIACOREの利得が最大になるように制御する外部リセット端子付き利得制御回路(CTRL)とを有する。 (もっと読む)


【課題】出力電圧の温度依存性を示す曲線の曲率が小さく、レイアウト面積が小さな温度センサを提供する。
【解決手段】この温度センサは、アノードがノードN1に接続されたダイオードD0と、アノードが抵抗素子8を介してノードN2に接続されたダイオードD1〜Dnと、ノードN1,N2の電圧を一致させる演算増幅器1と、抵抗素子9,10を介してノードN1,N2に接続され、抵抗素子9,10に流れる電流を調整し、温度センサの出力電圧VOの温度依存性を示す曲線の曲率を小さくする電圧調整回路12を備える。したがって、2つのサブ温度センサを設ける従来に比べ、レイアウト面積が小さくて済む。 (もっと読む)


【課題】比較的簡易な構成で、定電圧駆動と定電流駆動を所望に応じて選択可能な電源回路を提供する。
【解決手段】演算増幅器1の出力端子とグランドとの間に第1及び第2の抵抗器31,32が直列接続されて設けられ、演算増幅器1の非反転入力端子には、所定の基準電圧が印加され、演算増幅器1の出力端子には、外部からの信号により動作制御可能に構成されてなるバッファアンプ2が接続され、バッファアンプ2の出力端子とグランドとの間には、MOSトランジスタ11と第3の抵抗器33が順に直列接続されて設けられ、これらの接続が、切替制御回路4、及び、第1乃至第4のアナログスイッチ21〜24により切り替えられることで、定電圧駆動と定電流駆動が選択可能となっている。 (もっと読む)


【課題】高速低消費電力の電流検出型センスアンプの実現には、低バイアス電流でゲイン帯域積が大きな増幅器をゲート接地型トランジスタに設ける必要がある。
【解決手段】ソースが電流入力端子Iin1,Iin2、ドレインが負荷8,9および電圧出力端子Vout1,Vout2に接続されたゲート接地型トランジスタペアM1,M2のゲート・ソース間に、トランジスタM3とM5およびM4とM6の2組のソースが共通のプシュプル型CMOS反転増幅器で構成される差動増幅器の共通ソースに定電流トランジスタM7が設けられた差動増幅器AMPを設ける。 (もっと読む)


【課題】同相入力電流成分に対する耐性を大きくする。
【解決手段】入力端子IT,ICのそれぞれに一対の電流引抜回路IS1,IS2を接続し、入力信号合成回路12で得られた、入力端子IT,ICのそれぞれの信号を合成した同相入力電圧と、基準となる参照電圧VREFとの差電圧に応じた制御信号を制御用増幅器13で生成し、電流引抜回路IS1,IS2で、この制御信号に応じた電流引抜量を入力電流信号から引き抜く。 (もっと読む)


【課題】ステップ式可変減衰器を実装することなく、低雑音特性及び高飽和特性を確保しながら、製造ばらつき、温度変動や電源電圧変動などに伴う利得変化を抑制することができるようにする。
【解決手段】周囲温度に応じて入力電力検波回路7から出力された検波電圧Aを規格化するとともに、出力電力検波回路8から出力された検波電圧Bを規格化し、その検波電圧Bの規格化電圧Bを検波電圧Aの規格化電圧Aで除算して利得を算出する利得算出回路11を設け、利得算出回路11により算出された利得が所望の利得と一致するように、可変減衰器制御回路13が可変減衰器5における高周波信号の減衰量を制御する。 (もっと読む)


【課題】レベルダイヤの適正化を図ることができる無線受信回路を提供する。
【解決手段】受信した無線周波数信号を増幅する低雑音増幅器20(第1の増幅器)と、低雑音増幅器20からの信号と局部発振信号とを乗算しベースバンド信号に変換する周波数変換回路21と、低雑音増幅器20と周波数変換回路21との間に介在するキャパシタC1、C2と、抵抗値を可変可能に構成される帰還抵抗RFB1、RFB2を有し、ベースバンド信号を増幅するオペアンプAPとを備えた無線受信回路。 (もっと読む)


【課題】効率よく電力消費を低減すること。
【解決手段】検出部2は、送信信号のピークを検出する。決定部3は、検出部2によって検出された送信信号のピークに対応する電圧値と、自装置が出力する可変電圧の変化率とに基づいて、当該ピークに対する可変電圧の変化を開始する時期を決定する。生成部4は、決定部3によって決定された時期に電圧の変化を開始させるための可変電圧制御信号を生成する。出力部5は、生成部4によって生成された可変電圧制御信号に基づいて電圧を出力する。 (もっと読む)


【課題】負荷(EL画素や信号線)に電流を供給するトランジスタにおいて、バラツキの影響を受けずに正確な電流を供給できる半導体装置を提供する。
【解決手段】増幅回路を使ったフィードバック回路を用いて、トランジスタの各端子の電圧を調節する。電流源回路から電流Idataをトランジスタに入力して、トランジスタが電流Idataを流すのに必要なゲート・ソース間電圧を、フィードバック回路を用いて設定する。フィードバック回路は、トランジスタが飽和領域で動作するように制御する。すると、電流Idataを流すのに必要なゲート電圧が設定される。そして、設定されたトランジスタを用いれば、正確な電流を負荷(EL画素や信号線)に供給できる。なお、必要なゲート電圧を設定するとき、増幅回路を用いるので、すばやく設定できる。 (もっと読む)


【課題】参照用の時定数発生回路を集積回路の外部に用意すると、集積回路の端子数の増加および半導体チップ面積の増大を招き、その結果、製造コストが増大してしまう。また、集積回路単体では時定数の調整を行えない。
【解決手段】スイッチトキャパシタを用いることで、時定数発生回路を集積回路に内蔵しても十分な精度が保たれる。さらに、時定数の補正結果を記憶する記憶部を設けることで、時定数調整用回路と、時定数調整後の通常動作用回路を、一部兼用することが可能となる。集積回路の端子数と、半導体チップ面積を節約でき、その結果、製造コストを抑えられる。さらに、外部から電源さえ供給されれば、自動的かつ自律的に時定数の調整を行える。 (もっと読む)


【課題】スイッチトキャパシタ回路におけるシングル/差動変換時の演算増幅器の同相入力変動を抑制し、低電源電圧での変換、または高速の変換にも対応することが可能なスイッチトキャパシタ回路を実現する。
【解決手段】サンプリングモード時とホールドモード時とで演算増幅器110の入力側のキャパシタC1〜C4をスイッチ回路SWで切り換えて単相入力信号を差動出力信号に変換するについて、サンプルモード時にサンプリング用キャパシタC1、C2、C3、C4の一端側に供給する第2の入力信号(電圧VH)を第1の信号入力電圧VIPと第1の参照信号電圧VINの中間の電圧とするような電圧生成部20を設けた。 (もっと読む)


【課題】負荷への電流供給開始時の動作速度を調整することのできる出力回路を提供する。
【解決手段】出力端子OUTに接続される負荷へ電流を供給するMOSトランジスタM1は、スイッチSW1により、オペアンプOP1の比較結果による制御状態とするか、オフ状態とするかが切り換えられる。可変電圧回路1は、電圧切り換え信号Kによる設定に応じて出力電圧を変化させる。スイッチSW2は、オペアンプOP1の反転入力端子に印加する電圧を、MOSトランジスタM1の出力電圧とするか、可変電圧回路1の出力電圧とするかを切り換える。 (もっと読む)


【課題】小容量のキャパシタンス素子を介して信号検出可能な高入力インピーダンスでかつひずみの少ない緩衝増幅回路を、極端に高抵抗値、高容量値の抵抗器やコンデンサーを用いずに実現する。
【解決手段】非反転増幅回路と、前記非反転増幅回路に入力信号を接続するキャパシタンス素子と、前記非反転増幅回路の出力信号を分圧する分圧回路と、該分圧回路信号を前記非反転増幅回路の入力端子に帰還するインピーダンス素子を含んで構成する。 (もっと読む)


141 - 160 / 1,028