説明

国際特許分類[H01M8/00]の内容

国際特許分類[H01M8/00]の下位に属する分類

国際特許分類[H01M8/00]に分類される特許

201 - 210 / 3,969


【課題】燃料電池自動車において、燃料電池の通常の冷却水温調整のための消費電力を抑制しつつ、燃料電池の高温高負荷継続状態での燃料電池スタックの出力電力減少に対処する。
【解決手段】モータ37が現時点の要求出力を出すのに必要なモータ37への供給電力と、現時点で燃料電池スタック11及び高圧バッテリ12がモータ37へ回すことが可能な供給電力との差からモータ37の出力余裕度を判断する(ROUTINE60)。燃料電池スタック11が高温高負荷の継続状態にあるか否かを判断する(ROUTINE61)。モータ37の出力余裕度が無しで、燃料電池スタック11が高温高負荷継続状態であると判断したときは、燃料電池スタック11の冷却能力を、燃料電池の通常の冷却水温調整範囲の最大能力より高めて、燃料電池スタック11の温度を下げる(ROUTINE64)。 (もっと読む)


【課題】車室内壁面が高温の排空気に直接曝されず、かつ、車室内における排空気と圧縮空気との混合を防止しながら、車室内の燃焼器に排空気を供給しうるガスタービンを提供する。
【解決手段】ガスタービン(10,100)は、圧縮機12を通過した圧縮空気が流入する車室内空間20において燃焼器16を収納する車室18を有する。車室内空間20は、燃焼器16を覆う隔壁(30,70)によって、車室18の内壁面19に接し圧縮機12からの圧縮空気が流れる第1空間20Aと燃焼器16に接する第2空間20Bとに隔てられる。隔壁(30,70)と燃焼器16との間には、シール部材40が設けられる。また、第1空間20Aから圧縮空気を抽気して車室18の外部の加熱部に導く抽気管50と、加熱部を通過した排空気を第2空間20Bに導く供給管(60,80)とが設けられている。 (もっと読む)


【課題】従来の燃料電池コジェネレーションシステムは、燃料電池の熱で水を加熱した後に太陽熱によりさらに温度を上げるものであるが、日射が少ない場合は加熱することができない場合もあり、太陽熱の利用率が低くなる。
【解決手段】燃料電池1と、燃料電池1を冷却する冷却媒体を流すための冷却媒体流路2と、冷却媒体流路2に冷却媒体を流す冷却媒体ポンプ4と、冷却媒体流路2に設けられた第1の熱交換器7と、第1の熱交換器7を通る第1の熱媒体流路5と、第1の熱媒体流路5に熱媒体を流す第1のポンプ6と、第1の熱媒体流路5の第1の熱交換器7より上流側に設けられた燃料電池1以外の熱源である太陽熱を集める太陽熱コレクタ21を備える。 (もっと読む)


【課題】排熱を効率的に回収して排熱回収量が比較的小さいシステムに好都合に適用することができるコージェネレーションシステムを提供すること。
【解決手段】原燃料ガスを改質する改質器6と、改質器6にて改質された改質燃料ガスと酸化剤との酸化、還元によって発電を行う燃料電池スタック8及び酸化剤を燃料電池スタック8に送給するための送風装置10を備えた固体酸化物形燃料電池2と、固体酸化物形燃料電池2の排熱を温水として回収するための貯湯装置4と、これらを制御するための制御手段と、を具備するコージェネレーションシステム。制御手段は、貯湯装置4の貯湯タンク52の温水の貯湯量が少ないときには、低温熱回収モードでもって貯湯装置4を稼働し、また貯湯タンク52の温水の貯湯量が多くなると、高温熱回収モードでもって貯湯装置4を稼働する。 (もっと読む)


【課題】車両に搭載された燃料電池システムにおいて、浸水路走行時における燃料電池スタック内への水の浸入等の外部からの汚染物質の侵入を防止する。
【解決手段】燃料電池スタック12からの排気を排出する排気管14に、当該排気管14を閉止することができる出口弁38を設ける。制御部40において、燃料電池による発電を停止する間欠運転が判断されると、出口弁38を閉止制御する。これにより、排気管14を通して燃料電池スタック12内に汚染物質が侵入すること防止する。 (もっと読む)


【課題】燃料電池搭載車両の水素漏れの検知において、漏れた水素の出所を判別する。
【解決手段】燃料電池が発電していない間欠運転時において、水素検知器24により水素が検知された場合、水素タンク20、または水素を水素タンクから燃料電池スタック12に送る燃料供給管28からの水素漏れと判断する。また、間欠運転時に水素が検知された場合、水素ポンプ40を運転し、その後、水素濃度が上昇すれば水素排気排水弁46からの漏出と判定してもよい。 (もっと読む)


【課題】燃料電池の劣化を抑制しつつ、燃料電池の出力を効果的に利用することができる燃料電池システムの出力制御方法を提供する。
【解決手段】燃料電池システム11の出力制御方法では、燃料電池14の運転領域における第1出力領域と、前記第1出力領域より低出力側の第2出力領域とで許容される単位時間当たりの前記燃料電池の出力変化量が異なっており、前記第2出力領域で許容される単位時間当たりの前記燃料電池14の許容出力変化量は、前記第1出力領域で許容される前記単位時間当たりの前記燃料電池14の出力変化量よりも小さい。 (もっと読む)


【課題】燃料電池の急激な電圧低下に対する耐久性に優れ、経時劣化に対しても対応可能な安定したものになし得る。
【解決手段】水素生成器1と、この水素生成器により生成される水素リッチなガスと酸化剤ガスとを反応させて直流電力を発生させる燃料電池スタック3と、この燃料電池スタックより発生する直流電力を交流電力に変換して系統へ連系出力する電力変換装置5と、発電に必要なプロセス系及び前記電力変換装置を制御する制御装置6と、前記燃料電池スタックの発電電圧を測定して前記電力変換装置及び制御手段に入力する直流電圧検出手段9とを備え、電力変換装置5は入力部又は出力部にスイッチング回路が設けられ、前記制御装置6は、直流電圧検出手段9で測定された燃料電池スタック3の発電電圧が設定値より低下すると電力変換装置5のスイッチング回路をスイッチングゲートON/OFF信号によりON/OFFさせて電力変換装置5の入力又は出力を間欠的に制御する。 (もっと読む)


【課題】燃料電池ユニットの排気ガスとボイラーの排気ガスと、に合流し、合流ガスを屋外に排出させる排気通路を用いる場合に、排気通路内の排気ガス凝縮によって生じる水滴の、燃料電池ユニットへの混入を抑制できる排気通路の接続構造を提供する。
【解決手段】本発明の排気通路の接続構造は、燃料電池ユニット11の排気出口とボイラー12の排気出口と、に接続し、燃料電池ユニット11の排気ガスとボイラー12の排気ガスと、を合流させる排気通路13を備え、燃料電池ユニット11の排気出口が、ボイラー12の排気出口よりも上方に配置されている。 (もっと読む)


【課題】回生電力を得ることが可能な燃料電池システムにおいて、冷却系に悪影響を及ぼすことなく、余剰電力を確実に消費する。
【解決手段】燃料電池10の発電電力と回生電力発生手段11、12の回生電力との合計電力のうち負荷手段の消費電力を超える第1余剰電力を2次電池13に充電する。第1余剰電力のうち2次電池受入可能電力を越える電力を第2余剰電力とし、電気ヒータ51に供給される冷却水流量が第2余剰電力を電気ヒータ51で消費する際の発熱に対応する所定流量以上の場合に、第2余剰電力を電気ヒータ51で消費する。電気ヒータ51に供給される冷却水流量が所定流量未満の場合に、冷却水流量を増大させるとともに、2次電池受入可能電力を増大させて第2余剰電力を2次電池13に充電する。 (もっと読む)


201 - 210 / 3,969