説明

イオン注入装置、イオン注入方法及びプログラム

【課題】イオン注入装置において、帯状イオンビームの一部分を帯状イオンビームの面内で小さく曲げて電流密度分布を精度よく調整する。
【解決手段】イオン注入装置は、イオンビームの電流密度分布を調整するために、帯状イオンビームのビーム幅方向に沿って複数の単位レンズ要素を並べ、各単位レンズ要素が作る磁場又は電場を調整するレンズ要素40と、計測した電流密度分布に応じてレンズ要素40にて調整する単位レンズ要素の作る磁場又は電場の強度を設定する制御部80と、を有する。レンズ要素40の複数の単位レンズ要素のうち、調整しようとする位置に対応する単位レンズ要素が作る磁場又は電場の調整強度を、計測された電流密度分布から求めるとともに、前記単位レンズ要素に隣接する単位レンズ要素が作る磁場又は電場に対して、求められた調整強度に一定の比率を乗算して得られる値を磁場又は電場の調整強度として求める。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、処理対象基板に帯状イオンビームを照射してイオン注入を行うイオン注入装置及びイオン注入方法、さらには、帯状イオンビームの電流密度分布を調整する、コンピュータが実行可能なプログラムに関する。
【背景技術】
【0002】
今日、液晶方式や有機LEDを用いた平面型表示装置に用いるガラス基板や半導体基板に対してイオン注入装置を用いてイオン注入を行う処理が盛んに行われている。特に、大型の基板に対して効率よく正確にイオン注入を行うには、基板の横幅に対して照射するイオンビームの横幅が広く、電流密度分布が所望の分布に制御された帯状イオンビームを用いることが求められている。
【0003】
イオンビームの横幅を基板の横幅よりも広くした帯状のイオンビームを用いることにより、基板の横幅方向の領域を一度に処理することができ、このとき、基板を縦方向に移動させることにより、基板全体を一度にイオン注入することが可能となり、処理効率があがる。
一方、帯状イオンビームは、基板の横幅方向の同じ位置を縦方向に処理するので、この帯状イオンビームの電流密度分布が横幅方向で均一でない場合、基板上で不均一にイオン注入された部分が線状になって現れ、正確なイオン注入処理が行えない。このため、帯状イオンビームは、所望の電流密度分布になるように、正確に調整することが望まれている。
【0004】
下記特許文献1には、イオンビームのビーム断面形状が、横断方向の長さ及び幅の次元をもつ形状を有する帯状イオンビームに対して、多極の磁場を作用させて帯状イオンビームの電流密度分布の不均一を抑制するイオン注入装置が記載されている。
【0005】
同様に、下記特許文献2には、特許文献1と同様に、帯状イオンビームの電流密度分布を多極の磁場を作用させて、電流密度分布の調整を行うことが記載されている。このとき、電流密度分布の調整は、帯状イオンビームと目標とする分布とのずれに基づいて行うことが記載されている。
【0006】
さらに、下記特許文献3には、以下のようなイオン注入装置が記載されている。すなわち、当該装置では、イオン源から、所望のイオン種を含み基板の短辺幅よりも幅の広いシート状のイオンビームを発生させ、質量分離マグネットにより、シート状のイオンビームをそのシート面に直交する方向に曲げて所望のイオン種を選別して導出し、その際、分離スリットを用いて、質量分離マグネットと協働して所望のイオン種を選別して通過させる。この後、分離スリットを通過したイオンビームの照射領域内で、基板を、イオンビームのシート面に実質的に直交する方向に往復駆動させて、イオン注入を行う。
【0007】
【特許文献1】特許2878112号公報
【特許文献2】特許3730666号公報
【特許文献3】特開2005−327713号公報
【発明の開示】
【発明が解決しようとする課題】
【0008】
しかし、上記特許文献1〜3において、いずれもイオンビームの調整、より具体的には、イオンビームの調整のために用いる磁場又は電場を、計測された電流密度分布からどのように設定するか、その設定方法は記載されていない。
計測された電流密度分布が目標とする分布に最も近似されるように、制御しようとする磁場や電場の強度を最適に設定するには、ニューラルネットワークや遺伝的アルゴリズムを用いた最適化手法を用いることができる。しかし、これらの方法では、計算処理に時間がかかり、処理内容も煩雑であり、さらに、電流密度分布の僅かな変化に対して最適な磁場や電場の強度が大きく変化するといったロバスト性の悪化が生じる。
【0009】
そこで、本発明は、上記問題点を解決するために、帯状イオンビームの電流密度分布を精度良く目標とする分布になるように効率よく調整することのできるイオン注入装置及びイオン注入方法及び帯状イオンビームの電流密度分布を調整する、コンピュータが実行可能なプログラムを提供することを目的とする。
【課題を解決するための手段】
【0010】
上記目的を達成するために、本発明は、処理対象基板に、この処理対象基板の横幅よりも広いビーム幅を有する帯状イオンビームを照射してイオン注入をするイオン注入装置であって、
イオンビームを生成するイオン源を備え、生成したイオンビームを帯状イオンビームに整形するビーム整形部と、前記帯状イオンビームを処理対象基板に照射する処理部と、前記帯状イオンビームの前記ビームの厚さ方向における電流密度の合計値を前記ビーム幅の方向の分布で表した前記帯状イオンビームの電流密度分布を調整するために、前記帯状イオンビームの前記ビーム幅方向に沿って複数の単位レンズ要素を並べ、各単位レンズ要素が作る磁場又は電場の強度を調整し、設定するビーム調整部と、前記ビーム調整部により調整された前記帯状イオンビームの電流密度分布を計測する計測部と、この計測結果に応じて前記ビーム調整部にて調整する前記単位レンズ要素の作る磁場又は電場の調整強度を求め、求めた前記調整強度を、現在前記ビーム調整部に設定されている磁場または電場の強度に加えることにより、磁場または電場の強度を再設定する設定部とを備えるビーム制御部と、を有し、
前記設定部は、前記複数の単位レンズ要素のうち、前記計測された電流密度分布における調整しようとする位置に対応する対応単位レンズ要素が作る磁場又は電場の調整強度を、前記計測部で計測された電流密度分布から求めるとともに、前記対応単位レンズ要素に隣接する単位レンズ要素が作る磁場又は電場に対して、前記求められた調整強度に一定の比率を乗算して得られる値を磁場又は電場の調整強度として求め、前記求められた調整強度を用いて磁場又は電場の強度の再設定を行うことを特徴とするイオン注入装置を提供する。
【0011】
その際、前記ビーム調整部は、前記単位レンズ要素の作る電場を調整し、前記電流密度分布における調整しようとする位置は、計測された電流密度分布の中の所定の分布に対する誤差が最も大きい位置であり、前記一定の比率は1以下であり、前記誤差が最も大きい位置に対応する前記対応単位レンズ要素に隣接する単位レンズ要素に対して、設定された前記対応単位レンズ要素の電場の調整強度に前記一定の比率を乗算した値を電場の調整強度として求めることが好ましい。
【0012】
あるいは、前記ビーム調整部は、前記単位レンズ要素の作る磁場を調整し、前記電流密度分布における調整しようとする位置は、計測された電流密度分布の中の所定の分布に対する誤差の分布の中で、誤差の勾配が最も大きい位置であり、前記一定の割合の比率は1以下であり、前記勾配の最も大きい位置に対応する前記対応単位レンズ要素に隣接する単位レンズ要素に対して、設定された前記対応単位レンズ要素の磁場の調整強度に前記一定の比率を乗算した値を磁場の調整強度として求めることも同様に好ましい。
ここで、前記勾配は、電流密度分布の傾きの絶対値(大きさ)をいい、左右どちらに傾いているか、傾きの正負は考慮に入れない。
【0013】
又、前記一定の比率は、0.3〜0.6であることが好ましい。
【0014】
さらに、本発明は、処理対象基板に、この処理対象基板の横幅よりも広いビーム幅を有する帯状イオンビームを照射してイオン注入をするイオン注入装置を用いたイオン注入方法であって、
前記イオン注入装置は、前記帯状イオンビームの前記ビームの厚さ方向における電流密度の合計値を前記ビーム幅の方向の分布で表した前記帯状イオンビームの電流密度分布を調整するために、前記帯状イオンビームの前記ビーム幅方向に沿って複数の単位レンズ要素を並べ、各単位レンズ要素が作る磁場又は電場の強度を調整し、設定する手段を有し、
イオンビームを処理対象基板に照射してイオンの注入を行う際、前記各単位レンズ要素の磁場又は電場により調整されたイオンビームの電流密度分布を計測するステップと、
前記複数の単位レンズ要素から、計測された前記電流密度分布における調整しようとする位置に対応する対応単位レンズ要素を定め、この対応単位レンズ要素が作る磁場又は電場の調整強度を、前記計測された電流密度分布から求めるとともに、前記対応レンズに隣接する前記単位レンズ要素が作る磁場又は電場に対して、前記設定された強度に一定の比率を乗算して得られる値を磁場又は電場の調整強度として求め、求めた前記調整強度を、現在前記各単位レンズ要素に設定されている磁場叉は電場の強度に加えることにより、磁場叉は電場の強度を再設定するステップと、
再設定された強度を前記複数の単位レンズ要素の電場又は磁場に適用して前記帯状イオンビームの電流密度分布を調整するステップと、を有することを特徴とするイオン注入方法を提供する。
【0015】
さらに、本発明は、処理対象基板に、この処理対象基板の横幅よりも広いビーム幅を有する帯状イオンビームを照射してイオン注入をするイオン注入装置において、前記帯状イオンビームに磁場又は電場を作用させて前記帯状イオンビームの電流密度分布を調整するために、前記磁場又は電場の強度を設定するコンピュータが実行可能なプログラムを提供する。その際、前記イオン注入装置は、前記帯状イオンビームの前記ビームの厚さ方向における電流密度の合計値を前記ビーム幅の方向の分布で表した前記帯状イオンビームの電流密度分布を調整するために、前記帯状イオンビームの前記ビーム幅方向に沿って複数の単位レンズ要素を並べ、各単位レンズ要素が作る磁場又は電場の強度を調整し、設定する手段を有する。
プログラムは、前記各単位レンズ要素の磁場又は電場により調整されたイオンビームを処理対象基板に照射してイオンの注入を行う際、
イオンビームの計測された電流密度のデータから電流密度分布をコンピュータの演算手段に算出させコンピュータの記憶手段に記憶させる手順と、
前記複数の単位レンズ要素から、算出された前記電流密度分布における調整しようとする位置に対応する対応単位レンズ要素を前記演算手段に定めさせ、この対応単位レンズ要素が作る磁場又は電場の調整強度を、前記計測された電流密度分布から前記演算手段に算出させるとともに、前記対応レンズに隣接する単位レンズ要素が作る磁場又は電場に対して、前記算出された調整強度に一定の比率を乗算して得られる値を前記磁場又は電場の調整強度として前記演算手段に算出させ、これらの算出した調整強度を、現在前記各単位レンズ要素に設定されている磁場叉は電場の強度に加えたものを、磁場叉は電場の強度として、前記演算手段に再設定させる手順と、
再設定された強度を前記複数の単位レンズ要素の電場又は磁場に適用して前記帯状イオンビームの電流密度分布を調整させる制御信号を前記演算手段に作成させる手順と、を有する。
【0016】
さらに、本発明は、処理対象基板に、この処理対象基板の横幅よりも広いビーム幅を有する帯状イオンビームを照射してイオン注入をするイオン注入装置において、前記帯状イオンビームに磁場又は電場を作用させて前記帯状イオンビームの電流密度分布を調整するために、前記磁場又は電場の強度を設定するコンピュータが実行可能なプログラムを提供する。
その際、前記イオン注入装置は、前記帯状イオンビームの前記ビームの厚さ方向における電流密度の合計値を前記ビーム幅の方向の分布で表した前記帯状イオンビームの電流密度分布を調整するために、前記帯状イオンビームの前記ビーム幅方向に沿って複数の単位レンズ要素を並べ、各単位レンズ要素が作る磁場又は電場の強度を調整し、設定する手段を有する。
プログラムは、前記各単位レンズ要素の磁場又は電場により調整されたイオンビームを処理対象基板に照射してイオンの注入を行う際、
イオンビームの計測された電流密度のデータから電流密度分布をコンピュータの演算手段に算出させコンピュータの記憶手段に記憶させる手順と、
前記複数の単位レンズ要素から、算出された前記電流密度分布における調整しようとする位置に対応する対応単位レンズ要素を前記演算手段に定めさせ、この対応単位レンズ要素が作る磁場又は電場の調整強度を、前記計測された電流密度分布から前記演算手段に算出させるとともに、前記対応レンズに隣接する単位レンズ要素が作る磁場又は電場に対して、前記算出された調整強度に一定の比率を乗算して得られる値を前記磁場又は電場の調整強度として前記演算手段に算出させ、これらの算出した調整強度を、現在前記各単位レンズ要素に設定されている磁場叉は電場の強度に加えたものを、磁場叉は電場の強度として、前記演算手段に再設定させる手順と、
再設定された強度を用いて調整されたイオンビームの電流密度分布を前記演算手段にシミュレーションにて算出させる手順と、
前記シミュレーションにより得られた電流密度分布が目標分布に略一致するまで、磁場叉は電場の強度の再設定と、前記シミュレーションとを前記演算手段に繰り返し行わせる手順と、
前記シミュレーションにより得られた電流密度分布が前記目標分布に略一致するときの前記強度を前記複数の単位レンズ要素の電場又は磁場に適用して前記帯状イオンビームの電流密度分布を調整させる制御信号を前記演算手段に作成させる手順と、を有する。
【発明の効果】
【0017】
本発明のイオン注入装置では、複数の単位レンズ要素のうち、電流密度分布の調整しようとする位置に対応する対応単位レンズ要素が作る磁場又は電場の調整強度を、計測された電流密度分布から求めるとともに、この対応単位レンズ要素に隣接する単位レンズ要素が作る磁場又は電場に対して、対応単位レンズ要素で求められた調整強度に一定の比率を乗算して得られる値を磁場又は電場の調整強度として求める。このため、従来のニューラルネットワークや遺伝的アルゴリズム等の最適化手法を用いる場合に比べて、調整強度を求める時間が短く、簡単な処理内容であり、電流密度分布が精度良く目標とする分布になるように効率よく調整することができる。しかも、磁場又は電場の調整強度を、対応単位レンズ要素が作る磁場又は電場に対して一定比率で乗算して各磁場又は各電場の調整強度を求め、磁場または電場の強度を設定するので、ロバスト性もよい。
【発明を実施するための最良の形態】
【0018】
以下、本発明のイオン注入装置について、添付の図面に示される好適実施形態を基に詳細に説明する。
【0019】
図1は、本発明のイオン注入装置の一実施形態であるイオン注入装置10の平面図である。図2は、イオン注入装置10の側面図である。
イオン注入装置10は、イオンビームの上流側から順に、イオン源を備えるビーム整形部20と、ビーム調整部であるレンズ要素及び質量分離マグネットを備えるビーム輸送部30と、処理対象基板(以降、処理基板という)にイオン注入する処理部60と、制御部80と、を有する。ビーム整形部20、ビーム輸送部30及び処理部60は、図示されない真空ハウジングに囲まれて、真空ポンプにより一定の真空度(10-5〜10-3Pa)を維持するようになっている。
本発明では、イオン源から処理基板に向かって進むイオンビームの流れに基づいて、イオン源の側を上流側といい、処理基板の側を下流側という。
【0020】
ビーム整形部20は、小型のイオン源22を有する。イオン源22は、イオンビームを生成する部分で、バーナス型又はフリーマン型のプラズマ発生機が用いられ、小型のイオン源22からイオンビームが発散するように引き出される。バーナス型イオン源では、金属チャンバー内にフィラメントと反射板を備え、その外側に磁石を備える。このイオン源22の真空中の金属チャンバー内にイオン注入に用いる原子を含んだガスを供給し、フィラメントに電流を流して熱電子を放出して、金属チャンバーの両側に設けられた反射板間を往復させる。この状態で、金属チャンバーに所定のアーク電圧を印加することによりアーク放電を生じさせ、これにより金属チャンバー内に供給されたガスを電離させて、プラズマを生成する。この生成したプラズマを金属チャンバーの側壁に設けられた取り出し孔から、引き出し電極を用いてプラズマを引き出すことにより、金属チャンバーからイオンビーム24が放射される。
【0021】
本実施形態のイオン源22は、小型のイオン源を用いて発散するイオンビームを生成する。本発明では、小型のイオン源の他に、大型のイオン源から略一定なビーム幅を有する略平行な帯状のイオンビームを生成するように構成してもよい。又、複数のイオン源によりイオンビームを生成してもよい。
【0022】
生成されたイオンビーム24は、イオンビームの端近傍の電流密度の低い領域からイオンビームの主領域となる電流密度の高い領域まで位置により電流密度は連続的に変化するので、本来その境界は明確ではない。しかし、本発明では、イオンビームの端近傍の電流密度が所定の値を超えた部分をイオンビームの端として、イオンビーム24のラインを定めている。
イオン源22から生成されるイオンビームは、図2に示すようにイオンビームの端25a,25bで発散する一方、図1に示すようにイオンビームの端25c,25dでも発散するが、イオンビームの端25c,25dでの発散の程度は低い。このようなイオンビームの発散の程度の違いは、イオン源22の取り出し孔の形状及び引き出し電極の構成によって定めることができる。
こうして生成されるイオンビームの断面形状は、イオンビームの端25c,25d間の長さであるビーム厚さが、イオンビームの端25a,25b間の長さであるビーム幅に比べて薄い形状、すなわち帯状を成す。このイオンビームのビーム幅は、処理基板の横幅よりも広いビーム幅を有するように整形される。
【0023】
なお、イオンビームは、正の電荷を持つ粒子の流れであるため、図1に示すように、処理部70に到達する帯状のイオンビームの端25c,25dはイオンビームの電荷による斥力の作用により発散を示している。しかし、本発明においては、この様な発散するイオンビームであれ、収束するイオンビームであれ、本発明において適用可能である。
イオン源22にて生成されたイオンビーム24は、帯状となってビーム輸送部30に進む。
【0024】
ビーム輸送部30は、質量分離マグネット32、レンズ要素40及び分離スリット50を有する。ビーム輸送部30は、イオンビーム24のビーム厚さ方向(図1における端25c〜25d間の厚さ方向)の厚さを薄くしてイオンビームを収束させた後、イオンビーム24を処理部60の処理基板に照射させるように構成されている。
質量分離マグネット32は、ヨーク34で形成された角型の筒構造の内側に、図2に示すように、一対の磁極36を向かい合わせに設け、磁極36の周囲にコイル38を巻いて構成される電磁石である。一対の磁極36の作る磁場は同じ方向となるように直列にコイル38は接続され、図示されない電源に接続されて電流が供給される。
イオンビーム24は、図1に示すイオンビームの端25c,25dの軌道からわかるように、僅かに拡散するイオンビーム24となって質量マグネット32に入射される。このイオンビーム24は、一対の磁極36の間を通過し、帯状のイオンビームの厚さ方向に曲率を持つようにイオンビーム24の進行方向は曲げられ、後述する分離スリットの位置で収束するように整形される。
【0025】
一対の磁極36間の内側に向く面は、部分的に傾斜させ又その傾斜位置を変更して調整することにより、曲率の異なる円柱面の連続する面あるいはトーラス面等の複雑な連続曲面で構成されている。又磁極36の一部を稼動するように構成し、イオンビーム24に対する両側の磁極端面37の成す角度は調整されている。なお、質量分離マグネット32には、ヨーク34からイオンビーム24の側にコイル34を越えて延びるフィールドクランプを設けてもよい。又、コイル38の形状を調整して所望のイオンビーム形状となるように構成してもよい。
【0026】
質量分離マグネット32を通過したイオンビーム24は、イオン源22のプラズマ密度及び図示されない引き出し電極及び質量分離マグネット32の磁場の影響下で、電流密度のばらつきが一定以下、例えば5%以下となるように、プラズマ密度及び引き出し電極の電圧及び質量分離マグネット32の磁場が調整されている。このイオンビーム24は、後述するレンズ要素40によって電流密度のばらつきが1%程度にまで低減される。
ここで、イオンビームの電流密度とは、イオンビーム24の厚さ方向、すなわち、イオンビームの端25c,25d間の方向に沿って電流密度を積分した積分値、すなわち合計した合計値である。電流密度のばらつきとは、電流密度のビーム幅方向(図2における端25a〜25b間の長さ方向)の分布である電流密度分布が目標とする分布(例えば均一な分布)に対するずれ幅の標準偏差の程度をいい、より具体的には、ばらつき1%以下とは、ずれ幅の標準偏差の、平均電流密度の値に対する比が1%以下であることをいう。
なお、本発明では、電流密度分布は均一な分布の他に、不均一な所望の分布であってもよい。例えば、処理基板62上にCVD法等により形成した薄膜の不均一や熱処理の不均一に合せて、意図的にイオン注入量を場所に応じて変えるために、電流密度分布を目標とする不均一な分布になるように調整する場合もある。
【0027】
レンズ要素40は、帯状のイオンビーム24の一部分を、この帯状のイオンビーム24の面内でビーム幅の方向に曲げて、イオンビーム24のビーム幅方向における電流密度分布を調整するビーム調整部である。レンズ要素40は、イオンビーム24の厚さが、質量分離マグネット32を通過するイオンビーム24の厚さに比べて薄くなっている、イオンビームの収束位置52近傍の領域に配置されており、この領域でイオンビーム24の電流密度分布を調整する。なお、本実施形態では、レンズ要素40は、イオンビームの収束位置52近傍の領域に配置されているが、本発明では、必ずしも収束位置52近傍の領域に配置される必要はない。
【0028】
レンズ要素40は、イオンビーム24を挟んだ両側のヨーク42に、電磁石44が対を成し、かつ、この対がイオンビーム24のビーム幅方向に列を成すことにより複数個の単位レンズ要素が設けられている。単位レンズ要素の各電磁石44は、イオンビーム24のビーム厚さ方向の中心面を中心として、両側の対称な位置に設けられている。すなわち、電磁石44が作る磁場は、イオンビーム24の中心面に対して対称な分布となっている。電磁石44は、電磁軟鉄で作られた磁極46と磁極46の周りに巻きまわされたコイル48とで構成され、対を成す電磁石44の一方の電磁石44の作る磁場が他方の電磁石44に向くようにコイル48の線は、一対の電磁石44に対して直列に接続されている。このように、対向する対を成す電磁石44がヨーク42の上に、ビーム幅全体を横断するように複数組設けられて複数組の単位レンズ要素が構成されている。単位レンズ要素の個数は10〜20程度である。
【0029】
なお、図1及び2に示すレンズ要素40は一例であり、本発明では、これに限定するものではない。イオンビーム24は、イオン源22およびイオン源22の図示されない引き出し電極、さらに質量分離マグネット32により、所定の電流密度分布に近くなるようにある程度調整されているので、レンズ要素40による調整も緩やかな調整でよい。このため、レンズ要素40による磁場の生成も穏やかなものでよい。
又、レンズ要素40は、磁場を用いてイオンビーム24の調整を行う他に、後述するように電場を用いてイオンビーム24の調整を行うこともできる。しかし、以下の点から、レンズ要素40は磁場を用いたものが好ましい。すなわち、イオンビーム24の周りを雲状に取り囲み低速で不揃いに運動する電子が、イオンビーム24中の正の電荷同士の斥力によってイオンビーム24自体が発散しようとする特性を抑制しているが、この電子に大きな影響を与えないようにするために、レンズ要素40は磁場を用いることが好ましい。
【0030】
レンズ要素40の対を成す電磁石44の間には、分離スリット50が設けられている。分離スリット50は、図2では示されていないが、イオンビーム24の端25a,25bを横断するように細長い孔(スリット)が設けられた非磁性体部材で構成されている。質量分離マグネット32にて曲げられたイオンビーム24は、質量分離マグネット32の下流側でビーム厚さ方向において収束位置52で収束するが、この収束位置52に分離スリット50は設けられ、所定の質量と電荷を有するイオン粒子のみを通過させるようになっている。すなわち、分離スリット50は、イオンビーム24がビーム厚さ方向において収束する収束位置52に設けられ、レンズ要素40は、分離スリット50と重なる位置に設けられている。
イオンビーム24のうち、所定の質量及び電荷を持たないイオン粒子は、収束位置で収束しないため、分離スリット50の壁面に衝突して下流側への移動が阻止される。このため、分離スリット50は、イオン粒子の衝突による摩耗に対して耐性を有する素材を用いることが必要であり、例えば、グラファイトが好適に用いられる。イオン粒子の衝突は、垂直に対して傾斜角度を持って壁面に衝突すると摩耗が激しいことから、分離スリット50は、イオン粒子が壁面に対して略垂直に衝突するような形状を備えることが好ましい。
【0031】
分離スリット50では、イオン粒子の衝突の際、分離スリット5の材料の一部分がイオン粒子の衝突エネルギーを受けて粒子として物理的に飛散し、又熱による気化によりガスとなって飛散する。このとき、ビーム輸送部30は低圧の雰囲気となっているので、上記飛散は直線的に拡がる虞がある。このため、飛散した粒子やガス等の材料成分が下流側の処理基板に到達しないように、イオン粒子の衝突する部分が処理基板から見えないように分離スリット50の形状を定める必要がある。例えば図1に示すように、分離スリット50の上流側のイオン粒子が衝突する部分には、面積の広い衝突面を有する鍔54を設け、この鍔54により、飛散する材料成分が処理基板に到達することを阻止している。
【0032】
分離スリット50は、レンズ要素40の作る磁場に影響を与えないように非磁性体であることが必要である。さらに、分離スリット50はレンズ要素40の位置に重なるように配置せず、分離スリット50とレンズ要素40とが隣接するように配置してもよい。
後述するように、レンズ要素40の替わりに電場を用いてイオンビーム24を調整するレンズ要素90を用いる場合、電場に影響を与えない材料の選定が困難であること、及び分離スリット50の表面に導電性の膜が堆積し電場に影響を与えることを考慮して、レンズ要素90は、分離スリット50と隣接するように配置することが好ましい。この場合、分離スリット50は、イオンビーム24の収束位置52に配置する必要があるので、レンズ要素90を分離スリット50に対して隣接するように配置する。
【0033】
さらに、分離スリット50のイオンビーム24の厚さ方向のスリットの開口幅は、固定されたものでもよいが、可変調整できるものが好ましい。処理基板に注入すべきイオンの量に応じて、又純度の高いイオンの注入の必要性の有無に応じてスリットの開口幅を調整することができ、これによりイオン粒子の分離性能を適切に調整できる。又、収束位置52におけるイオンビーム24の厚さを10数mm程度に薄くする場合がある一方、イオンビーム24の軌道は、イオンの種類、イオンビームのエネルギー及びイオン粒子の電荷により影響されて常に一定ではない。このため、スリットの開口幅は、情況に応じて調整できることが好ましい。
【0034】
分離スリット50にて不要なイオン粒子と分離され所定のイオン粒子のみで構成され、かつレンズ要素40にて電流密度分布の調整されたイオンビーム24は、ビーム厚さを拡げつつ処理部60へ進む。
【0035】
処理部60は、処理基板62を図1中の下側から上側に搬送しつつイオン注入を行う図示されない移動機構と、イオンビーム24の電流密度分布を計測するファラディカップ64とを有する。
処理基板62は、半導体ウエハあるいはガラス基板が例示される。イオンビーム24のビーム幅は、質量分離マグネット32による調整により、図2に示すように処理基板62の横幅に比べて広くなっている。
又、処理基板62に照射されるイオンビーム24は、図2に示すように下流側の処理基板62に進むに従って位置が低下するように図中下側に傾斜している。これは、処理基板62が図示されない基台によって、処理基板62の背面から重力を生かして保持され、かつ、イオンビーム24が処理基板62に対して垂直に入射させるためである。処理基板62を背面から保持するのは、イオンビームに曝される処理基板62の前面にクランプ治具等の保持機構を設けることはできないからである。
処理基板62がガラス板の場合、一辺が1m四方の正方形形状で厚さが0.5mmの板が多く、撓み易い。さらに、ガラス板の前面には微細な回路素子等のための加工が施されているので、微細な塵や粒子が付着することを避けるために、クランプ等によって処理面の側から接触することもできない。したがって、図2に示すように、処理基板62を傾斜させ重力を利用して背面から保持することが好ましい。
【0036】
処理基板62の配置位置の下流側には、ファラディカップ64が設けられている。ファラディカップ64は、ビーム幅の方向にイオンビーム24のビーム幅よりも広い範囲に複数個設けられている。各ファラディカップ64のイオンビーム24を受ける面のビーム厚さ方向の長さがイオンビーム24のビーム厚さに比べて長くなっており、イオンビーム24のビーム厚さ方向に沿った電流密度分布の合計値が一度に計測されるように構成されている。ビーム幅方向には、ファラディカップ64が隣接して複数並んでおり、したがって、ビーム幅方向では、電流密度の合計値がファラディカップ64の各位置毎に離散的に計測される。
【0037】
ファラディカップ64は、イオン粒子を受けるカップ部分と、図示されない2次電子捕捉機構とを有する。2次電子捕捉機構は、ファラディカップ64内面にイオン粒子が衝突することにより発生した2次電子がファラディカップ64の外へ漏れるのを防止する捕捉機構である。2次電子がファラディカップ64の外に漏れると電流密度の計測に誤差を与えるからである。2次電子捕捉機構は、磁場を用いた捕捉機能のほか電場を用いた捕捉機能のいずれを用いてもよい。
【0038】
ファラディカップ64の個数は必要に応じて増やせばよく、計測精度を上げる場合、個数を増やせばよく、レンズ要素40の単位レンズ要素の設置個数と無関係である。電流密度の数%のばらつきを精度良く計測するには、ファラディカップ64の設置個数は100個程度であることが好ましいが、20〜40個程度でも電流密度分布からイオンビーム24の調整を精度良く行うことができる。
ファラディカップ64は、図1,2に示されるように複数個並べる形態の他に、単一のファラディカップをイオンビーム24のビーム幅方向に、端から端まで横断するように移動させて位置と電流密度を対として計測してもよい。この方法では、ファラディカップを1つ用いるだけで精度良く計測することができる。
本実施形態の処理部60は、処理基板62を上下方向に移動させてイオン注入を行うものであるが、本発明では、この他、処理基板を円弧状に運動させて、あるいは円盤上に載置して回転運動させてイオンビームを照射させる方式でもよい。円弧状の運動や回転運動の場合、回転半径が場所で異なるため、処理基板の各位置はイオンビームに対して移動する。したがって、均一なイオン注入を行うためには、処理基板の各位置の移動を考慮して、イオンビームの電流密度分布を調整する必要がある。
【0039】
なお、図1,2に示すファラディカップ64のそれぞれは、制御部80中の計測器82と接続され、各ファラディカップ64で計測された電流密度の合計値は計測モジュール82に送られる。
【0040】
制御部80は、プログラムを実行することにより、計測モジュール82と制御モジュール84を備えるコンピュータと、電源制御部86とを備えている。制御部80から出力される制御信号は、電源駆動部88を介して、単位レンズ要素の各単位レンズ要素の電磁石44に供給する電流となる。
計測モジュール82と制御モジュール84を形成するコンピュータは、メモリ85と、計測モジュール82及び制御モジュール84の演算を実質的に行うCPU86と、I/O87を有する。
【0041】
計測モジュール82は、各ファラディカップ64から送られたデータを用いて、電流密度分布を算出する部分である。例えば、図3(a)に示すような、不均一な電流密度分布が得られる。この不均一な電流密度分布は、図3(a)に示すように、ビーム幅方向のレンズ要素40の作る磁場の範囲に対応して区分A1〜A11に区分けされている。ここで、区分A4〜A6が目標とする均一な分布から大きくずれている。
制御モジュール84は、得られた電流密度分布に基づいて、レンズ要素40の各単位レンズ要素の電磁石44が作る磁場の強度を設定する部分である。計測モジュール82にて得られた電流密度分布の目標からのずれ幅に対して、区分A1〜A11の中から調整の中心となる区分が取り出され、この区分に対応する単位レンズ要素(対応単位レンズ要素)の電磁石44を中心として、磁場の調整強度を求め、これより磁場の強度を設定する。具体的な手順については、後述する。設定された強度の情報は、制御信号として電源駆動部88に送られる。
電源駆動部88は、送られた制御信号に基づいてレンズ要素40の各電磁石44に供給する電流値を求めて電流を供給する部分である。
【0042】
このようなイオン注入装置10におけるイオン注入方法について説明する。
まず、イオン源22で生成されたイオンビーム24は、質量分離マグネット32においてビーム幅の拡がった帯状のイオンビーム24が整形され、この後、分離スリット50にて所定の質量及び電荷を有するイオン粒子からなるイオンビーム24のみが通過して処理部60に供給される。このとき、レンズ要素40は予め設定された、あるいは初期設定された磁場の強度でイオンビーム24が調整されている。処理部60では、処理基板62にてイオン注入が行われるが、イオン注入前にファラディカップ64にてイオンビーム24の電流密度が計測される(ステップS10)。
【0043】
計測された電流密度のデータは、計測モジュール82に送られ、電流密度分布が求められる。この電流密度分布は、メモリ85に記憶された後、制御モジュール84から呼び出され、メモリ85に予め記憶されている目標とする分布との誤差が求められ、ずれ幅の分布が算出される。このずれ幅の分布のうち、ずれ幅の最大勾配を有する位置(調整しようとする位置)が、図3(a)に示す、レンズ要素40の各単位レンズ要素に対応した区分A1〜A11の中から基準位置として抽出される(ステップS20)。図3(a)に示す分布の場合、区分A4が基準位置とされる。
【0044】
次に、定められた基準位置である区分A4に対応する対応単位レンズ要素が作るべき磁場の調整強度Iaが求められる(ステップS30)。具体的には、電流密度分布の区分A4における上記最大勾配に応じて、この勾配を相殺するような電流密度を作る磁場の調整強度Iaが求められる。電磁石44が発生する磁場に直交して移動するイオンビーム24の正のイオン粒子は、磁場における磁界の向きのベクトル及びイオン粒子の移動方向のベクトルに直交する方向、すなわち、イオンビーム24の幅方向に力を受けて曲がるので、電磁石44が発生する磁場は、区分A4の一方の側で電流密度が増大し、他方の側で電流密度が減少する勾配を持った分布を作る。すなわち、区分A4に対応する対応単位レンズ要素の電磁石44が作るべき磁場の調整強度Iaは、図3(a)中の電流密度の最大勾配を相殺するように求められ、図3(b)に示すような電流密度分布の変化を生じさせる。
本実施形態では、磁場の調整強度Iaは、電流密度の最大勾配を相殺するように求められるが、本発明では、十分に小さい所定値、例えばイオンビームの目標とするエネルギーに応じて定められる値を用いることもできる。
【0045】
次に、基準位置である区分A4に対応する対応単位レンズ要素に隣接する単位レンズ要素の電磁石44に対して、生成すべき磁場の調整強度Ibが求められる(ステップS40)。隣接する単位レンズ要素の電磁石44についても制御対象とするのは、上述したように、一方の側で電流密度が増大し、他方の側で電流密度は減少する分布を作るが、この分布の影響を受けて基準位置周りの領域の電流密度も変化するからである。このため、基準位置に隣接する単位レンズ要素の電磁石44が生成すべき磁場の調整強度Ibが、上記磁場の調整強度Iaに一定の比率を乗じた値として求められる。この調整強度Ibの磁場は、図3(c)に示すような、電流密度の変化を示し、この結果、区分A4における調整強度Iaの磁場が、区分A3,A5の範囲に与える電流密度の影響を抑えることができる。
【0046】
さらに、区分A3,A5における調整強度Ibの磁場に上記一定の比率を乗算した値を、区分A2,A6に対応する単位レンズ要素の電磁石44の調整強度として求める。この磁場により、区分A3,A5における磁場が、区分A2,A6へ与える電流密度の影響を抑えることができる。
こうして、区分A4に対応する位置を基準位置として、基準位置から離れて隣接する区分における磁場の調整強度が一定の比率を乗算した値として求められる。なお、上記一定の比率は、1以下であり、好ましくは0.3〜0.6の範囲内の一定値である。こうして求められた各調整強度が、現在設定されているレンズ要素40の磁場の強度に加えられ、この加算結果が、調整しようとするイオンビーム24に適用する磁場の強度として設定される。
【0047】
設定された各単位レンズ要素における磁場の強度は、制御信号として電源駆動部88に供給される。
電源駆動部88では、制御信号に応じて、各電磁石44に流すべき電流値を設定して、各電磁石44に電流を流す。これにより、各電磁石44に設定された強度の磁場が生成されてイオンビーム24の電流密度分布が調整される(ステップS50)。
さらに、電流密度の調整されたイオンビーム24の電流密度がファラディカップ64にて計測される(ステップS60)。
この結果、制御モジュール84において、計測された電流密度分布と目標とする分布との誤差が許容範囲内であり、計測された電流密度分布が目標とする分布に略一致すると判断された場合(ステップS70でYesの場合)、イオンビーム24の電流密度分布の調整は終了する。一方、計測された電流密度分布が目標とする分布に一致しないと判断された場合(ステップS70でNoの場合)、イオンビーム24の電流密度分布の調整は再度行われる。すなわち、ステップS20に戻る。このようにして、ステップS70にて、計測された電流密度分布が目標とする分布に略一致すると判断されるまで、ステップS20〜ステップS60が繰り返し行われる。このとき、一連の調整前に、磁場が電流密度分布にどの程度調整力を有するか、計測により確認しておくことが好ましい。
【0048】
このように、本実施形態では、イオンビーム24の電流密度の不均一性の調整を、単位レンズ要素の電磁石44をそれぞれ別々に調整するのではなく、隣接する単位レンズ要素の電磁石の磁場の調整強度に一定の比率を乗じた値を磁場の調整強度として求め、この調整強度を現在設定されているレンズ要素40の強度に加えて、磁場の強度を設定し、複数の単位レンズ要素を一体として調整するので、効率の良い調整が実現できる。しかも、各磁場の調整強度を、中心とする磁場の調整強度に対して一定比率で乗算して求めるので、ロバスト性もよい。
【0049】
なお、本発明では、図4に示すフローに替えて、図5に示すフローに従って、イオンビームの電流密度分布の調整を行ってもよい。
すなわち、レンズ要素40の初期強度の設定をすべて0に設定する(ステップS110)。次に、イオンビームの電流密度の分布を計測する(ステップS120)。この後、計測された電流密度分布が目標の分布と略一致するか否かを判断する(ステップS120)。計測された電流密度分布が目標の分布と略一致する場合、イオン注入装置10の立ち上げの処理は終了し、イオン注入の処理に進む。一方、計測された電流密度分布が目標の分布と略一致しない場合、ステップS140〜ステップS160に進む。ステップS140〜ステップS160は、図4に示すステップS20〜S40と同じ内容である。この後、調整強度が、レンズ要素40に設定されている強度に加算され、この加算値が、レンズ要素40に強度として再設定される。初期強度は0に設定されているので、1回目の再設定では、調整強度自体が強度として再設定される。こうして、ステップS130において肯定されるまで、ステップS120〜S170が繰り返される。
【0050】
本実施形態のレンズ要素40は、磁場を用いてイオンビーム24の電流密度分布を調整するものであるが、電場を用いて電流密度分布を調整するものであってもよい。
図6(a)は、レンズ要素40の替わりに用いるレンズ要素90の平面図であり、図6(b)は、レンズ要素90の内部を説明する図である。
レンズ要素90は、イオンビーム24の収束位置52の下流側に設けられている。
本実施形態では、レンズ要素90は、上流側に位置する質量分離マグネット32を通過するイオンビーム24のビーム厚さに比べて薄くなっている、イオンビームの収束位置52の近傍の領域で、イオンビームの電流密度分布が調整されるように設けられるが、本発明では、レンズ要素90の位置も特に限定されない。
図6(a),(b)に示す実施形態では、分離スリット50の位置に隣接するようにレンズ要素90が設けられている。
【0051】
レンズ要素90は、絶縁導入端子93を介して真空ハウジング110の外側の端子92と内側のサポート94とが接続され、サポート94の先端側に電極91が設けられている。端子92は、図1に示す制御部80の電源駆動部88と接続されている。
図6(a),(b)からわかるように、電極91、端子92、絶縁端子93、サポート94の組が、イオンビーム24の端25aから端25bまで、ビーム幅方向に複数個並んでいる。この組に対応するように、同一構造をした電極91、端子92、絶縁端子93、サポート94の組がイオンビーム24を挟んだ反対側の対称な位置に、ビーム幅方向に複数個並んでおり、複数組の単位レンズ要素が形成されている。
単位レンズ要素の個数は、上述のレンズ要素40における単位レンズ要素の個数と同様に10〜20程度である。
【0052】
レンズ要素90の電極91には、DC電圧の同極の同電圧が印加され、電極91の間でイオンビーム24のビーム厚さ方向の中心面に対して線対称な電場が作られる。例えば、電極91に正の電圧が印加されることで、イオンビーム24は、電場を避けるように電場の両側に曲がることを利用してイオンビームの電流密度を調整する。
図6(a),(b)に示すように、レンズ要素90の上流側及び下流側には、真空ハウジング110からシールド電極95a,95bが立設している。シールド電極95a,95bは、電極91を中心として対称な位置に設けられており、レンズ要素90の作る電場が、レンズ要素90の領域以外でイオンビーム24に影響を与えないように、電場をシールドするものである。
【0053】
分離スリット50の下流側の端面56の形状をシールド電極95aと同様の形状に加工して、真空ハウジング110の内面まで延ばすことにより、シールド電極95aと同様の機能を持たせることもできる。このとき、電極91を中心として分離スリット50の端面56の位置と対称な位置にシールド電極95bを設けることが好ましい。
【0054】
このようなレンズ要素90では、磁場を用いて電流密度分布を調整するレンズ要素40と同様の方法により、イオンビーム24の電流密度分布の調整が行われる。具体的な処理方法は、図4に示されているフローで行われる。
電場を用いて調整を行うレンズ要素90では、電流密度分布の目標とする分布からのずれ幅を求め、このずれ幅の最大ずれ位置を有する区分が基準位置とされる。この基準位置のずれ幅に応じて、このずれ幅を相殺するような電流密度を作る電場の調整強度Iaを求める。一方、上述したレンズ要素40の場合、基準位置は、ずれ幅の最大勾配位置を有する区分の位置を用い、基準位置の最大勾配に応じて、この最大勾配を相殺するような電流密度を作る磁場の調整強度Iaを求める。
電場を用いることにより、イオンビーム24は電場を避けるように両側に曲がる。このため、電場によって作られるイオンビーム24の電流密度は、電場が生成した位置で電流密度を低下するように大きく変化し、その両側で対称的に電流密度は増大するように変化する。
【0055】
図3(a)に示される電流密度分布の場合、区分A5で目標となる分布からのずれ幅が最大となるので、この区分A5の最大ずれ幅を無くすように、電場の調整強度Iaを求める。これにより、図7(a)に示すような電流密度分布の変化を生じさせる。
さらに、調整強度Iaに一定の比率を乗算した値を区分A4,A6において作るべき電場の調整強度Ibとし、この調整強度Ibを現在レンズ要素に設定されている強度に加えて、レンズ要素の強度を設定する。
この電場は、図7(b)に示すような電流密度変化を生じさせるので、区分A5における電場が、隣接する区分A4,A6へ与える電流密度の影響を抑えることができる。
こうして、区分A5に対応する対応単位レンズ要素の電場を基準位置として、基準位置から離れて隣接する区分における電場の調整強度として、基準位置における電場の調整強度に一定の比率を乗算した値を求める。なお、上記一定の比率は、1以下であり、好ましくは0.3〜0.6の範囲内の一定値である。
【0056】
設定された各単位レンズ要素の電極91における電場の強度は、制御信号として電源駆動部88に供給される。
電源駆動部88では、制御信号に応じて、各電極91に印加すべき電圧値を設定して、各電極91に電圧を印加する。これにより、各電極91に設定された強度の電場が生成されてイオンビーム24の電流密度分布が調整される。
さらに、ファラディカップ64にて電流密度の調整されたイオンビーム24の電流密度が計測される。
この結果、制御モジュール84において計測された電流密度分布と目標の分布との誤差が許容範囲内であり、計測された電流密度分布が目標とする分布に略一致すると判断された場合、イオンビーム24の電流密度分布の調整は終了する。一方、計測された電流密度分布が目標とする分布に一致しないと判断された場合、イオンビーム24の電流密度分布の調整は再度行われる。このようにして、計測された電流密度分布が目標とする分布に略一致すると判断されるまで、電流密度分布の調整が繰り返し行われる。このとき、一連の調整前に、電場が電流密度分布にどの程度調整力を有するか、計測により確認しておくことが好ましい。
【0057】
上記イオン注入方法における磁場又は電場の強度の設定は、制御部80のコンピュータにて行われ、以下のプログラムを実行することにより実現される。
すなわち、プログラムは、各単位レンズ要素の磁場又は電場により調整されたイオンビーム24の計測された電流密度のデータから電流密度分布をコンピュータのCPU86に算出させメモリ85に記憶させる手順と、
複数の単位レンズ要素から、算出された電流密度分布における調整しようとする位置に対応する単位レンズ要素の対応位置をCPU86に設定させ、この対応単位レンズ要素が作る磁場又は電場の調整強度を、計測された電流密度分布からCPU86に算出させるとともに、対応単位レンズ要素に隣接する単位レンズ要素が作る磁場又は電場に対して、算出された調整強度に一定の比率を乗算して得られる値を磁場又は電場の調整強度としてCPU86に算出させ、これらの算出した調整強度を、現在各単位レンズ要素に設定されている磁場叉は電場の強度に加えたものを、磁場叉は電場の強度として、CPU86に再設定させる手順と、
再設定された強度を複数のレンズ要素の電場又は磁場に適用してイオンビーム24の電流密度分布を調整させる制御信号をCPU86に作製させる手順と、を有する。
【0058】
又、プログラムは、下記手順を有するものであってもよい。
すなわち、イオンビームの計測された電流密度のデータから電流密度分布をCPU86に算出させメモリ85に記憶させる手順と、
複数の単位レンズ要素から、算出された電流密度分布における調整しようとする位置に対応する対応単位レンズ要素をCPU86に設定させ、この対応単位レンズ要素が作る磁場又は電場の調整強度を、計測された電流密度分布からCPU86に算出させるとともに、対応単位レンズ要素に隣接する単位レンズ要素が作る磁場又は電場に対して、算出された調整強度に一定の比率を乗算して得られる値を磁場又は電場の調整強度としてCPU86に算出させ、これらの求めた調整強度を、現在各単位レンズ要素に設定されている磁場叉は電場の強度に加えたものを、磁場叉は電場の強度として、CPU86に再設定させる手順と、
再設定された強度を用いて調整されたイオンビームの電流密度分布をCPU86にシミュレーションにて算出させる手順と、
シミュレーションにより得られた電流密度分布が目標とする分布に略一致するまで、磁場叉は電場の強度の再設定と、シミュレーションを繰り返し行う手順と、
シミュレーションにより得られた電流密度分布が目標とする分布に略一致するときの強度を複数の単位レンズ要素の電場又は磁場に適用してイオンビームの電流密度分布を調整させる制御信号をCPU86に作成させる手順と、を有する。
【0059】
このように、本発明では、イオンビーム24の電流密度分布の計測結果に応じてレンズ要素40又はレンズ要素90の作る磁場又は電場の強度を設定し、その際、調整しようとする基準位置を定め、この基準位置に隣接する単位レンズ要素の磁場又は電場の調整強度に対して、基準位置における磁場又は電場の調整強度に一定の比率を乗算した値を、磁場又は電場の調整強度として求め、強度を設定するので、イオンビームの電流密度分布を目標とする分布に効率よく調整することができる。
【0060】
以上、本発明のイオン注入装置、イオン注入方法及びプログラムについて詳細に説明したが、本発明は上記実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更をしてもよいのはもちろんである。
【図面の簡単な説明】
【0061】
【図1】本発明のイオン注入装置の一実施形態であるイオン注入装置の平面図である。
【図2】図1に示すイオン注入装置の側面図である。
【図3】(a)は、図1に示すイオン注入装置で得られるイオンビームの電流密度分布の一例を示す図であり、(b)及び(c)は、磁場を用いて調整するときのイオンビームの電流密度の変化を説明する図である。
【図4】本発明のイオン注入方法の一実施形態を示すフローチャートである。
【図5】本発明のイオン注入方法の別の実施形態を示すフローチャートである。
【図6】(a)は、図1に示すイオン注入装置に用いるレンズ要素の替わりに用いる別の形態のレンズ要素の平面図であり、(b)は、(a)に示すレンズ要素の内部を説明する図である。
【図7】(a)及び(b)は、電場を用いて調整するときのイオンビームの電流密度の変化を説明する図である。
【符号の説明】
【0062】
10 イオン注入装置
20 ビーム整形部
22,22a,22b,22c イオン源
24,24a,24b,24c イオンビーム
25a,25b,25c,25d 端
30 ビーム輸送部
32 質量分離マグネット
34 ヨーク
36 磁極
37 磁極端面
38 コイル
40,90 レンズ要素
42 ヨーク
44 電磁石
46 磁極
48 コイル
49,52 収束位置
50 分離スリット
54 鍔
60 処理部
62 処理基板
64 ファラディカップ
80 制御部
82 計測モジュール
84 制御モジュール
85 メモリ
86 CPU
87 I/O
88 電源駆動部
91 電極
92 端子
93 絶縁端子
94 サポート
95a,95b シールド電極
110 真空ハウジング

【特許請求の範囲】
【請求項1】
処理対象基板に、この処理対象基板の横幅よりも広いビーム幅を有する帯状イオンビームを照射してイオン注入をするイオン注入装置であって、
イオンビームを生成するイオン源を備え、生成したイオンビームを帯状イオンビームに整形するビーム整形部と、
前記帯状イオンビームを処理対象基板に照射する処理部と、
前記帯状イオンビームの前記ビームの厚さ方向における電流密度の合計値を前記ビーム幅の方向の分布で表した前記帯状イオンビームの電流密度分布を調整するために、前記帯状イオンビームの前記ビーム幅方向に沿って複数の単位レンズ要素を並べ、各単位レンズ要素が作る磁場又は電場の強度を調整し、設定するビーム調整部と、
前記ビーム調整部により調整された前記帯状イオンビームの電流密度分布を計測する計測部と、この計測結果に応じて前記ビーム調整部にて調整する前記単位レンズ要素の作る磁場又は電場の調整強度を求め、求めた前記調整強度を、現在前記ビーム調整部に設定されている磁場または電場の強度に加えることにより、磁場または電場の強度を再設定する設定部とを備えるビーム制御部と、を有し、
前記設定部は、前記複数の単位レンズ要素のうち、前記計測された電流密度分布における調整しようとする位置に対応する対応単位レンズ要素が作る磁場又は電場の調整強度を、前記計測部で計測された電流密度分布から求めるとともに、前記対応単位レンズ要素に隣接する単位レンズ要素が作る磁場又は電場に対して、前記求められた調整強度に一定の比率を乗算して得られる値を磁場又は電場の調整強度として求め、前記求められた調整強度を用いて磁場又は電場の強度の再設定を行うことを特徴とするイオン注入装置。
【請求項2】
前記ビーム調整部は、前記単位レンズ要素の作る電場を調整し、前記電流密度分布における調整しようとする位置は、計測された電流密度分布の中の所定の分布に対する誤差が最も大きい位置であり、前記一定の比率は1以下であり、
前記誤差が最も大きい位置に対応する前記対応単位レンズ要素に隣接する単位レンズ要素に対して、設定された前記対応単位レンズ要素の電場の調整強度に前記一定の比率を乗算した値を電場の調整強度として求める請求項1に記載のイオン注入装置。
【請求項3】
前記ビーム調整部は、前記単位レンズ要素の作る磁場を調整し、前記電流密度分布における調整しようとする位置は、計測された電流密度分布の中の所定の分布に対する誤差の分布の中で、誤差の勾配が最も大きい位置であり、前記一定の割合の比率は1以下であり、
前記勾配の最も大きい位置に対応する前記対応単位レンズ要素に隣接する単位レンズ要素に対して、設定された前記対応単位レンズ要素の磁場の調整強度に前記一定の比率を乗算した値を磁場の調整強度として求める請求項1に記載のイオン注入装置。
【請求項4】
前記一定の比率は、0.3〜0.6である請求項1〜3のいずれか1項に記載のイオン注入装置。
【請求項5】
処理対象基板に、この処理対象基板の横幅よりも広いビーム幅を有する帯状イオンビームを照射してイオン注入をするイオン注入装置を用いたイオン注入方法であって、
前記イオン注入装置は、前記帯状イオンビームの前記ビームの厚さ方向における電流密度の合計値を前記ビーム幅の方向の分布で表した前記帯状イオンビームの電流密度分布を調整するために、前記帯状イオンビームの前記ビーム幅方向に沿って複数の単位レンズ要素を並べ、各単位レンズ要素が作る磁場又は電場の強度を調整し、設定する手段を有し、
イオンビームを処理対象基板に照射してイオンの注入を行う際、
前記各単位レンズ要素の磁場又は電場により調整されたイオンビームの電流密度分布を計測するステップと、
前記複数の単位レンズ要素から、計測された前記電流密度分布における調整しようとする位置に対応する対応単位レンズ要素を定め、この対応単位レンズ要素が作る磁場又は電場の調整強度を、前記計測された電流密度分布から求めるとともに、前記対応レンズに隣接する前記単位レンズ要素が作る磁場又は電場に対して、前記設定された強度に一定の比率を乗算して得られる値を磁場又は電場の調整強度として求め、求めた前記調整強度を、現在前記各単位レンズ要素に設定されている磁場叉は電場の強度に加えることにより、磁場叉は電場の強度を再設定するステップと、
再設定された強度を前記複数の単位レンズ要素の電場又は磁場に適用して前記帯状イオンビームの電流密度分布を調整するステップと、を有することを特徴とするイオン注入方法。
【請求項6】
処理対象基板に、この処理対象基板の横幅よりも広いビーム幅を有する帯状イオンビームを照射してイオン注入をするイオン注入装置において、前記帯状イオンビームに磁場又は電場を作用させて前記帯状イオンビームの電流密度分布を調整するために、前記磁場又は電場の強度を設定するコンピュータが実行可能なプログラムであって、
前記イオン注入装置は、前記帯状イオンビームの前記ビームの厚さ方向における電流密度の合計値を前記ビーム幅の方向の分布で表した前記帯状イオンビームの電流密度分布を調整するために、前記帯状イオンビームの前記ビーム幅方向に沿って複数の単位レンズ要素を並べ、各単位レンズ要素が作る磁場又は電場の強度を調整し、設定する手段を有し、
前記各単位レンズ要素の磁場又は電場により調整されたイオンビームを処理対象基板に照射してイオンの注入を行う際、
イオンビームの計測された電流密度のデータから電流密度分布をコンピュータの演算手段に算出させコンピュータの記憶手段に記憶させる手順と、
前記複数の単位レンズ要素から、算出された前記電流密度分布における調整しようとする位置に対応する対応単位レンズ要素を前記演算手段に定めさせ、この対応単位レンズ要素が作る磁場又は電場の調整強度を、前記計測された電流密度分布から前記演算手段に算出させるとともに、前記対応レンズに隣接する単位レンズ要素が作る磁場又は電場に対して、前記算出された調整強度に一定の比率を乗算して得られる値を前記磁場又は電場の調整強度として前記演算手段に算出させ、これらの算出した調整強度を、現在前記各単位レンズ要素に設定されている磁場叉は電場の強度に加えたものを、磁場叉は電場の強度として、前記演算手段に再設定させる手順と、
再設定された強度を前記複数の単位レンズ要素の電場又は磁場に適用して前記帯状イオンビームの電流密度分布を調整させる制御信号を前記演算手段に作成させる手順と、を有することを特徴とするプログラム。
【請求項7】
処理対象基板に、この処理対象基板の横幅よりも広いビーム幅を有する帯状イオンビームを照射してイオン注入をするイオン注入装置において、前記帯状イオンビームに磁場又は電場を作用させて前記帯状イオンビームの電流密度分布を調整するために、前記磁場又は電場の強度を設定するコンピュータが実行可能なプログラムであって、
前記イオン注入装置は、前記帯状イオンビームの前記ビームの厚さ方向における電流密度の合計値を前記ビーム幅の方向の分布で表した前記帯状イオンビームの電流密度分布を調整するために、前記帯状イオンビームの前記ビーム幅方向に沿って複数の単位レンズ要素を並べ、各単位レンズ要素が作る磁場又は電場の強度を調整し、設定する手段を有し、
前記各単位レンズ要素の磁場又は電場により調整されたイオンビームを処理対象基板に照射してイオンの注入を行う際、
イオンビームの計測された電流密度のデータから電流密度分布をコンピュータの演算手段に算出させコンピュータの記憶手段に記憶させる手順と、
前記複数の単位レンズ要素から、算出された前記電流密度分布における調整しようとする位置に対応する対応単位レンズ要素を前記演算手段に定めさせ、この対応単位レンズ要素が作る磁場又は電場の調整強度を、前記計測された電流密度分布から前記演算手段に算出させるとともに、前記対応単位レンズに隣接する単位レンズ要素が作る磁場又は電場に対して、前記算出された調整強度に一定の比率を乗算して得られる値を前記磁場又は電場の調整強度として前記演算手段に算出させ、これらの算出した調整強度を、現在前記各単位レンズ要素に設定されている磁場叉は電場の強度に加えたものを、磁場叉は電場の強度として、前記演算手段に再設定させる手順と、
再設定された強度を用いて調整されたイオンビームの電流密度分布を前記演算手段にシミュレーションにて算出させる手順と、
前記シミュレーションにより得られた電流密度分布が目標分布に略一致するまで、磁場叉は電場の強度の再設定と、前記シミュレーションとを前記演算手段に繰り返し行わせる手順と、
前記シミュレーションにより得られた電流密度分布が前記目標分布に略一致するときの前記強度を前記複数の単位レンズ要素の電場又は磁場に適用して前記帯状イオンビームの電流密度分布を調整させる制御信号を前記演算手段に作成させる手順と、を有することを特徴とするプログラム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2009−245880(P2009−245880A)
【公開日】平成21年10月22日(2009.10.22)
【国際特許分類】
【出願番号】特願2008−93677(P2008−93677)
【出願日】平成20年3月31日(2008.3.31)
【出願人】(000005902)三井造船株式会社 (1,723)
【Fターム(参考)】