説明

エネルギー分散型放射線分光分析システムにおけるパイルアップ除去

【解決手段】プリアンプ信号のエッジを検出する方法は、プリアンプ信号の第1部分を特定する工程であって、第1部分の各部が第1極性を有する瞬間の傾きを有する工程と、第1部分の直後に続く第2部分を特定する工程であって、第2部分の各部が逆の第2極性を有する瞬間の傾きを有する工程と、、第2部分の直後に続く第3部分を特定する工程であって、第3部分の各部が第1極性を有する瞬間の傾きを有する工程とを含む。その方法は、更に、第2部分の終点と始点の強度の間の第1差を特定する工程と、第3部分の終点の強度と第1部分の始点の強度の間の第2差を特定する工程と、(i)第1差が閾値を超え(ii)第2差が閾値のある割合を超えるとき、エッジを検出する。

【発明の詳細な説明】
【技術分野】
【0001】
関連出願の参照:
本件出願は、2007年8月3日に出願された米国仮特許出願第60/963,320号、発明の名称「IMPROVED EDS PILEUP REJECTION FOR LOW ENERGIES AT HIGH COUNT RATES(低エネルギー高カウントレートでのEDSパイルアップ除去の改善)」に関する優先権を主張し、当該出願の開示は、引用を以て、本明細書の一部となる。
【0002】
本発明は、X線分光分析システムやガンマ線分光分析システムなどのエネルギー分散型放射線分光分析システムに関しており、特に、エネルギー分散型放射線分光分析システムにおけるパイルアップ除去を改善する方法に関する。
【背景技術】
【0003】
X線分光分析システムやガンマ線分光分析システムなどのエネルギー分散型放射線分光分析システムは、例えば、走査型電子顕微鏡(SEM)からのX線放射やガンマ線放射などの放射線放射を検出、測定、及び分析するために使用される。典型的なエネルギー分散型放射線分光分析システムは、以下の4つの主要構成要素を含んでいる:(1)検出器、(2)プリアンプ、(3)パルスプロセッサ、(4)コンピュータをベースとした分析装置。限定を目的とせず、便宜のみのために、以下では、X線分光分析システムとX線形態のフォトン(これと比較されるのは、例えば、ガンマ線分光分析システムで検出されるガンマ線形態のフォトン)とについて説明する。
【0004】
検出器は、通常、あるタイプの半導体センサの形態であり、およそ数十から数百ナノ秒の間に、一般的には数万電子程度の微小な電流パルスに入射X線を変換する。電流パルスの各々の大きさは、X線のエネルギーに比例する。
【0005】
プリアンプは、検出器から出力される電流パルスを増幅し、一般的に、これを数十ミリボルトから数百ミリボルトまでの範囲の電圧信号に変換する。プリアンプには、「テールパルス」又はRCカップルプリアンプと、パルスリセットプリアンプという、主たる2つのタイプがある。本明細書中のいずれに記述された内容も、これら2つのタイプのプリアンプに適用される。
【0006】
パルスリセット型プリアンプでは、センサで生成された電荷は、その結果として生じる電圧が、上限に達するまで、段階的に多様な高さと間隔で上昇するようにフィードバックコンデンサ内に積分される。この上限に達すると、「リセット」パルスが適用され、これが蓄積された電荷をフィードバックコンデンサから放出し、一般的には数マイクロ秒という短時間に、プリアンプをその最小出力電圧近くまで復帰させる。そして、検出器とX線の相互作用による電荷が再度フィードバックコンデンサに蓄積して、このサイクルが繰り返される。対照的に、テールパルスプリアンプは、検出器から出力される電圧ステップ信号にハイパスフィルタとして作用し、 ベースラインへの指数的復帰の時定数は、プリアンプのフィードバックコンデンサにおける電荷積分時間と比較して長くなる。
【0007】
パルスプロセッサは、プリアンプ信号を受け取り、積分処理によりX線エネルギーの数値表現を生成する。過去のエネルギー分散型放射線分光分析システムでは、パルスプロセッサは、所謂「整形(シェーピング)アンプ」と、アナログ/デジタル(A/D)コンバータという2つの別個の構成要素を含んでいた。一方、最近のエネルギー分散型放射線分光分析システムでは、一般的にこれらの機能が一体化しており、最新設計では、プリアンプ信号を直接デジタル化し、デジタル信号処理を使用した全パルス検出とフィルタ機能とを実行する。
【0008】
コンピュータベースの分析装置は、パルスプロセッサから出力されるX線エネルギーを、それらエネルギーに対して検出されたX線の数のスペクトル又はプロットに集める。スペクトルは、「チャンネル」又は「ビン」と呼ばれる幾分恣意的な数の小さい領域に分割される。過去のシステムでは、マルチチャンネルアナライザ(MCA)と呼ばれるハードウエアが、X線のスペクトルチャンネルへの蓄積を行い、コンピュータが、その集計結果を読み出していた。近年のシステムでは、MCA機能は、コンピュータにより、またはパルスプロセッサ内で、ソフトウエアで取り扱われる。
【0009】
パルスプロセッサの仕事は、いくつかの要因によって、より複雑になっている。例えば、電子ノイズは、プリアンプから受け取った元の信号に重畳される。ほとんど最低検出限界レベルのエネルギーのX線では、プリアンプ出力のステップ高さは、電子ノイズのピーク間偏位より格段に小さいことがある。このような場合、ノイズの寄与分を平均化除去するために、そのステップの前後で比較的長時間の信号をフィルター処理することによってしか、X線は検出されない。このようなノイズ平均化の量は、あらゆるパルスプロセッサで基本的な操作パラメータである。この平均化時間は、「整形時間」又は「ピーク時間」としてこの分野で様々に言及されている。
【0010】
第2に、プリアンプ出力のステップは瞬間的ではない。ノイズがない場合、信号は、S字形(S-shaped)曲線となるだろう。これは、帯域幅の限界と、装置の静電容量と、X線により生成された全電子がセンサの陽極に到達するのに必要な時間とに起因している。これらの電子は、小さなクラスタ又は雲として可視化でき、該クラスタ又は雲は、半導体センサ内のバイアス電圧領域の影響下で、センサ材料を通って陽極に向かって移動する。テールパルスプリアンプでは、信号の初期立ち上がりは同じくS字形であり、指数関数的な減衰がそれに続く。減衰の時定数は、設計により変化し得るが、信号の初期立ち上がりと比較して常に長くなる。
【0011】
各面に単純な平面電極がある従来の検出器は、リチウムドリフト型シリコン検出器、即ちSi(Li)検出器と呼ばれ、バイアスの力線は、(エッジ効果を無視した第1近似で)真っ直ぐであり、後から前に延びる。その結果、電子雲の収集時間はほとんど一定で、プリアンプ信号の「立ち上がり」時間(S字形ステップの幅)は、デバイスの静電容量が比較的大きいことによる帯域幅の制限によって支配される。
【0012】
近年、シリコンドリフト型検出器(SDD)として知られる新しいタイプのセンサが開発された。その新しい顕著な特徴は、バイアス電極にエッチングされた同心円状のパターンであり、僅かに異なる電圧がこのパターンの個々のリングに印加されると、センサ材料内部のバイアス場は、電子が微小なスポット陽極に集中するように形作られる。これは、有効デバイス静電容量を約4桁で低減させる効果がある。X線相互作用による電子雲は、陽極へ到達するまでの経路長に応じて大きな又は小さな度合いでドリフト時間を長くする。静電容量の減少によって、電子雲の積分時間がプリアンプ信号の立ち上がり時間により大きく寄与し、Si(Li)検出器の場合は数パーセントでしかないのに比較して、SDDでは、およそ2倍変化する可能性がある(全静電容量が減少するために、従来の平面電極センサ(Si(Li)検出器)よりも、SDDでは、立ち上がり時間の範囲の下端でさえも依然としてより速いかも知れないが)。
【0013】
「パルスパイルアップ」としてこの分野で公知の現象は、X線が連続して到達する際にそれらのエネルギーを個々に測定するにはお互いに近すぎるという結果として起こる。検出されない場合、両方のX線が1つのエネルギーとして測定され、そのエネルギーは、システムのパルスシェーピングフィルタの構成とX線間の時間間隔とに応じて、そのX線対のエネルギーの高い方とそれらの合計との間のどこかに位置することになる。従って、パルスプロセッサは、パイルアップの発生を効率よく検出して、検出時には、それに関したエネルギー測定を捨てる(パイルアップ除去と呼ばれる)必要がある。
【0014】
放射線は、自然発生か何らかの励起により誘導されたかに関わらず、確率過程である。平均放射率の高低に関わらず、ある非ゼロの確率で、2つの放射X線の時間間隔は任意に短くなり得る。2つ目のX線が任意の時間間隔t内で得られる確率は、P=(1−e-(rt))である。ここで、eは自然対数の底であり、rは平均X線到達率である。
【0015】
2つのX線を個別な事象として常に特定できる最短の時間間隔は、この分野で「パルス対分解時間」として知られており、エネルギーの強い逆関数である。言い換えると、小さな(低エネルギー)パルス対の間で近接する発生(coincidence)を検出することは、大型パルス対の場合よりもより一層困難である。パルスプロセッサのピーク検出フィルタは全て高エネルギーX線に強く応答するので、検出が最も困難なケースは、近接して引き続くような低エネルギーX線である。
【0016】
一般的に、従来のパイルアップ検出法は、主たるエネルギー測定処理経路(「主チャンネル」と呼ばれる)の整形時間と比較して非常に短いが一定であるシェーピング時間を有する1つ以上の並列フィルタとして表現される。これらフィルタは、「高速チャンネル」または「パイルアップ除去チャンネル」などと様々に称される。各チャンネル(主と高速)には、デッドタイムと呼ばれるパラメータがあり、これは、そのチャンネルが正確且つ明確に1つのX線のエネルギーを測定するためにかかる時間である。高速チャンネルのデッドタイムDfは、主チャンネルのデッドタイムDより非常に短いので、高速チャンネルでは、時間的に互いに近接して到達したX線に対して別個にパルスを生成する可能性が高い。高速チャンネルで使用されるフィルタ(アナログ又はデジタル)は、エネルギー測定(主チャンネル)に使用されるものとほぼ同じタイプであって、単に、パルス幅がより短い。
【0017】
しかしながら、高速チャンネルのシェーピング時間は非常に短いので、電子ノイズの平均化除去にはあまり効果がない。どのパルス処理チャンネルのシェーピング時間も、そのチャンネルで検出できる最低エネルギーのX線を決定する。検出閾値をより低く設定すると、処理チャンネルは、プリアンプの出力信号のランダムノイズ変動によって、過度の不正トリガを生成する。一般的に、最新式のX線分光分析システムは、主測定チャンネルで約100乃至200電子ボルト(eV)のX線をノイズから判別可能であるが、高速チャンネルの閾値エネルギーがより高くなければならない。最速のパイルアップ除去チャンネルは、高エネルギーX線について最良のパルス対分解時間を規定し、一般的には1000eVから2000eVの間の閾値を有する。現存のパルスプロセッサには、1000eV以下の範囲でパイルアップ除去性能を向上させるために3個ものパイルアップ除去チャンネルを備えるものがある。2個以上のパイルアップ除去チャンネルのあるシステムでは、中間チャンネルは、525eVの酸素又は277eVの炭素のような特定の輝線に感度があるように選択されたシェーピング時間を有している。希望するエネルギー検出閾値を下げる毎に、より長い整形時間を必要とするので、パルス対分解時間は劣化する。
【0018】
パルス対分解時間は、そのパルス対の低エネルギー側のX線により支配される。これは、低エネルギーパイルアップ検出の失敗が低エネルギーピークに影響するだけでなく、スペクトルの全ピークに影響するため重要である。低エネルギーX線のパイルアップが検出されないと、任意のピークのカウントが、その予想される位置から2つのピークエネルギーの合計位置にまで広がる幅広い棚に移動する可能性がある。エネルギーにおけるパイルアップ効果の依存性については、 P.J. Statham, Microchim. Acta 155, 289-294 (2006) に良く解説されている。
【0019】
さらに、SDDの場合における有効な単一X線パルスに係る非常に変化する立ち上がり時間は、X線が吸収される電荷収集陽極からの距離に依存しており、最速の従来型パイルアップチャンネルがただ一つの出力パルスしか生成しないときでさえ、時間的に非常に近い発生を検出する従来の方法に最大の問題を引き起こす。昔ながらの手法は、例えば、Warburtonらによる米国特許第5,684,850号にて説明されているように、パルス幅試験である。デジタルの三角フィルタ又は台形フィルタは、比較的容易に構築できて効率的に演算できるため、全デジタル化したパルス処理システムで最も一般的である。またこの分野で有限インパルス応答(FIR)フィルタとして公知の技術があり、これは、フィルタの非ゼロ加重係数の程度で規定される有限範囲の時間外では、フィルタの応答がゼロとなることを保証することを意味している。対照的に、従来の半ガウシアンアナログパルスシェーピングは、指数時定数を導入し、その応答は原理的には永久に持続する。しかし、実際には、出力は合理的に予想しうる(ややエネルギーに依存する)時間のノイズ閾値以下に減衰する。
【0020】
FIRフィルタのパルス幅は、原理的にエネルギーに依存しないが、プリアンプステップの立ち上がり時間に依存し、さらにSDDでは、可変な電荷収集時間に依存する。従って、単一のX線からの有効パルスを誤って排除することを避けるために、固定パルス幅試験は、SDDにてドリフト経路長を最大とした結果得られる最大立ち上がり時間を受け入れるように十分に長く設定される必要がある。
【0021】
従って、立ち上がり時間が非常に変化するSDDを採用したシステムの性能を改善するには、立ち上がり時間に依存しないパイルアップ検出法を有するが有利となろう。
【発明の開示】
【0022】
ある実施例では、X線分光分析システムやガンマ線分光分析システムなどのエネルギー分散型放射線分光分析システムのプリアンプ出力信号からフォトンを示すエッジを検出する方法が提供され、プリアンプ出力信号の各点はその強度値を有している。本発明の方法は、プリアンプ出力信号の第1部分を特定する工程であって、第1部分の各部が第1極性を有する瞬間の傾きを有している工程と、第1部分の直後に続くプリアンプ出力信号の第2部分を特定する工程であって、第2部分の各部が、第1極性と逆の第2極性を有する瞬間の傾きを有している工程と、第2部分の直後に続くプリアンプ出力信号の第3部分を特定する工程であって、第3部分の各部が第1極性を有する瞬間の傾きを有している工程とを含んでいる。さらに、本発明の方法は、第2部分の終点の強度値と第2部分の始点の強度値の間の第1差を決定する工程と、第3部分の終点の強度値と第1部分の始点の強度値の間の第2差を決定する工程と、(i)第1差が所定の閾値を超えており、また(ii)第2差が所定の閾値の所定の割合を超える場合に、エッジが存在すると判断する工程とを含む。
【0023】
好ましくは、本発明の方法は、各々がデジタル値を有する連続的な複数のデジタルサンプルを含むプリアンプ出力信号のデジタルバージョンを生成する工程を更に含んでいる。この実施例では、第1部分は、複数のデジタルサンプルの中の連続するデジタルサンプルの1又は複数の第1対を含んでおり、各第1対におけるデジタルサンプルのデジタル値の間の差は、瞬間の傾きのデジタル推定値を示しており、第1部分を特定する工程は、各第1対におけるデジタルサンプルのデジタル値の間の差が、第1極性を有すると判断する工程を含んでいる。また、この実施例では、第2部分は、複数のデジタルサンプルの中の連続するデジタルサンプルの1又は複数の第2対を含んでおり、各第2対におけるデジタルサンプルのデジタル値の間の差は、瞬間の傾きのデジタル推定値を示しており、第2部分を特定する工程は、各第2対におけるデジタルサンプルのデジタル値の間の差が、第2極性を有すると判断する工程を含んでいる。また、この実施例では、第3部分は、複数のデジタルサンプルの中の連続するデジタルサンプルの1又は複数の第3対を含んでおり、各第3対におけるデジタルサンプルのデジタル値の間の差は、瞬間の傾きのデジタル推定値を示しており、第3部分を特定する工程は、各第3対におけるデジタルサンプルのデジタル値の間の差が、第1極性を有すると判断する工程を含んでいる。
【0024】
別の特定の実施例では、本発明の方法は、各々がデジタル値を有する連続的な複数のデジタルサンプルを含むプリアンプ出力信号のデジタルバージョンを生成する工程を含んでおり、第2部分の終点の強度値は、複数のデジタルサンプルの中の第1デジタルサンプルのデジタル値であり、第2部分の始点の強度値は、複数のデジタルサンプルの中の第2デジタルサンプルのデジタル値であり、第3部分の終点の強度値は、複数のデジタルサンプルの中の第3デジタルサンプルのデジタル値であり、第1部分の始点の強度値は、複数のデジタルサンプルの中の第4デジタルサンプルのデジタル値である。
【0025】
別の特定の実施例では、エネルギー分散型放射線分光分析システムは、ピーク検出フィルタを含んでおり、ピーク検出フィルタは、プリアンプ出力信号で示されたフォトンに応答して1又は複数のパルスを生成し、1又は複数のパルスの何れかが、ピーク検出フィルタの最小検出可能閾値エネルギーを超えている間、閾値超え信号を生成するように構成されている。この実施例では、本発明の方法は、エッジが存在すると判断する工程に応じてエッジ信号を生成する工程と、エッジ信号を受信する工程と、閾値超え信号が受信されている間に、エッジ信号と第2エッジ信号が受信されているか否かを判断する工程と、閾値超え信号が受信されている間に、エッジ信号と第2エッジ信号が受信されていると判断される場合に、有効パイルアップを宣言する工程とを含む。
【0026】
更に別の特定の実施例では、エネルギー分散型放射線分光分析システムは、ピーク検出フィルタを含んでおり、ピーク検出フィルタは、プリアンプ出力信号で示されたフォトンに応答して1又は複数のパルスを生成し、1又は複数のパルスの何れかが、ピーク検出フィルタの最小検出可能閾値エネルギーを超えている間、閾値超え信号を生成するように構成されている。この実施例では、本発明の方法は、パイルアップが起こったと判断する工程に応じてエッジ信号を生成する工程と、エッジ信号を受信する工程と、閾値超え信号が受信されている間にエッジ信号が受信されているか否かを判断する工程と、閾値超え信号が受信されていない間にエッジ信号が受信されていると判断される場合、エッジ信号を無視する工程とを含む。
【0027】
更に別の実施例では、上記の方法を実行するように構成されたパルスプロセッサが提供される。更に別の実施例では、入射フォトンを電流パルスである出力に変換する検出器と、検出器の出力を電圧信号であるプリアンプ出力信号に変換するプリアンプと、パルスプロセッサとを含んでいる、X線分光分析システムやガンマ線分光分析システムなどのエネルギー分散型放射線分光分析システムが提供される。パルスプロセッサは、パルスプロセッサは、上述した方法の多様な実施例を実行することで、プリアンプの出力信号からのフォトンを示すエッジを検出するように構成されている。
【0028】
別の特定の実施例においては、X線分光分析システムやガンマ線分光分析システムなどのエネルギー分散型放射線分光分析システムが提供され、該システムは、入射フォトンを電流パルスの出力に変換する検出器と、検出器の出力を電圧信号であるプリアンプ出力信号に変換するプリアンプと、パルスプロセッサとを含んでいる。パルスプロセッサは、プリアンプ出力信号を連続する複数のデジタルサンプルに変換することで、前記プリアンプ出力信号の第1デジタルバージョンを生成し、連続する複数のデジタルサンプルの複数のグループを合算して、合算されたデータの複数のピースを生成することで、プリアンプ出力信号の第2デジタルバージョンを生成し、ここで、第2デジタルバージョンは、合算されたデータの複数のピースを含んでおり、第1デジタルバージョンを用いて、プリアンプ出力信号の第1部分を特定し、ここで、前第1部分の各部は、第1極性を有する瞬間の傾きを有しており、第1デジタルバージョンを用いて、第1部分の直後に続くプリアンプ出力信号の第2部分を特定し、ここで、第2部分の各部は、第1極性と反対の第2極性を有する瞬間の傾きを有しており、第1デジタルバージョンを用いて、第2部分の直後に続く前記プリアンプ出力信号の第3部分を特定し、ここで、第3部分の各部は、第1極性を有する瞬間の傾きを有しており、第1デジタルバージョンを用いて、第2部分の終点の強度値と第2部分の始点の強度値との間の第1差を決定し、第1デジタルバージョンを用いて、第3部分の終点の強度値と第1部分の始点の強度値との間の第2差を決定し、第1デジタルバージョンを用いて、(i)第1差が所定の閾値を超えており、(ii)第2差が前記所定の閾値の所定の割合を超えている場合に、エッジが存在すると判断するように構成されている。更にパルスプロセッサは、第1デジタルバージョンを用いて、プリアンプ出力信号の第1部分を特定し、ここで、第1部分の各部は、第1極性を有する瞬間の傾きを有しており、第2デジタルバージョンを用いて、第1部分の直後に続くプリアンプ出力信号の第2部分を特定し、ここで、第2部分の各部は、第1極性と反対の第2極性を有する瞬間の傾きを有しており、第2デジタルバージョンを用いて、第2部分の直後に続くプリアンプ出力信号の第3部分を特定し、ここで、第3部分の各部は、第1極性を有する瞬間の傾きを有しており、第2デジタルバージョンを用いて、第2部分の終点の強度値と第2部分の始点の強度値との間の第1差を決定し、第2デジタルバージョンを用いて、第3部分の終点の強度値と第1部分の始点の強度値との間の第2差を決定し、第2デジタルバージョンを用いて、(i)第1差が所定の閾値を超えており、(ii)第2差が前記所定の閾値の所定の割合を超えている場合に、エッジが存在すると判断するように構成されている。
【0029】
従って、本発明が、上記の特徴及び利点の全てを十分に達成することは明らかである。本発明のさらなる特徴及び利点は、以下の説明で述べられ、また、ある程度は説明から明らかであり、本発明を実施することで理解できる。さらに、本発明の特徴及び利点は、特に添付の特許請求の範囲で示された手段及び組合せを用いて、実現及び獲得され得る。
【図面の簡単な説明】
【0030】
添付の図面は、本発明の現在における好適な実施例を図示しており、上述の一般的な説明や以下の詳細な説明と共に、本発明の原理を説明するために供するものである。それら図面を通じて、同じ参照符号は、同じ又は関連する部分を示す。
【図1】図1は、本発明が実装され得る、限定を目的としない特定の実施例に基づいた、X線分光分析システムの全体的なブロック図である。
【図2】図2は、一般的な台形FIRデジタルフィルタのブロック図である。
【図3A】図3Aは、限定を目的としない特定の実施例に従って本発明の実装に使用され得るソースコードを含む。
【図3B】図3Bは、限定を目的としない特定の実施例に従って本発明の実装に使用され得るソースコードを含む。
【図3C】図3Cは、限定を目的としない特定の実施例に従って本発明の実装に使用され得るソースコードを含む。
【図3D】図3Dは、限定を目的としない特定の実施例に従って本発明の実装に使用され得るソースコードを含む。
【図4A】図4Aは、本発明のFPGAの実施例の設計に使用され得る図3A乃至Dのプログラムロジックから抽出した状態図である。
【図4B】図4Bは、本発明のFPGAの実施例の設計に使用され得る図3A乃至Dのプログラムロジックから抽出した状態図である。
【図5A】図5Aは、2つの異なるエネルギーの低エネルギーX線に対する、図1で示すピーク検出フィルタの理想的な台形応答を示しており、第3ラインは、検出閾値エネルギーを示す示している。
【図5B】図5Bは、図1に示すピーク検出フィルタについて、2つの400eVのエネルギーのX線からの出力の理想的な表示を示している。
【図6】図6A、図6B及び図6Cは、本発明の一実施例を使用してエッジを検出するために処理される可能性のある立ち上がり及び極値の3つのパターンを示している。
【図7A】図7Aは、SDDからの実際の波形のプロットを示す。
【図7B】図7Bは、SDDからの実際の波形のプロットを示す。
【図8】図8は、図1のシステムで予想されるパイルアップ性能を要約した概略図であり、特定のSDDについて、典型的なパルス対分解時間とエネルギー検出閾値とが示されている。
【発明を実施するための形態】
【0031】
「背景技術」にて指摘したように、本明細書に記載される主題の事項は、テールパルスプリアンプとパルスリセットプリアンプの両方に適用される。しかしながら、図示と説明を容易にするために、パルスリセット型プリアンプを採用した実施例に関して、本発明を説明する。「背景技術」にて論じたように、検出器電圧ステップ信号の立ち上がり部分は、テールパルス型プリアンプを経由し、比較的変化しない。結果として、パルスリセットの実施例に関する説明から、本明細書に記載される発明が、テールパルスプリアンプの実施例に容易に適用され得ると理解されるだろう。さらに、本明細書に記載する主題の事項は、エネルギー分散型放射線分光分析システム全般に適用される。しかしながら、図示と説明を容易にするために、X線分光分析システムを採用した実施例に関して、本発明を説明する。しかしながら、これに限定すると見なされるべきではない。また、これに限定されるものではないが、ガンマ線分光分析システムなどのその他のタイプのエネルギー分散型放射線分光分析システムに関して、本発明が適用されてよいことは理解されるべきである。
【0032】
本明細書で説明する改善は、立ち上がり時間に依存せず、ある実施例では、検出器における荷電収集の予想されるS字パターンのみに依存し、また別の実施例では、(ノイズ依存限界内で)単調な立ち上がり信号を有することに依存しており、当該立ち上がり信号に続いて、ランダムノイズが信号の向き(局所一次導関数の符号、立ち上がり又は立ち下がり)を決定する短い期間がある。故に、本明細書で説明する改善は、短い立ち上がり時間のX線ステップにより速く応答でき、より長い立ち上がり時間のパルスではよりゆっくりと適切に応答でき、誤って後者を排除することがない。ある実施例では、有効な単一のX線からの電圧信号は、ある最大値まで(ノイズの範囲内で)単調に増加して、その後単調に減少する一次導関数を有するという仮定がなされる。本明細書にてさらなる詳細を説明するように、ある実施例に基づいて開示される方法は、プリアンプ出力を直接デジタル化し、デジタル化したADCサンプル間の連続する差は、一次導関数の瞬間的な値について、利用可能な最も優れた推定値を与える。別の実施例では、有効な単一X線からの電圧信号は、局地的なピーク間ノイズ域を超えて上昇して、その後、最終的に上昇が止まるという仮定と、そのノイズ域は、立ち上がりに先立つ極大値とこれに続く極小値とで測定されるように、その立ち上がりの前後で顕著に移動するという仮定がなされる。この実施例のシステムは、プリアンプ出力を直接デジタル化して、極値はデジタル信号として測定される。
【0033】
デジタル化ADCの変換速度は、立ち上がり時間の予想範囲に適切に一致すべきである。それは、予想される最短立ち上がり時間で、立ち上がりの間に波形を数回サンプリングするのに十分速い必要がある。本発明が十分に効果的であるには、立ち上がり時間内での最少サンプル回数は4回又は5回であるのが望ましい。好ましい実施例では、ADCのサンプリング速度は、約50ナノ秒である予想最短立ち上がり時間に対して、100MHzなので、最も小さい立ち上がり時間内で5回、最も長い立ち上がり時間内ではおよそ10回のサンプリングが行われる。
【0034】
立ち上がり時間内に約40又は50のサンプルが含まれるというように、サンプリングレートが高すぎると、立ち上がりステップの1つのサンプル間隔の間に、ランダムノイズ変動から容易に識別される程度に、波形が十分に動かない。本明細書で説明するように、この状況は、サンプリングレートを分割し、最速の立ち上がり内に最適な4から8個のサンプルとなるように、本発明を具体化した回路に示す値の各々について、ある数のADCサンプルを合計することによって、容易に解決される。
【0035】
本発明の実施例の主たる目的は、基礎となる信号の滑らかなS字形の性質を利用し、センサ/プリアンプの組み合わせにおける立ち上がり時間及びノイズの特性の変化に自動的に適応できるステップ検出法を使用することにより、半導体放射線センサの出力信号に生成される電圧ステップの平均パルス対分解時間を低減することにある。その結果、エネルギースペクトル中の未検出のパルスパイルアップのレベルが低下して、それ故に、「サムピーク」として当該分野で知られる誤った結果の相対的サイズが低減する。「サムピーク」は、スペクトル中の大きな放射線ピークのエネルギーの2倍、又は、任意の2つの2つのピークの合算エネルギーで起こる。
【0036】
本明細書で説明する方法は、デジタルベースであり、アナログ/デジタルコンバータ(ADC)によりデジタル化したプリアンプ信号を必要とする。最適な変換レートは、上述したように、プリアンプから予想される最速の立ち上がり時間に依存する。
【0037】
以下の説明では、X線が検出される際に正向きの(positive-going)プリアンプ出力を仮定するが、この分野で通常の知識を有する者には、信号の極性は、信号の連鎖の中で反転してよく、本発明の方法は、同様に有効であると理解するであろう。また、シリコンベースのセンサと低エネルギー領域での放射を仮定しているが、同じく、この分野で通常の知識を有する者は、説明される方法は、ゲルマニウムなどその他の半導体製のセンサと、高エネルギーX線やガンマ線のフォトンとに適用されることを理解するであろう。
【0038】
図1は、本発明が実装され得る特定の実施例に基づくX線分光分析システム1の全体的なブロック図である。図1に示すように、X線分光分析システム1は、点線で囲んだ部分に、その主要構成部分としてデジタルパルスプロセッサ(DPP)2を含んでおり、本明細書で説明されるように本発明が実装される。さらにX線分光分析システム1は、シリコンドリフト検出器(SDD)100とパルスリセット型プリアンプ101とを含む。
【0039】
動作上、X線は、SDD100に入射して、電子−正孔対に変換され、電子の数は、X線エネルギーに比例する。これらの電子の合計からなる微小な電荷は、プリアンプ101のコンデンサに蓄積されて、図示された形の出力電圧信号に変換される。当該電圧信号では、小さなS字形ステップが、様々な振幅及び間隔でノイズに重なって生じる。電圧信号は、SDD100の漏出電流により全体的に正の傾きを有する。定期的なリセットは、フィードバックコンデンサから電荷を放出して、出力を素早くその下限にもって行き、その結果、図1に示すような鋸歯状の波形となる。この一般的なアプローチは、長年にわたり当該分野で知られている。
【0040】
プリアンプ101の出力は、DPP2の一部として提供される高速アナログ/デジタルコンバータ(ADC)102によりデジタル化される。好ましい実施例では、ADC102は、AD9446シリーズのように、Analog Devices社により製造された100MHz、16ビット部品である。本発明は、このデバイスのためにAnalog Devices社から供給された開発基板(モデルAD9446-100LVDS/PCB)を使用して開発されており、DC結合入力信号を受け入れるように変更され、オンボードメモリとPCへの標準USBインターフェース(モデルHSC-ADC-EVALB-DC)とを備えるインターフェース基板に接続されて、走査電子顕微鏡(SEM)に搭載されたSDDからのプリアンプ波形における数千の短い(2.62ミリ秒)セグメントを捉えて、数秒のリアルタイムデータとしてディスクファイルに格納する。以下で説明する後続のデジタル機能は、Pythonと呼ばれるスクリプト言語で記述された後処理ソフトウエアとして最初に実装された。そのソフトウエアのソースコードは、2007年8月3日に出願された米国仮特許出願第60/963,320号、発明の名称「IMPROVED EDS PILEUP REJECTION FOR LOW ENERGIES AT HIGH COUNT RATES」に含まれる。それから選択した機能を、本明細書で再現する。Pythonプログラムは、その後、フィールドプログラマブルゲートアレイ(FPGA)ロジックと、テキサスインスツルメント社製320C−6414デジタル信号処理(DSP)チップ用に書かれたソフトウエアとを組み合わせて使用するリアルタイム実施例について、仕様として機能した。図1に示した好ましい実施例は、名称と詳細を後述するロジックブロック103から119をFPGAロジックに配置し、名称と詳細を後述するロジックブロック120及び121をDSPチップソフトウエアに配置する。
【0041】
ADC102の出力は、プリアンプ電圧波形からのデジタルサンプルと 図1にて後続する全てブロックのタイミングを規定するクロックとからなる。図1を簡潔にするために、このクロックは別個には示さないが、全ての機能ブロックは、後述するようにして、ADC102のクロック又はそのある約数により同期されると理解すべきである。
【0042】
ADC102の出力とそのクロックは、検出器マッチングアベレージャ103を通る。検出器マッチングアベレージャ103は、随意的に複数のADCサンプルを合算し、その数で元のADCクロックを分周する。検出器マッチングアベレージャ103の目的は、DPP2に接続するSDD100の立ち上り時間に関して有効なサンプル間隔を最適化することにある。この合計の全ビットを保持することが、非常に短いフィルタリング時間での最終X線スペクトルの量子化誤差を避けるために好ましく、これにより、DPP2を経て処理を継続する際のデータパスがより広くなる。
【0043】
SDD100から予想される平均立ち上がり時間が約150ナノ秒未満である場合、検出器マッチングアベレージャ103は動作せず、可能な最高のタイミング精度を得るために全100MHzレートが使用される。しかし、平面電極を伴った所謂リチウムドリフトシリコンまたはSi(Li)検出器のような、より速度の遅い検出器がDPP2に接続しており、その平均立ち上がり時間が数百ナノ秒である場合は、有効なサンプリングレートを低下させて、平均立ち上がり時間内に約16個未満のサンプルを生じるのが望ましい。
【0044】
マッチングアベレージャ103からの(恐らく合算された)データとクロックは、2つの並行した経路を通る。一つの経路は、2つのサブセクションを有する高速パイルアップロジック104に導く。第1のサブセクションは、シングルステップロジックと呼ばれ、ある実施例の主題であって、本明細書に詳細を記述する。他方のサブセクションは、ランロジック(runs logic)と呼ばれるもので、連続したデータサンプルの単調なラン(runs)の長さとパターンとに基づいたデジタル法を備える別の実施例の主題であって、同様に本明細書で詳細を説明する。本明細書で用いる「単調」は、数学的な意味で厳密な単調を意味していない。この方法に採用したコンパレータは、若干負にオフセットされており、サンプル間の負の差がピーク間のノイズ変動と比較して小さい場合は、サンプル間の負の差を許容する正のランの検出を行う。シングルステップロジックが、適度に高エネルギーのX線について単一の連続立ち上がり内でパイルアップを検出可能な場合には、ランロジックは、ノイズの制約の中で可能な限り素早く低エネルギーX線による連続立ち上がりの終了を検出するように設計されている。
【0045】
第2経路は、フィルタアベレージャ105へと導く。フィルタアベレージャ105は、少数の、望ましくは、連続する4個のADCサンプルを合算して、ノイズ(サンプル間のランダム変動)を低減し、また、後続のデジタル処理ステップで要求される速度を低減する。4個を合算したデータと4で分周されたクロックとは、低速パイルアップロジック106に送られる。低速パイルアップロジック106は、高速パイルアップロジック104と機能的に同一だが、よりノイズが少なくて、より遅いデータを取り扱う。フィルタアベレージャ105からのより遅いサンプルレートで動作する場合、本発明は、分解時間は良くないが、ノイズが過剰になって誤ってトリガする前に低エネルギー検出閾値に到達するだろう。
【0046】
フィルタアベレージャ105からの出力は、ピーク検出フィルタ107(主チャンネル)と複数の台形FIRデジタルフィルタ108、109、110(高速チャンネル)とに並行して送られる。これらのフィルタは全て、少なくとも15年間当該分野で普通に使用されてきた従来の台形タイプである。一般的な台形FIRデジタルフィルタのブロック図を、図2に示す。図2に示すように、ADCサンプルは、ライズFIFO201、ギャップFIFO202、及びフォールFIFO203と呼ばれる3つの可変長FIFOを通過する。ライズFIFO201は、FIRフィルタの初期積分時間である。ステップエッジで畳み込まれると、それは、エッジがFIFOを通過する際に、最終FIR合算にて線形の立ち上がりを与える(ノイズ変動は無視)。ギャップFIFO202は、加重ゼロの期間であって、それがなければステップエッジに対して三角形の応答になるようなものに「フラットトップ(flat top)」を与える。フラットトップは望ましい。なぜなら、検出器の立ち上がり時間が可変の場合、純粋に三角形のパルス形(ギャップなし)は、高さが同じであるが立ち上がり時間が異なるような、ノイズがない複数のステップエッジについて、異なる最大出力を有するであろうからである。このギャップが、予想される最長の立ち上がり時間をカバーするのに十分長いと、最大出力合算は、(入力信号のノイズとバッググラウンドの傾きを無視すると)同じになるだろう。フォールFIFO203は、ライズFIFO201と同期間に渡ってサンプルを積分するが、極性が逆であって、ライズFIFO201にて総和にN回加算されるどのサンプルも、最終的に、フォールFIFO203でそれからN回減算される。ここで、Nは、それら2つのFIFOの長さである。
【0047】
三角(または台形)フィルタの形は、それらを演算するのに必要な回路構成が簡単なために、よく使用される。任意の全長を有するFIRフィルタのFIFOクロックサイクル当たり、4回の演算のみが必要とされる。ライズFIFO201に入るサンプルは、移動和(running sum)に加算され、ライズFIFO201から出るサンプルは、移動和から減算される。フォールFIFO203に入るサンプルは、移動和から減算され、フォールFIFO203から出るサンプルは、移動和に加算される。最初の差は、演算論理装置(ALU)204で、また次の差は、ALU205で演算される。これら2つのALUの出力は、累算器206にて、以前の全FIR出力に加算される。
【0048】
入力信号のS字立ち上がりが全体的にギャップFIFO202に含まれている間に、FIR出力和の最大値が発生し、それは、立ち上がりの要因となったX線のエネルギーに比例する。
【0049】
ピーク検出フィルタ107は、X線エネルギーの測定に関与しないが、全X線の検出に、それらのエネルギーが低くとも関与して、可能な最高精度でそれらを時間的に配置する。ライズFIFOとフォールFIFOの幅はできる限り短くされるが、収集されるスペクトルの最低エネルギーX線の輝線を確実に検出する。電子顕微鏡に搭載されたX線分析装置では、それは、大抵の場合、277電子ボルト(eV)にある炭素の輝線である。故に、ピーク検出フィルタ107は、2007年8月3日に出願された前記の米国仮特許出願第60/963,320号、発明の名称「IMPROVED EDS PILEUP REJECTION FOR LOW ENERGIES AT HIGH COUNT RATES」で、頻繁に「炭素フィルタ」と呼ばれている。目標とする最小の輝線は、より低エネルギー(ホウ素またはベリリウム)であってよく、又は、低エネルギーでは非常に効率が悪い蛍光X線(XRF)励起用の検出器の場合はより高エネルギーでもよい。XRF検出器は、通常、センサの前にベリリウムウインドウを備えていて、約700eV以下の全てのX線を基本的に遮断する。その場合、顕著な数のX線を失う心配をせずに、ピーク検出フィルタ107を狭くして、そのパイルアップ検出性能を改善できる。
【0050】
ピーク検出フィルタ107は、通常のFIRの和と、その他の2つの信号、即ち、最大応答時のパルスと、何時その応答が閾値エネルギーを超えたかを示すロジック信号とを生成する。これらの信号の使用に関する詳細は後述する。
【0051】
X線エネルギーレベルを測定するFIRフィルタ108、109及び110と、ピーク検出フィルタ107と、低速パイルアップロジック106と、高速パイルアップロジック104とは全て、適切なサイズのプログラム可能長さの調整遅延(programmable-length alignment delay)FIFO111、112、113、114、115及び116に接続している。これらは、全てのエッジ(イベント)検出器をトリガするのに十分なエネルギーを有しているノイズのない単一X線パルスについて、高速パイルアップロジック104と低速パイルアップロジック106からのエッジ(イベント)位置(時間)と、ピーク検出フィルタ107の最大値と、全てのエネルギー測定FIRフィルタ108、109及び110のギャップの中央に対応する出力データとが、(フィルタアベレージャ105のクロック分周(clock division)により強いられた時間量子化限界の範囲内で)同時にパルス検証ロジック117、ベースライン傾き測定ロジック118及びフィルタラッチロジック119に到達するように接続されている。
【0052】
フィルタラッチロジック119は、全てのFIRフィルタについて、ピーク検出フィルタ107の調整された最大出力時間に対応した出力を捉える。それは、従来のアナログパルス処理のサンプル・アンド・ホールド(S/H)回路と機能的に同一である。その出力は、エネルギー測定フィルタの列の中の最も長いFIRフィルタのFIRパルス幅の1/2(立ち下がりの時間と、ギャップの半分の時間の合計)に対応する期間だけ更に遅延して、ラッチをトリガするエッジに続くパイルアップを検出する時間を与える。
【0053】
フィルタラッチロジック119はまたタイマーを含んでおり、現在のストローブ信号からその前後のストローブ信号(ピーク検出フィルタ107からの最大出力パルス)への時間を測定して、FIRスタックの最長フィルタ(存在するならば)の選択を可能にする。このフィルタは、Koemanの米国特許第3,872,287号とMottの米国特許第5,393,982号とに開示されている方法によると、パイルアップなく使用できる。この最大値より短い全てのフィルタの出力はまた、Koemanの米国特許第3,872,287号で教示された方法に従って、X線エネルギーのより良い推定値を得るために、異なる重みで結合されてよい。
【0054】
ベースライン傾き測定ロジック118は、X線の到達によるS字ステップがない場合、プリアンプ101の電圧信号の漏出電流に起因した正の傾きを測定する。台形FIRフィルタの応答が、線形の傾きに対して一定であり、フィルタの積分時間及びギャップの幅に依存することは当該分野で知られている。この傾きの応答は、X線エネルギーの正確な測定のためにフィルタ出力から減算される必要がある。S字ステップ近傍の傾き測定に好ましい方法の詳細は、2007年8月3日に出願された米国仮特許出願第60/963,312号、発明の名称「DIGITAL PULSE PROCESSOR SLOPE CORRECTION」にて説明されており、その開示は、引用を以て本明細書の一部となる。
【0055】
パルス検証ロジック117は、高速パイルアップロジック104、低速パイルアップロジック106及びピーク検出フィルタ107からの信号を組み合わせて、ピーク検出フィルタ107からの単一出力パルスに、パイルアップが発生しているか否かを判断する。そのようなパイルアップが発生している場合は、ピーク検出フィルタ107では一つの最大出力パルスしか生成されないので、フィルタラッチロジック119で検出されないだろうが、抑止(inbibit)パルスが、生成及び適切に遅延されて、フィルタラッチロジック119の出力が傾き補正較正ロジック120に到達するのと同時に到達する。
【0056】
以下のテストは、パルス検証ロジック117で実行される。ピーク検出フィルタ107からの「閾値超え(above threshold)」ロジック信号がアクティブである間に、直接パイルアップ検出パルスを、高速パイルアップロジック104又は低速パイルアップロジック106から受け取られると、パイルアップが宣言されて、抑止信号が生成される。「閾値超え」ロジック信号がアクティブである間に、2つ以上のエッジ検出パルスを高速パイルアップロジック104又は低速パイルアップロジック106から受け取られると、同様にパイルアップが宣言されて、抑止信号が生成される。
【0057】
「閾値超え」信号がアクティブではない間に高速パイルアップロジック104又は低速パイルアップロジック106から生成されるエッジ検出信号とパイルアップ検出信号とは、誤ったトリガとして無視される。これによって、ピーク検出フィルタ107においてエネルギー閾値未満に平均除去される短いノイズのスパイクに起因した誤ったトリガをカウントすることが防止されて、それら2つのパイルアップロジックブロックが、そうでない場合に必要な検出閾値よりも低い検出閾値を有することが可能となる。
【0058】
ピーク検出フィルタ107の出力のパルス幅とパルス対称性も、Mottの米国特許第5,349,193号で開示されているようにテストされて、X線の一つ又は両方が高速パイルアップロジック104若しくは低速パイルアップロジック106をトリガするにはエネルギーが低すぎる場合にパイルアップが検出される。
【0059】
更に対称性のようなテストが実行されて、高速パイルアップロジック104と低速パイルアップロジック106で検出されたエッジが、ピーク検出フィルタ107の閾値超え時間の中央にあるか否かが確認される。本明細書の他の場所で説明されているソフトウエアベースの実装例では、これは、高速パイルアップロジック104と低速パイルアップロジック106により報告されるエッジ位置の時間的な絶対差(absolute difference)と、単一のX線が閾値超え時間の中央にあると予想される、ピーク検出フィルタ107の最大応答とを得ることでなされる。図1に示すFPGAロジック実装例では、図5Bに示すタイマーを使用するほうが、タイムスタンプの絶対差を使用するより便利である。これらのタイマーは、イベント経過タイマー(Event Lag timer)と呼ばれる。あるイベント経過タイマーは、「閾値超え」信号の始めに開始する。高速パイルアップロジック104又は低速パイルアップロジック106の何れかからエッジ信号を受け取ると、タイマーは、ピーク検出フィルタ107の既知の立ち上がり時間及びギャップ時間に、単一のイベントについて検出器の予想される最長の立ち上がり時間の1/2を足して、ノイズ及び時間量子化誤差による変動のわずかな許容量を足して計算した制限値に対してチェックされる。タイマーがこの制限値を超える場合、低エネルギーX線のパイルアップが起こったと仮定される。
【0060】
第2のイベント経過タイマーは、高速パイルアップロジック104又は低速パイルアップロジック106から任意のエッジを受け取ったときに開始され、「閾値超え」信号が低下する場合に同じ制限値に対して検証される。2つのタイマーは、図5Bにて、「イベント経過1」及び「イベント経過2」として表記されている。当該分野で通常の知識を有する者は、このタイマー対が、ピーク検出器フィルタ107の閾値超え時間の中央の範囲に、エッジ信号を束縛することは明らかであろう。これは、ピーク検出フィルタ107の最大応答が、通常、閾値超え時間中央付近にあるとの仮定に基づいたソフトウエアタイムスタンプ法と機能的に同一である。
【0061】
いかなるフィルタリング機構によるエッジ検出でも、ある値を超えるX線が全て検出され、それ以下のX線は全て検出されないという明確なカットオフはない。その代わりに、 P. J. Statham, Microchim. Acta 155, 289-294 (2006)で説明されているように、エッジ付近のランダムノイズ変動によって、検出効率は、あるエネルギーより上の100%から、ある低エネルギー以下のゼロへと滑らかに落ちる。その刊行物の図2は、検出効率曲線の形を図示しているが、その図は、Si(Li)検出器を参照しており、その定数とエネルギー領域はSDDと著しく異なるだろう。低速パイルアップロジック106が50%の確率で2つのX線を検出するエネルギーにて、その2つのX線のパイルアップがあると仮定する。時間の半分では、それらX線の一つのみが検出されるだろう。
【0062】
図5Aは、2つの異なる低エネルギーX線に対する、ピーク検出フィルタ107からの理想化した台形応答を示している。第3のラインは検出閾値エネルギーを示す。現実の適用で特定されるエネルギーは、フィルタ幅及び使用するSDD/プリアンプに応じて異なり得るが、示された値は、現在のSDDに妥当である。
【0063】
上側の一点鎖線、480eVは、それを超えると、低速パイルアップロジック106が100%近い効率であるようなエネルギーを示す。中央の一点鎖線、280eVは、炭素X線エネルギー近辺である。下側の一点鎖線、160eVは、検出閾値の一般的設定であってよく、元素ホウ素(183eV)を検出するのに十分低いエネルギーである。
【0064】
「G+R+N」が付された中央の時間は、ピーク検出フィルタ107のギャップ時間Gと、検出器から予想される最長立ち上がり時間Rと、ノイズ及び時間量子化誤差の安全係数Nとに関する許容量である。これは、フィルタ出力に平らな領域を生成する。出力の立ち上がり部分と立ち下がり部分は、ピーク検出フィルタ107の先頭と後尾の積分時間である。
【0065】
このケースの「高エネルギー」は、2万eVから3万eV(20keVから30keV)までを意味し、検出閾値より100倍以上も高いエネルギーであってよい。検出閾値が、1keV以下のX線で次第に重要な閾値になるため、480eVと280eVのX線を夫々示すパルス幅BとCは、図示したようにより短い。
【0066】
図5Bは、400eVのエネルギーの2つのX線からのピーク検出フィルタ107の出力の理想的な表現を示す。400eVは、低速パイルアップロジック106を確実にトリガするのには低すぎ、このエネルギーでは、50%の検出効率を仮定している。×印で輪郭を示す台形波は、400eVの中央にある単一のX線への応答を示している。点線の台形波は、X線が時間X1へと左に移動したこと、線線の台形波は、X線が時間X2へと右に移動したことを示す。全体の応答は、上側の実線であり、常に点線と鎖線の和である。括弧で囲んだ数字は、出力応答の傾きが変化した時間を示す。パイルアップX線は、エネルギーが等しいと仮定されるので、出力の形は対称形で、その最大値は(3)と(4)の間の狭い平らな領域のいずれかに位置する。小さいランダムノイズ変動によって、実際の最大値は、この領域のどこにでも成り得るので、米国特許第5,349,193号で説明された対称性チェックはパイルアップを検出しないことがある。
【0067】
ピーク検出フィルタ107のパルスは、同じように全パルス幅チェックを通過するかも知れない。図5Aに示すように、単一の低エネルギーX線のパルス幅は、高エネルギーでの最大幅と比較して低減され、低エネルギーパイルアップイベントが低減された幅未満で分離される場合、図5Bに示すように(p−p間の領域はA未満)、パルス幅テストには効果がない。しかしながら、図5Bに示すように、前述したタイマーの一方では、与えられたX線について閾値を超える平均パルス立ち上がり時間に全パルス分解時間が加えられる。従って、X線の一方のみが少なくとも一つのパイルアップロジックブロックをトリガする場合、これらのタイマーをテストすることでパイルアップ検出の可能性は改善する。
【0068】
固定のイベント経過の限界は、ピーク検出フィルタ107の積分時間に前記の「G+R+N」時間を加えたものより低くはならず、また、単一の高エネルギーX線はパイルアップとして誤って排除され得る。その限界が低くなるほど、検出可能な時間分解能も低くなるので、できる限り速い立ち上がり時間Rとできる限り低いノイズNとを有するSDDを選択することは有利となる。
【0069】
図1に戻ると、傾き補正較正ロジック120は、ベースライン傾き測定ロジック118からの現在の傾きの値を、エネルギー測定FIRフィルタ108、109及び110の全ての出力を、場合によっては、パルス検証ロジック117からの抑止信号を受け取り、それらは全て、適切に時間調整されている。好ましい実施例では、これらのイベントはADCのサンプリングレートよりかなり遅いピーク検出フィルタ107のパルス速度で発生することから、これらの機能は、Texas Instruments社製TMS320C6414などのデジタル信号処理チップのソフトウエアで実装される。
【0070】
抑止信号がない場合、このロジックは、この分野で公知の方法で、ADC102の信号のベースラインの傾きによる誤差を差し引き、FIRフィルタ108、109、及び110の一つ以上の生出力を重み付けして、ステップエッジを作り出したX線について較正されたエネルギー推定値を生成する。
【0071】
これらの測定されたエネルギーは、同じくこの分野で公知の方法で、マルチチャンネルアナライザ(MCA)121のメモリに保存される。MCA121に集積されたスペクトルは、分析のためにホストPC122に転送される。
【0072】
図1にて「シングルステップ」及び「ラン」と付された高速パイルアップロジック104及び低速パイルアップロジック106の部分について、本明細書で詳細を説明する。「シングルステップ」と称されるのは、それが、ADC102からのサンプル間の連続差に作用するからであり、連続差は、場合によっては、検出器マッチングアベレージャ103とフィルタアベレージャ105で前記のように平均化されている。「ラン」と称されるのは、ADC102から送られるサンプルの正向きのラン(run)と負向きの(negative-going)のランとを追跡する(track)からであり、これらのランは、場合によっては、検出器マッチングアベレージャ103とフィルタアベレージャ105で前記のように平均化されている。図3乃至3Dは、ある実施例に基づいた、高速パイルアップロジック104と低速パイルアップロジック106の「シングルステップ」及び「ラン」の両方の部分を実施する機能のプログラムソースコードのリストであり、本明細書の他の場所で説明されているように、それらシングルステップ法及びラン法のためのFPGA実施例の仕様として機能した。図4A及び4Bは、シングルステップ法及びラン法のFPGA実施例を設計するために使用されたプログラムロジックから抽出した状態図である。図6A、6B及び6Cは、立ち上がりと極値について幾つかの起こり得るパターンの概要を示し、ある実施例で本発明がどのようにこれらを取り扱うかを示している。連続する4つの極値には、図6A乃至6Cを通じて、「A」、「B」、「C」及び「D」が夫々付されている。極小値「B」から極大値「C」に至る中央の立ち上がりランは、トリガレベルと比較され、当該トリガレベルは、本明細書で説明するPythonコードでは、変数「bigtrig」である。好ましい実施例に採用した著しい改善は、立ち上がりに続く極小値「D」とその前の極大値「A」との間の更なるチェックである。図7A及び7Bは、好ましい実施例とと同じADCを使用するSDDから上述したように採取したリアルデータにおける2つのパルスのプロットを示す。パルスの一方は、2つのX線のパイルアップであり、他方は、同じような立ち上がり時間を有する単一のイベントである。これらの図は、以降に詳細に説明される。
【0073】
以下の詳解を通じて、「ADCサンプル」に言及する。これは、詳解されるロジックに示される連続的なデータサンプルを意味すると理解すべきであり、それらの各々は、検出器マッチングアベレージャ103とフィルタアベレージャ105の設定に基づいた、ADC102からの複数のオリジナルサンプルの和又は平均であってよい。
【0074】
特定の定数が、図3A乃至3Dのコード(本明細書で説明されるPythonコード)と図4の状態図に表れるが、これらは、ノイズの平均化又はベースラインの傾き測定のためのFIFO長、平均化データおよび非平均化データの閾値比率などを設定する。FPGAの実施例(図1)では、これらの定数は、プログラム可能なレジスタ値である。当該分野で通常の知識を有する者は、本発明の主要な特質から逸脱することなく、使用された特定の値が特定の検出器や検出器の種類に適合するに変化してよいことを認識するだろう。
【0075】
全般的に、ソフトウエアは、3つのロジックで報告されたエッジ位置から時間の差を得ることで動作する。3つのロジックブロックは、高速パイルアップロジック104、低速パイルアップロジック106、Pythonコードで「炭素フィルタ(carbon filter)」として言及したピーク検出フィルタ107である。FPGAの実施例では、高速パイルアップロジック104又は低速パイルアップロジック10で報告されたエッジが、ピーク検出フィルタ107からのパルス内に収まる否かを判断するためにそのMax信号のタイムスタンプの演算を実行するよりも、ピーク検出フィルタ107の閾値超えロジック出力を使用する方が便利であったが、当該分野で通常の知識を有する者は、これらの方法が機能的に同一であることを認識するだろう。
【0076】
Python言語構文は行番号を含んでいない。しかしながら、図3A乃至3Dの(コメントではない)実行可能なラインは、コードリストの以下の説明に合うように、便宜上に最後に加えられた行番号のコメントを有する。行番号は301で始まり417で終わる。
【0077】
コードのバージョンは、2007年8月3日に出願された米国仮特許出願第60/963,320号、発明の名称「IMPROVED EDS PILEUP REJECTION FOR LOW ENERGIES AT HIGH COUNT RATES」に与えられている。図3A乃至3Dのコードでは、この仮出願のコードと比較して、幾つかのコメントラインが削除又は書き換えられている。更に、デバッグ出力のラインの幾つかか、もはや使用されないコード、又は実行されない「デッドコード」は、ソースリストを短くして明確さを向上するために、仮出願のコードに含まれるコードバージョンから削除した。図3A乃至3Dに示した本発明の機能に重要な実行可能コードは、仮出願にあるものと同じである。
【0078】
「変曲点(inflection points)」に言及しているコメントは、数学的に正確な使用に合わせるために、「極大値/極小値(local maxima/minima)」または「極値(local extrema)」に変更した。実際の動作は実行可能コードから明らかである。本明細書及び図3A乃至3Dのコードで使用しているこれらの言葉は、連続するADCサンプルの値が増加を停止して減少を開始する場所のサンプルと、又は、減少を停止し増加を開始する場所のサンプルとなろう。
【0079】
図3A乃至3Dと図4に示した高速パイルアップロジック104のためのロジックブロック全体は、低速パイルアップロジック106用に複製されるが、フィルタアベレージャ105のため有効ADCサンプリングレートは低くなることに留意すべきである。
【0080】
図3Aでは、第301行は、ある特定の実施例に従って本発明を実装する機能を定義する。独立変数「trace」は、ADC102から入るデータであり、上述したように、そのオリジナルデータレートより合算されていてよい。「Tracestart」は、もはや使用されない。「Calib」は、エネルギー較正係数であり、5895eVのマンガンのK−αX線におけるADCの最下位ビット(LSBs)の数である。「Debug」は、各種診断出力を作動するフラグである。「Cedges」は、ピーク検出フィルタ107により検出されるX線のエッジ(タイムスタンプ)を保持するアレイであり、ピーク検出フィルタ107がソフトウエアを通じて「炭素フィルタ(carbon filter)」と呼ばれるので、これがアレイの名称になっている。
【0081】
第302行は、グローバルパラメータを含んでいる。閾値乗数「tfactor」のみが使用される。第302行は、後述する重要なトリガ値「trig」と「bigtrig」について、(FPGA実施例(図1)のレジスタにロードされる)外部から固定される値の設定を可能にする。
【0082】
第304行乃至328行は、幾つかの変数とアレイを初期化する。これらの意味は、使用するコードのラインを説明する際に必要に応じて述べる。特に、アレイ「fastpileups」は、本発明の実施例で検出されるパイルアップのエッジ位置を含む。アレイ「fastpileups」に入力を書き込むことは、図4の「パイルアップ」状態405に入るのと同じであって、FPGA実施例(図1)の高速パイルアップロジック104の「P」信号を生成する。アレイ「edges」は、FPGA実施例(図1)の高速パイルアップロジック104の「E」信号に等しいエッジ(イベント)位置を格納する。本明細書で説明するもう一つの実施例では、パイルアップ信号は直接生成されない。その代わりに、その実施例は、近傍から分離できる各エッジについて「E」信号を生成する。上述したように、ピーク検出フィルタ107の「閾値超え」パルスの間に2つ以上のこのような「E」信号がパルス検証ロジック117にで受け取られると、パイルアップが認識される。
【0083】
変数「trig」は、ハードウエアフラグ「Hflag」が設定されているか否かに応じて、第333行又は第336行で設定され、単一のADCサンプルの差によるエッジ検出のためのトリガ値である。第333行では、それは、負向きの単一のADCサンプルの差の最後16個の平均に、グローバルパラメータとして設定した閾値乗数「tfactor」を掛けたものに設定されている。FPGA実施例では、「trig」は、第336行にて、レジスタ値として直接設定される。変数「bigtrig」(第334行、又は、FPGA実施例(図1)にて「trig」から独立したレジスタ値として第337行)は、変数「posrun」に保持している、ADCサンプル間の正の差の連続するランの全積分値のためのトリガ値である。その名が意味するように、「bigtrig」は通常「trig」より大きい。
【0084】
第328行は、残っている全てのサンプルを処理する主ループを開始する。2つのパラレルなインデックス変数「i」と「j」は、第308乃至309行で初期化されたように1だけ区別されて、ADCサンプルの現在の対を選択する。ループは、これらのアレイインデックスをインクリメントする第415及び416行で終了する。
【0085】
状態変数「diff」は、第331行で設定されて、図4のほとんどの状態遷移で参照され、(以前の平均化で定義された時間スケールにおける)2つの連続ADCサンプル間の単一サンプル差であって、プリアンプ信号(即ち、図1のFPGA実施例のプリアンプ101による信号出力の瞬間の傾きの利用可能な最良のデジタル推定値を表す)。「diff」の前の値は、第330行の変数「lastdiff」に保持し、傾きの二次導関数(変化率)をチェックする。X線がもたらしたS字パターンの前半を通して、信号が立ち上がる間(図4Aの「ゴーイングアップ(GOING UP)」状態404)、傾きの二次関数(変化率)は、正(diff>lastdiff)であると予想され、その後、X線がもたらしたS字パターンの後半で安定又は立ち下がる(図4Aの「ゴーイングダウン(GOING DOWN)」状態407)。この対の後のADCサンプルの最新の値は、「i」で指標されて、第329行の変数「lastval」に保存される。この値は、パルスを検証して、傾きがその符号を変える点を記録するのに使用され、それは定義上、極大値又は極小値である。
【0086】
図3A乃至3Dのループは、図4の「アイドル(IDOL)」状態402で開始する。第338乃至359行及び第386乃至389行は、本明細書で説明する実施例の状態遷移を管理し、連続した増加するラン又は減少するランの間で切り替えを行い、以下に説明するように、エッジの最終判断をする。
【0087】
図4Aの状態図のどこでシステムが動作していようとも、信号は、図4Bの「POS」状態408と「NEG」状態409を行き来しなければならず(不変の値を「POS」状態408に一括する(lumping))、この2つの状態の間の遷移は、「POS」状態408から「NEG」状態409への遷移は極大値で、その反対の遷移は極小値で起こる必要があることは直ちに明らかであろう。これらの遷移点では、幾つかの状態変数が、以降使用するために保持される必要があり、その中には、現在の極大値「neginf」と最後の極大値「lastneginf」におけるADCサンプルの値がある。
【0088】
第338乃至340行は、「CLR POS」状態410に対応しており、負のランの開始において正のランの高さを消去する。図3A乃至3Dに示すコードのバージョンでは、「CLR POS」状態410は、「POS」状態408の繰り返し毎に通過される。これは必要ではないが、問題もない。重要なのは、「NEG」状態409から「POS」状態408への遷移であり、これは、「posrun」がゼロか否かをテストして、テストする処理が極小値にあって新しい正のランの開始にあるか否かを、つまり、「xraydone」が設定される場合に「有効エッジ(VALID EDGE)」状態412に入るべきか否かを判断する。Python構文では、数値の変数について、ゼロの値が偽をテストし、あらゆる非ゼロの値が真をテストすることに注意のこと。
【0089】
第341乃至343行は、「CLR NEG」状態411に対応する機能を実行して、負のラン「negrun」の高さを消去する。「negrun」変数が消去された状態は、「NEG」状態409から「POS」状態408への遷移にフラグをたてるために使用され、極大値を特定する。それ以前の2つの極大値のADCサンプル値は、変数「neginf」及び「lastneginf」に保存される。
【0090】
第344行は、処理が「POS」状態408又は「NEG」状態409にあるかを判断する状態テストである。好ましい実施例では、比較限界は、僅かにゼロ未満である。この目的は、立ち上がりのランにやや有利になるようテストにバイアスをかけることである。ある程度のランダムノイズは、各ADCサンプルに存在しており、幾つかのサンプル間の差を、低エネルギーX線による立ち上がりの間に負にさせ得る。前記のように 変数「trig」は、ランダムノイズで予想されるべきサンプル間の差の大きさの上限を表す。立ち上がりが終了する前に、負向きの差は、「trig」の幾らかの小さいフラクションより大きいことが要求されるので、厳密に単調な立ち上がりが求められる場合に起こり得るエネルギーよりも低いエネルギーのX線の検出を可能にする。また、立ち上がりを終了する負の差について最小の大きさを要求することで、負向きのランダムノイズ変動によって、平均立ち上がり時間よりも遅い有効エッジが中央で壊れる場合に、パイルアップを誤って特定する危険が小さくなる。「bigtrig」で表されるエネルギー検出閾値は、十分に大きくされて、有効なX線がパイルアップとして誤って排除される数が著しくなることを避ける必要がある。経験的には、第334行と第344行で使用されている5対4のbigtrig/trigの比率と状態切換え閾値(−trig/8)とは、著しい誤った排除を起こさずに低検出閾値を達成するために、組み合わされて良く動作することが知られているが、本発明の精神から逸脱することなく、その他の値が使用されてよい。
【0091】
第345行は、「NEG」状態409から「POS」状態408への遷移をテストする。この遷移では、フラグ「xraydone」が「ゴーイングダウン」状態407から又は直接に「ゴーイングアップ」状態404(図4A)に設定されている場合、「有効エッジ」状態412が入力され、これは「有効パルス(VALID PULSE)」状態406と同一である。第346行は、現在のインデックス(タイムスタンプ)を保存し、これは、終了時間で平均化されて、最大「diff」値が信頼性のある位置ではない弱いエッジの最終タイムスタンプを概算する。フラグ「xraydone」が設定されると、第348行はこれをクリアする。第349行は、10サンプルの抑止時間を設定し、該抑止時間の間、上述したように、「diff」の負の値は、ノイズトリガ「trig」の動的演算のためにノイズ概算値へと平均化されない。これによって、ノイズ概算値におけるエッジからのオーバーシュートの負向きの回復周期をカウントすることが回避される。
【0092】
第350行は、簡単なラン−高さテストを用いて、誤ったトリガを導く多くのパターンを排除することにより、本実施例が従来技術の方法を凌ぐことを可能にするテストを実行する。図6A乃至6Cは、3つの波形の概要を示しており、(極小値Bから極大値Cまで)テストされる立ち上がりがおよそ同じである。簡単化のために、波形の立ち上がり部分と立ち下がり部分は、直線部分として描いたが、上述したように、立ち上がり部分は、小さいブリップ(blips)を有してもよく、立ち上がり部分と立ち下がり部分の両方は、一般的に、ノイズ変動により直線にはならないだろう。
【0093】
第350行では、変数「lastval」は、D点、現在の極小値におけるADCサンプルを有する。変数「lastneginf」は、A点、つまり、テスト中の立ち上がりの前にある極大値におけるADCサンプル値を含む。立ち上がりそれ自体は、閾値「bigtrig」を上回るように既に決定されている。次に、「lastval」(図6全てに描かれたD点)から「lastneginf」(図6全てに描かれたA点)の差がチェックされる。その差がノイズトリガレベル「trig」の半分よりも大きい場合、エッジが有効と認められる。係数1/2が、演算の便宜上選択されたが、本発明の範囲から逸脱することなく変化してよい。しかしながら、ノイズトリガレベルの顕著な割合だけノイズ領域がシフトした証拠があることは望ましい。また、適度に大きい最小値がD−Aにあることは、上下するジグザグの一連のセグメントとして現れる弱い、即ち遅いエッジが、別個のエッジとして誤って検出されて、それによって、パイルアップとして誤って排除されることを防ぐ。このチェックは、C−Bの検出閾値「bigtrig」が、シングルステップトリガ「trig」より僅かに大きいことを可能にする。
【0094】
図6Aは、C−Bのエッジが、異常に大きい負向きのノイズ偏位からの回復であるケースを示す。エッジの前後のノイズ領域の平均は同一である。D−Aの差は実際負であるので、この立ち上がりは排除されるだろう。
【0095】
図6Cは、正向きのスパイクを示し、同じように、その前後で平均ノイズ領域は変化しない。同じように、D−Aのテストは不合格であり、エッジは無視される。
【0096】
図6Bは、成功するエッジ検出を示している。テストされているエッジの後のノイズ領域は、エッジの前のピーク間の領域から著しくシフトしており、D−Aの差は、シングルステップノイズトリガレベル「trig」の1/2の直ぐ上なので、エッジ検出は有効と認められる。
【0097】
当該分野で通常の知識を有している者には、テストされているエッジの前後のより多くの極小値と極大値を同様な方法で使用して、ピーク間のノイズ領域が、テストされているエッジにて実際にシフトしたことを確認できることは明らかであろう。また、本発明の方法が、固定された如何なる時間周期にも依存せず、それ故に、SDDの場合のように立ち上がり時間が大幅に変化するエッジにも動的に応答することは明らかであろう。
【0098】
第351行は、(図1の高速パイルアップロジック104または低速パイルアップロジック106から「E」信号を生成する)エッジのタイムスタンプを保存する。第352行は、正のランの累積高さを保持する。第353行は、図4Bの「CLR NEG」状態411に入るフラグ「clearneg」を設定する。この行はまた、「if not posrun」ロジックブロックの中にあって、遷移ごとに一回しか実行されないこともありえる。
【0099】
第354行は、負のランを取り扱うロジックの開始である。負のラン高さは、第358行により保持されるが、現在は使用されない。D−Aの差のチェックが、有効エッジの検出に適切であることが分かっている。
【0100】
第355乃至357行は、極大値の発生を検出して、現在(C点)とその前(A点)の最大値を保持する。第359行は、「CLR POS」状態410へ入るのを強制するフラグ「clearpos」を設定するが、この機能を「if not negrun」ブロック中での実行することと同じであろう。
【0101】
図4Aに示した状態は、第360乃至417行で処理される。Pythonプログラム言語における「elif」構造は相互排他的であり、故に、条件が満足される第360行で開始する「"if...elif...elif"」テストの鎖の最初が実行されることに留意すべきである。従って、状態は、図4での時間的な進捗と比較して、図3A乃至3Dのコードでは逆順で示されている。
【0102】
第360乃至369行は、システムが図4の「ゴーイングダウン」状態407にあるときの処理を示す。これは、主ループに戻る前の最後のアクティブ状態である。それは、起こり得る2つの終了パス、つまり、継続する立ち上がり(「パイルアップ」状態405)の間にパイルアップを直接検出するか、または「有効パルス?」状態406で後のパルスの有効性チェックに行くことがある。
【0103】
「ゴーイングダウン」状態407では、第361行は、現在のサンプル間の差がノイズトリガレベル「trig」以下であるか否かをテストする。「trig」以下である場合、プリアンプ信号の変化率は、現在ノイズ領域内であり、「ゴーイングダウン」状態407は第362乃至363行で終了し、「xraydone」フラグが設定され、結果として、図4Bの「有効エッジ?」状態412でもある図4Aの「有効パルス?」状態406に入る。
【0104】
第364行は、直接パイルアップが検出されるか否かを判断する重要なチェックを行う。図3A乃至3Dの実施例では、重要な特長は、現在の差「diff」は、それ以前の差「lastdiff」を、ノイズトリガレベル「trig」よりも大きく超える必要があるということである。テストが「trig」で条件とされていないならば、以下のとおり有効X線をパイルアップとして誤って特定する可能性があるだろう。SDDの立ち上がり時間が幅広く変化することに着目して、3つの連続差が立ち上がりと似たような傾きの中心付近にあるような比較的遅い立ち上がり時間を考える。ノイズは、各サンプル値に小さなランダム変位を加えるので、中央の差が、前後の差と比較して僅かに低くなって、連続差がノイズレベルを超える必要がない場合は、誤ったパイルアップを導く可能性があるだろう。
【0105】
図7Aと7Bは、SDDからの実際の波形の2つのプロット2つを示す。横軸のスケールは単位あたり10ナノ秒(100MhzADCのサンプリング時間)である。数値は、実時間の2.62ミリ秒の256kサンプルのファイル内のインデックス(タイムスタンプ)である。縦軸は、ADCの最下位ビットであって、ADCユニットとして「adu」が付されている。両方のプロットについて、縦軸のスケールは、1区分が100aduである。
【0106】
図7Aは、SDDのドリフトパスが平均より長い単一X線からの平滑な、しかし比較的遅い立ち上がりを示している。四角で囲んだ領域は、7サンプル、即ち70ナノ秒を占める。また、四角で囲んだ領域のすぐ前の約30aduのピーク間ノイズ変位に注目のこと。時間74440のデータポイントで上方向に同様な30aduの変位があったと仮定すると、これは、サンプル74441と74440の間の差を、サンプル74440と74439の差、又はサンプル74442と74441の差より小さくして、完全にノイズに起因するがパイルアップのパターンに合致するかも知れない。
【0107】
図7Bは、全立ち上がり時間と振幅が図7Aの有効パルスと全く同一であるにも拘わらず、パイルアップとして検出に成功したパルスを示しており、個々のX線の立ち上がり時間がかなり短かくなければならないことを意味している。中央の四角で囲まれた領域の傾きは、左下の四角で囲まれた領域の傾きより著しく低く、図4の「ゴーイングアップ」状態404から「ゴーイングダウン」状態407に移行する処理を引き起こす。そして、73adu/サンプルから142adu/サンプルへの右上の四角で囲まれた領域の傾きの増加、つまり、69aduは、図7Aに示す30aduのサンプル間ノイズ変動の2倍を超えており、ノイズに起因している可能性はほとんどない。従来の技術では、これらの2つのパルスの一方をパイルアップされたとして、他方を有効であるとして区別することはできないであろう。特に、図7Bのパイルアップされた2つのX線の中央(最大傾きの点)は、50ナノ秒だけ分かれており、図7Aの全立ち上がり時間よりも小さいことに留意すべきである。
【0108】
図3Cの第364乃至369行は、パイルアップのタイムスタンプの保存、又は、高速パイルアップロジック104若しくは低速パイルアップロジック106からの「P」信号の生成、及び、状態変数を「ゴーイングアップ」状態404に戻す管理維持を行う。
【0109】
図3Cの第370乃至381行は、「ゴーイングアップ」状態404の処理を行う。変数「maxdiff」は、現在の立ち上がりのS字プリアンプエッジの間、現在の最大の単一サンプル差(瞬間の傾き)を保持する。第371乃至373行は、この最大値を維持して、その最大値を示すそのエッジのタイムスタンプを保持する
【0110】
「ゴーイングアップ」状態404からの起こり得る2つの終了パスがあるが、そのうちの一つ(後者は後述する)のみが本発明に関係する。第374乃至376行は、現在の傾き(単一サンプル差)がノイズトリガレベルの1/2以下であると、「有効パルス?」状態406へ抜ける。シングルステップパイルアップのチェックは実行されない。「xraydone」フラグが設定され、上述したように、これは「NEG」状態409から「POS」状態408への次の遷移を意味する。図6A乃至6Cに関連して説明したD−Aの有効性チェックが実行される。
【0111】
第377行から379行は、本発明を実施する一対のテストのもう一つの部分(と第2の終了パス)である。テストのこの部分は、「ゴーイングアップ」状態404から「ゴーイングダウン」状態407に状態が変化する時を判断する。このテストでは、立ち上がりの間に発生する最大値からのシングルステップの傾きの低下が、ノイズトリガ「trig」よりも大きい必要がある。第374行は、少なくとも「trig」の1.5倍の最大差がない限り、この終了パスには到達せず、さもなければ、最初の終了パス(上述)が実行されることを意味することに注意のこと。「ゴーイングダウン」状態407に到達し、従って本発明に基づいてパイルアップを検出する可能性がある唯一の道は、最初にその条件を満足することである。演算には便利であるが、正確な係数1.5は重要ではない。重要なのは、上述したように、比較的高いエネルギーのX線のみが、誤った肯定の危険を伴うことなく、これらのテストに適切な候補であるということである。低エネルギーX線は同じパターンを示すかもしれないが、真のパイルアップではない。図7Aと7Bの波形が得られた試料は、Ni−Al合金である。図7Aに示すX線は、恐らく7500eV付近のニッケルのK−α線で、図7Bの2つのX線は、恐らくニッケルのK−α線と1500eV付近のアルミニウムのK−α線である。
【0112】
第378及び379行は、「ゴーイングアップ」状態404から「ゴーイングダウン」状態407への状態変化を扱う。終了パス条件が満足されないか、現在の差が新しい最大値でない場合は、第380乃至381行は何もしない。
【0113】
第382行は、「アイドル」状態402から「ゴーイングアップ」状態404へのエントリをトリガするテストである。2つの条件が満たされる必要がある。まず、現在の差が、ノイズトリガレベル「trig」を超える必要がある。第2のテストは、一対の高い方のADCサンプルがその前の極大値を超えることを確かにする。これは必須ではないが、負向きのノイズスパイクからの回復において誤ったトリガを排除することで、性能を向上する。
【0114】
第383乃至385行は、「ゴーイングアップ」状態404を初期化して、最大の差を現在の差に設定する。このことは、「maxdiff」がその最初の使用後にノイズトリガレベル「trig」を決して下回らないことを意味するということに特に注意のこと。
【0115】
第386乃至389行は、「ゴーイングアップウイーク」状態403をトリガする。これは、シングルステップの差がノイズトリガ「trig」より大きくなる必要なしに正のランの累積高さが(この文書中に述べたように)「bigtrig」を超えるなら、「ゴーイングアップ」状態404に入る原因となる。本発明において重要な行は第389行であり、ノイズトリガ「trig」と等しい「maxdiff」をリセットする。これは、「trig」と等しい「maxdiff」で第371行のテストを満足することで、シングルステップの差が「trig」を超えることが示されない限り、「ゴーイングアップ」状態404が「ゴーイングダウン」状態407に入るのを防ぎ、故に、場合により本発明に基づくパイルアップ検出を可能にする。このように、本明細書で説明した連続ランの実施例とシングルステップトリガの実施例は、お互いに干渉すること防止されている。
【0116】
第390乃至400行は、プリアンプ101でのリセットの発生を検出する。これは 負の単一サンプルの差が、トリガレベル「trig」の10倍を超えるような、出力の急激な低下を起こす。第391乃至393行は、リセットの間、及びその後の特定期間の処理を抑止する。第394乃至400行は、状態変数を再初期化する。
【0117】
第404乃至414行は、ADCデータの負の単一サンプルの差の16入力移動和を保持し、Mottの米国特許第5,393,982号で教示された方法に似た、ノイズをダイナミックに概算する手段として、リセット又は検出エッジ付近の特定の期間を排除する。特に、負の変機と正の変位は、リセットとX線からのエッジがない場合には、統計的に等しくならなければならないが、正の変位の平均は、検出されない非常に低いエネルギーのX線によって、上方に偏位することがある。
【0118】
第415及び416行は、プリアンプ101から得られた波形の全サンプルを通じて並列に進む。FPGA実施例では、ファイルセグメントの開始と終わりとで境界条件を取り扱う必要はない。これは、処理ループがリアルタイムで連続的に動作して、起動時にのみ初期化されるからである。
【0119】
図8は、SDDについて一般的なパルス対の分解時間とエネルギー検出閾値とを有するシステム全体の予想されるパイルアップ性能をまとめており、以下の特徴を有している。(i)約10平方ミリメートルのアクティブ領域、(ii)「P.Lechner et al., "Silicon drift detectors for high resolution room temperature X-ray spectroscopy", Nucl. Instr. and Meth. 1996; A 377, pp. 346-351」で説明されたセンサのリソグラフィと一体となったプリアンプ101の最初の電界効果トランジスタ(FET)ステージ。引用された特定の数字は、普遍的ではなく、検出器の種類と構成により異なる。しかしながら、それらは、検出器の小さいサンプルで測定される実際の性能を適切に示している。
【0120】
上にある波形図は、プリアンプ101の波形の一部を理想化して表現しており、いくつかのパイルアップ状態を例示している。最も右側は、非常に低いエネルギーのX線のステップの拡大図である。矢印は、様々なステップの位置を示す。非常に大きなステップは、図7Bに図示したような一つのX線からのステップの立ち上がり時間範囲内の近接パイルアップ(close pile-up)であり、本発明の方法でのみ検出が可能である。
【0121】
下には、様々なパイルアップエッジ検出ブロックからの予想される検出器信号が並んでおり、パルス対分解時間とエネルギー閾値の予想範囲を伴っている。ピーク検出フィルタ107は、時間「S」にてスパイクを除く全エッジを検出し、スパイクは、ピーク検出フィルタ107の出力が閾値を越えないので、高速パイルアップロジック104で誤ってレポートされるが排除される。非常に低いエネルギーX線の最良の分解時間は、200eVの最小検出エネルギーについて、約350乃至400ナノ秒であろう。185eVのホウ素や109eVのベリリウムなどについて、より低い検出閾値が必要な場合、積分時間はより長くされる必要があり、分解時間は大幅に増加するであろう。しかし、それは、他のロジックブロック全てが見逃す最も右側の非常に低いエネルギーのX線を検出する。
【0122】
高速パイルアップロジック104は、検出器の立ち上がり時間に応じて、50から100ナノ秒の最良の分解時間を有する。本明細書で説明したシングルステップ法は、約2.5keVを超えるエネルギーで有効である一方で、本明細書で説明した連続ラン法は、600乃至900eV程度までに到達し得る。それは、時間「L」での低エネルギーX線を捉えない。
【0123】
低速パイルアップロジック106は、高速パイルアップロジック104と同一であるが、フィルタアベレージャ105で平均化されたデータのより低い有効率で動作し、Lの適度に低いエネルギーのX線をうまく検出するが、最高の分解時間は、おおよそ2倍の長さの80乃至200ナノ秒である。そのシングルステップ法は、2keVの真下のX線を検出でき、その連続ラン法は、良い効率で500eVの酸素X線を検出することができる。
【0124】
全体として、これらの結果は、考慮されるエネルギー対に応じて、従来技術の方法を使用した既存のシステムにより示される分解時間よりも、およそ2倍から最高5倍優れている。
【0125】
本発明の好ましい実施例を説明及び図示したが、これらは本発明の典型例であって、限定として考えられるべきではないことを理解されるべきである。追加、削除、置換やその他の変更は、本発明の精神や目的から逸脱することなく行われてよい。従って、本発明は上述の説明によって制限されるものではなく、添付の特許請求の範囲によってのみ制限される。

【特許請求の範囲】
【請求項1】
エネルギー分散型放射線分光分析システムのプリアンプ出力信号からフォトンを示すエッジを検出する方法において、
前記プリアンプ出力信号の各点は、その強度値を有しており、
前記方法は、
前記プリアンプ出力信号の第1部分を特定する工程であって、前記第1部分の各部は第1極性を有する瞬間の傾きを有する工程と、
前記第1部分の直後に続く前記プリアンプ出力信号の第2部分を特定する工程であって、前記第2部分の各部は、前記第1極性と反対の第2極性を有する瞬間の傾きを有する工程と、
前記第2部分の直後に続く前記プリアンプ出力信号の第3部分を特定する工程であって、前記第3部分の各部は、前記第1極性を有する瞬間の傾きを有する工程と、
前記第2部分の終点の強度値と前記第2部分の始点の強度値との間の第1差を決定する工程と、
前記第3部分の終点の強度値と前記第1部分の始点の強度値との間の第2差を決定する工程と、
(i)前記第1差が所定の閾値を超えており、(ii)前記第2差が前記所定の閾値の所定の割合を超えている場合に、エッジが存在すると判断する工程と、
を含む方法。
【請求項2】
各々がデジタル値を有する連続的な複数のデジタルサンプルを含む前記プリアンプ出力信号のデジタルバージョンを生成する工程を更に含んでおり、
前記第1部分は、前記複数のデジタルサンプルの中の連続するデジタルサンプルの1又は複数の第1対を含んでおり、各第1対におけるデジタルサンプルのデジタル値の間の差は、瞬間の傾きのデジタル推定値を示しており、前記第1部分を特定する工程は、各第1対におけるデジタルサンプルのデジタル値の間の差が、前記第1極性を有すると判断する工程を含んでおり、
前記第2部分は、前記複数のデジタルサンプルの中の連続するデジタルサンプルの1又は複数の第2対を含んでおり、各第2対におけるデジタルサンプルのデジタル値の間の差は、瞬間の傾きのデジタル推定値を示しており、前記第2部分を特定する工程は、各第2対におけるデジタルサンプルのデジタル値の間の差が、前記第2極性を有すると判断する工程を含んでおり、
前記第3部分は、前記複数のデジタルサンプルの中の連続するデジタルサンプルの1又は複数の第3対を含んでおり、各第3対におけるデジタルサンプルのデジタル値の間の差は、瞬間の傾きのデジタル推定値を示しており、前記第3部分を特定する工程は、各第3対におけるデジタルサンプルのデジタル値の間の差が、前記第1極性を有すると判断する工程を含んでいる、請求項1の方法。
【請求項3】
各々がデジタル値を有する連続的な複数のデジタルサンプルを含む前記プリアンプ出力信号のデジタルバージョンを生成する工程を更に含んでおり、
前記第2部分の終点の強度値は、前記複数のデジタルサンプルの中の第1デジタルサンプルのデジタル値であり、前記第2部分の始点の強度値は、前記複数のデジタルサンプルの中の第2デジタルサンプルのデジタル値であり、前記第3部分の終点の強度値は、前記複数のデジタルサンプルの中の第3デジタルサンプルのデジタル値であり、前記第1部分の始点の強度値は、前記複数のデジタルサンプルの中の第4デジタルサンプルのデジタル値である、請求項1の方法。
【請求項4】
前記第1極性は正であり、前記第2極性は負である、請求項1の方法。
【請求項5】
前記割合は0.5である、請求項1の方法。
【請求項6】
前記エネルギー分散型放射線分光分析システムは、X線分光分析システムである、請求項1の方法。
【請求項7】
前記エネルギー分散型放射線分光分析システムは、ガンマ線分光分析システムである、請求項1の方法。
【請求項8】
前記エネルギー分散型放射線分光分析システムは、ピーク検出フィルタを含んでおり、前記ピーク検出フィルタは、前記プリアンプ出力信号で示されたフォトンに応答して1又は複数のパルスを生成し、前記1又は複数のパルスの何れかが、前記ピーク検出フィルタの最小検出可能閾値エネルギーを超えている間、閾値超え信号を生成するように構成されており、
前記方法は、前記エッジが存在すると判断する工程に応じてエッジ信号を生成する工程と、前記エッジ信号を受信する工程と、前記閾値超え信号が受信されている間に、前記エッジ信号と第2エッジ信号が受信されているか否かを判断する工程と、前記閾値超え信号が受信されている間に、前記エッジ信号と前記第2エッジ信号が受信されていると判断される場合に、有効パイルアップを宣言する工程とを含む、請求項1の方法。
【請求項9】
前記エネルギー分散型放射線分光分析システムは、ピーク検出フィルタを含んでおり、前記ピーク検出フィルタは、前記プリアンプ出力信号で示されたフォトンに応答して1又は複数のパルスを生成し、前記1又は複数のパルスの何れかが、前記ピーク検出フィルタの最小検出可能閾値エネルギーを超えている間、閾値超え信号を生成するように構成されており、
前記方法は、パイルアップが起こったと判断する工程に応じてエッジ信号を生成する工程と、前記エッジ信号を受信する工程と、前記閾値超え信号が受信されている間に前記エッジ信号が受信されているか否かを判断する工程と、前記閾値超え信号が受信されていない間に前記エッジ信号が受信されていると判断される場合、前記エッジ信号を無視する工程とを含む、請求項1の方法。
【請求項10】
請求項1の方法を実行するように構成されたパルスプロセッサ。
【請求項11】
入射フォトンを電流パルスである出力に変換する検出器と、
前記検出器の出力を電圧信号であるプリアンプ出力信号に変換するプリアンプと、
パルスプロセッサと、
を備えており、前記パルスプロセッサは、
前記プリアンプ出力信号の第1部分を特定する工程であって、前記第1部分の各部は第1極性を有する瞬間の傾きを有する工程と、
前記第1部分の直後に続く前記プリアンプ出力信号の第2部分を特定する工程であって、前記第2部分の各部は、前記第1極性と反対の第2極性を有する瞬間の傾きを有する工程と、
前記第2部分の直後に続く前記プリアンプ出力信号の第3部分を特定する工程であって、前記第3部分の各部は、前記第1極性を有する瞬間の傾きを有する工程と、
前記第2部分の終点の強度値と前記第2部分の始点の強度値との間の第1差を決定する工程と、
前記第3部分の終点の強度値と前記第1部分の始点の強度値との間の第2差を決定する工程と、
(i)前記第1差が所定の閾値を超えており、(ii)前記第2差が前記所定の閾値の所定の割合を超えている場合に、エッジが存在すると判断する工程と、
を行うことで、前記記プリアンプ出力信号からフォトンを示すエッジを検出するように構成されているエネルギー分散型放射線分光分析システム。
【請求項12】
前記パルスプロセッサは、各々がデジタル値を有する連続的な複数のデジタルサンプルを含む前記プリアンプ出力信号のデジタルバージョンを生成するように構成されており、
前記第1部分は、前記複数のデジタルサンプルの中の連続するデジタルサンプルの1又は複数の第1対を含んでおり、各第1対におけるデジタルサンプルのデジタル値の間の差は、瞬間の傾きのデジタル推定値を示しており、前記第1部分を特定する工程は、各第1対におけるデジタルサンプルのデジタル値の間の差が、前記第1極性を有すると判断する工程を含んでおり、
前記第2部分は、前記複数のデジタルサンプルの中の連続するデジタルサンプルの1又は複数の第2対を含んでおり、各第2対におけるデジタルサンプルのデジタル値の間の差は、瞬間の傾きのデジタル推定値を示しており、前記第2部分を特定する工程は、各第2対におけるデジタルサンプルのデジタル値の間の差が、前記第2極性を有すると判断する工程を含んでおり、
前記第3部分は、前記複数のデジタルサンプルの中の連続するデジタルサンプルの1又は複数の第3対を含んでおり、各第3対におけるデジタルサンプルのデジタル値の間の差は、瞬間の傾きのデジタル推定値を示しており、前記第3部分を特定する工程は、各第3対におけるデジタルサンプルのデジタル値の間の差が、前記第1極性を有すると判断する工程を含んでいる、請求項11のエネルギー分散型放射線分光分析システム。
【請求項13】
前記パルスプロセッサは、各々がデジタル値を有する連続的な複数のデジタルサンプルを含む前記プリアンプ出力信号のデジタルバージョンを生成するように構成されており、
前記第2部分の終点の強度値は、前記複数のデジタルサンプルの中の第1デジタルサンプルのデジタル値であり、前記第2部分の始点の強度値は、前記複数のデジタルサンプルの中の第2デジタルサンプルのデジタル値であり、前記第3部分の終点の強度値は、前記複数のデジタルサンプルの中の第3デジタルサンプルのデジタル値であり、前記第1部分の始点の強度値は、前記複数のデジタルサンプルの中の第4デジタルサンプルのデジタル値である、請求項11のエネルギー分散型放射線分光分析システム。
【請求項14】
前記第1極性は正であり、前記第2極性は負である、請求項11のエネルギー分散型放射線分光分析システム。
【請求項15】
前記割合は0.5である、請求項11のエネルギー分散型放射線分光分析システム。
【請求項16】
前記エネルギー分散型放射線分光分析システムは、X線分光分析システムである、請求項11のエネルギー分散型放射線分光分析システム。
【請求項17】
前記エネルギー分散型放射線分光分析システムは、ガンマ線分光分析システムである、請求項11のエネルギー分散型放射線分光分析システム。
【請求項18】
前記エネルギー分散型放射線分光分析システムは、ピーク検出フィルタを含んでおり、前記ピーク検出フィルタは、前記プリアンプ出力信号で示されたフォトンに応答して1又は複数のパルスを生成し、前記1又は複数のパルスの何れかが、前記ピーク検出フィルタの最小検出可能閾値エネルギーを超えている間、閾値超え信号を生成するように構成されており、
前記パルスプロセッサは、 前記エッジが存在すると判断する工程に応じてエッジ信号を生成し、前記エッジ信号を受信し、前記閾値超え信号が受信されている間に、前記エッジ信号と第2エッジ信号が受信されているか否かを判断し、前記閾値超え信号が受信されている間に、前記エッジ信号と前記第2エッジ信号が受信されていると判断される場合、有効パイルアップを宣言するように構成されている、請求項11のエネルギー分散型放射線分光分析システム。
【請求項19】
前記エネルギー分散型放射線分光分析システムは、ピーク検出フィルタを含んでおり、前記ピーク検出フィルタは、前記プリアンプ出力信号で示されたフォトンに応答して1又は複数のパルスを生成し、前記1又は複数のパルスの何れかが、前記ピーク検出フィルタの最小検出可能閾値エネルギーを超えている間、閾値超え信号を生成するように構成されており、
前記パルスプロセッサは、パイルアップが起こったと判断する工程に応じてエッジ信号を生成し、前記エッジ信号を受信し、前記閾値超え信号が受信されている間に前記エッジ信号が受信されているか否かを判断し、前記閾値超え信号が受信されていない間に前記エッジ信号が受信されていると判断される場合、前記エッジ信号を無視するように構成されている、請求項11のエネルギー分散型放射線分光分析システム。
【請求項20】
入射フォトンを電流パルスである出力に変換する検出器と、
前記検出器の出力を電圧信号であるプリアンプ出力信号に変換するプリアンプと、
パルスプロセッサと、
を備えており、前記パルスプロセッサは、
前記プリアンプ出力信号を連続する複数のデジタルサンプルに変換することで、前記プリアンプ出力信号の第1デジタルバージョンを生成し、
連続する複数のデジタルサンプルの複数のグループを合算して、合算されたデータの複数のピースを生成することで、前記プリアンプ出力信号の第2デジタルバージョンを生成し、ここで、前記第2デジタルバージョンは、前記合算されたデータの複数のピースを含んでおり、
前記第1デジタルバージョンを用いて、前記プリアンプ出力信号の第1部分を特定し、ここで、前記第1部分の各部は、第1極性を有する瞬間の傾きを有しており、
前記第1デジタルバージョンを用いて、前記第1部分の直後に続く前記プリアンプ出力信号の第2部分を特定し、ここで、前記第2部分の各部は、前記第1極性と反対の第2極性を有する瞬間の傾きを有しており、
前記第1デジタルバージョンを用いて、前記第2部分の直後に続く前記プリアンプ出力信号の第3部分を特定し、ここで、前記第3部分の各部は、第1極性を有する瞬間の傾きを有しており、
前記第1デジタルバージョンを用いて、前記第2部分の終点の強度値と前記第2部分の始点の強度値との間の第1差を決定し、
前記第1デジタルバージョンを用いて、前記第3部分の終点の強度値と前記第1部分の始点の強度値との間の第2差を決定し、
前記第1デジタルバージョンを用いて、(i)前記第1差が所定の閾値を超えており、(ii)前記第2差が前記所定の閾値の所定の割合を超えている場合に、エッジが存在すると判断し、
前記第1デジタルバージョンを用いて、前記プリアンプ出力信号の第1部分を特定し、ここで、前記第1部分の各部は、第1極性を有する瞬間の傾きを有しており、
前記第2デジタルバージョンを用いて、前記第1部分の直後に続く前記プリアンプ出力信号の第2部分を特定し、ここで、前記第2部分の各部は、前記第1極性と反対の第2極性を有する瞬間の傾きを有しており、
前記第2デジタルバージョンを用いて、前記第2部分の直後に続く前記プリアンプ出力信号の第3部分を特定し、ここで、前記第3部分の各部は、前記第1極性を有する瞬間の傾きを有しており、
前記第2デジタルバージョンを用いて、前記第2部分の終点の強度値と前記第2部分の始点の強度値との間の第1差を決定し、
前記第2デジタルバージョンを用いて、前記第3部分の終点の強度値と前記第1部分の始点の強度値との間の第2差を決定し、
前記第2デジタルバージョンを用いて、(i)前記第1差が所定の閾値を超えており、(ii)前記第2差が前記所定の閾値の所定の割合を超えている場合に、エッジが存在すると判断するように構成されているエネルギー分散型放射線分光分析システム。

【図1】
image rotate

【図2】
image rotate

【図3A】
image rotate

【図3B】
image rotate

【図3C】
image rotate

【図3D】
image rotate

【図4A】
image rotate

【図4B】
image rotate

【図5A】
image rotate

【図5B】
image rotate

【図6】
image rotate

【図7A】
image rotate

【図7B】
image rotate

【図8】
image rotate


【公表番号】特表2011−503524(P2011−503524A)
【公表日】平成23年1月27日(2011.1.27)
【国際特許分類】
【出願番号】特願2010−519243(P2010−519243)
【出願日】平成20年8月1日(2008.8.1)
【国際出願番号】PCT/US2008/071939
【国際公開番号】WO2009/020863
【国際公開日】平成21年2月12日(2009.2.12)
【出願人】(510029830)パルセータ,エルエルシー (4)
【氏名又は名称原語表記】PULSETOR,LLC
【Fターム(参考)】