説明

Fターム[2G001NA15]の内容

Fターム[2G001NA15]に分類される特許

1 - 20 / 84



【課題】被測定試料中に含まれる元素および放射性物質をそれぞれ特定することができる、蛍光X線分析装置を提供する。
【解決手段】
本発明の蛍光X線分析装置は、X線領域(1keV〜50keV)を計測する蛍光X線検出器と、γ線領域(50keV〜1.5MeV)を計測するγ線検出器と、分析処理手段とを備える。励起X線管が、被測定試料に対してX線を照射する。蛍光X線検出器は被測定試料に含まれる元素固有の蛍光X線を検出し、γ線検出器は核種固有のγ線を検出する。分析処理手段が、蛍光X線のスペクトルとγ線のスペクトルとを求める。
必要に応じて、分析処理手段は、蛍光X線のスペクトルに基づいて試料に含まれる元素を特定してその含有量を求め、γ線のスペクトルに基づいて試料に含まれる放射性物質の核種を特定してその含有量を求める。 (もっと読む)


【課題】透過X線装置で検出した異物の位置の元素分析を蛍光X線で正確かつ迅速に行えるX線分析装置を提供する。
【解決手段】第1のX線源12と、第1のX線源から試料100を透過した透過X線12xを検出する透過X線検出器14とを有する透過X線検査部10と、第2のX線源22と、第2のX線源からのX線を試料に照射したときに該試料から放出されるX線22yを検出する蛍光X線検出器24とを有する蛍光X線検査部20と、試料を保持する試料ステージ50と、試料ステージを、第1のX線源の照射位置と第2のX線源の照射位置との間で相対的に移動させる移動機構30と、透過X線検出器にて試料中に検出された異物101の位置を演算する異物位置演算手段60と、異物位置演算手段によって演算された異物の位置が第2のX線源の光軸22cに一致するように移動機構を制御する移動機構制御手段61と、を備えたX線分析装置1である。 (もっと読む)


【課題】触媒濃度の極めて低い条件化においてXRF分析を実施するに際し、高精度のXRF分析結果を得ることのできる触媒特定方法を提供する。
【解決手段】マトリックス担体に金属触媒が担持されてなる触媒コート層1において、X線照射によって励起される金属触媒に固有のX線エネルギとX線強度を検出する蛍光X線分析(XRF)を使用して、金属触媒の濃度もしくは分布を特定する触媒特定方法であって、X線照射方向に100μm以下の厚みを有する触媒コート層1を準備する第1のステップと、触媒コート層1にX線を照射して金属触媒の濃度もしくは分布を特定する第2のステップからなる。 (もっと読む)


【課題】基板上の単層もしくは多層構造体における1以上の層の厚さを決定するために、光電子分光法を使用する。
【解決手段】この厚さは、光子が衝突したときに当該構造体により放出される二つの光電子種、または他の原子特異的な特徴的電子種の強度を測定することによって決定されてよい。層の厚さに依存する予測強度関数が、各光電子種について決定される。二つの予測強度関数の比が定式化され、構造体の層の厚さを決定するために、この比が反復される。一実施形態に従えば、当該層の厚さを決定するために、一つの層からの二つの光電子種が測定されてよい。もう一つの実施形態に従えば、層の厚さを決定するために、異なる層または基板からの二つの光電子種が測定されてよい。 (もっと読む)


【課題】簡易な測定が可能であり、かつ、測定対象物を破壊することなく、浸炭深さを定量的に把握しうるCr含有合金の浸炭深さ測定方法を提供する。
【解決手段】浸炭深さが異なるCr含有合金の複数の試料についてポータブル型蛍光X線分析装置により分析を行って(ステップS2)、クロム及びクロム以外の金属元素の濃度と浸炭深さとの関係を予め求めておく(ステップS4)。次に、測定対象物であるCr含有合金について前記ポータブル型蛍光X線分析装置により分析を行って、該測定対象物中のクロム及びクロム以外の金属元素の濃度を測定する(ステップS6)。この後、予め求めた前記関係に基づいて、前記測定対象物中のクロム及びクロム以外の金属元素の濃度の測定結果から、前記測定対象物の浸炭深さを求める(ステップS8)。 (もっと読む)


【課題】水素吸蔵材料の中性子回折に使用することができる中性子による散乱が無い、若しくは散乱が少ない耐水素性及び耐圧性の中性子回折測定用セル及びその製造方法を提供する。
【解決手段】水素吸蔵材料を中性子回折測定する際の試料として保持するセルであって、中性子散乱の無い金属若しくは中性子散乱の少ない金属の内面に、水素吸蔵性の無い材料又は水素吸蔵性の小さい材料からなる耐水素性の層を設けたことを特徴とする。この耐水素性の層の厚さは、0.1μ〜100μmがより好ましい。 (もっと読む)


【課題】収束電子回折を用いた、物性の新規な測定方法を提供する。
【解決手段】物性の測定方法は、透過型電子顕微鏡により、試料の収束電子回折実験像を取得する工程と、収束電子回折実験像のZernikeモーメントの強度を計算する工程と、試料に関し物性を変化させて計算された収束電子回折計算像のZernikeモーメントの強度と、収束電子回折実験像のZernikeモーメントの強度とを比較する強度比較工程とを有する。 (もっと読む)


【課題】半田中のカドミウム濃度を蛍光X線で正確に分析する方法を提供することを目的とする。
【解決手段】蛍光X線を用いた半田中のカドミウム濃度の分析方法で、銅基材の表面に半田の薄膜を付着させ、半田の薄膜中のカドミウム濃度を蛍光X線で分析する。なお、半田の薄膜は、膜厚が5〜50μmであることが好ましい。銅基材の表面に付着させた半田の薄膜を蛍光X線で分析するため、半田中のカドミウム濃度を正確に分析することができる。 (もっと読む)


【課題】触媒濃度の極めて低い条件下においてEPMA分析を実施するに際し、高強度の電子線の照射に対して亀裂の起点となり得る触媒コート層と包埋樹脂層の間の低強度な界面の存在を許容しながら、ゴースト信号がマッピングされることのない、高精度のEPMA分析結果を得ることのできる触媒特定方法を提供する。
【解決手段】マトリックス担体に金属触媒が担持されてなる触媒コート層10において、該金属触媒の濃度もしくは分布を特定する触媒特定方法であり、触媒コート層10上にダミー層30を形成し、該ダミー層30上に包埋樹脂層20を形成する第1のステップ、電子線を照射した際の金属触媒に固有のX線強度を測定する電子プローブマイクロアナライザ(EPMA)を使用して、包埋樹脂層20とダミー層30と触媒コート層10に該電子線を照射して、触媒の濃度もしくは分布を特定する第2のステップ、からなる。 (もっと読む)


【課題】試料が搭載される基板(基材)の元素と、試料に含まれる元素が同一でも、安定して、微小部分の成分計測が可能な微小部X線計測装置を提供する。
【解決手段】X線発生装置と、放出されるX線を50μm径以下の断面積に収束照射するX線光学素子と、蛍光X線を検出するX線検出器と、光学像を撮像可能な光学顕微鏡と画像認識機能を備え、試料を二次元で移動して位置決めが可能で、かつ、高さ方向にその位置調整が可能な試料相対移動機構とを備え、試料の特定位置における蛍光X線計測が可能であり、かつ、基材の上に置かれた測定試料からの蛍光X線も計測可能な微小部X線計測装置では、X線の照射位置と前記X線検出器との間の蛍光X線の光路を蛍光X線の減衰を抑制する構造(真空又はヘリウム置換)とし、かつ、基材上の測定試料が基材と同一の金属元素を含んでも、測定試料の同一の金属元素の含有が判定可能なデータ処理機能を備えたデータ処理部を備えている。 (もっと読む)


【課題】 例えば分析しようとする液体が船舶の燃料油である場合は、燃料油が船舶のエンジンに使用するのに適しているか否かを、燃料油の全量を船舶に積み込むまでに、船舶内で判定することを可能にする液体の品質分析装置を提供すること。
【解決手段】 分析される燃料油の密度を測定する密度測定部18と、分析される液体を50℃に加熱することができる加熱部21と、加熱部21によって50℃に加熱された燃料油の粘度を測定する粘度測定部19と、密度測定部18によって得られた液体の密度測定値、及び粘度測定部19によって測定して得られた液体の粘度測定値に基づいて更に得られた15℃における密度、及び50℃における動粘度を使用してCCAI値を算出すると共に、これら15℃における密度、50℃における動粘度、及びCCAI値を出力する演算表示部17とを備える。 (もっと読む)


【課題】容器を形作る金属製ライナーをこれに巻装された繊維材料と樹脂とで強化した複合容器について、破壊検査を行うことなく、強度不足の容器を発見する。
【解決手段】複合容器を非破壊検査して、樹脂内部の空隙の体積を空隙ごとに測定する(S1〜S6)。各空隙の体積と予め定められた第1閾値とを比較して、第1閾値を超える空隙が存在する場合に、測定した複合容器を排除する(S7)。全ての空隙の総体積と予め定められた第2閾値とを比較して、空隙の総体積が第2閾値を超える場合に、測定した複合容器を排除する(S8、S9)。 (もっと読む)


【課題】単結晶の加工変質層の評価を簡便かつ定量的にできるような非破壊検査を提供する。
【解決手段】単結晶の加工変質層を検出するための単結晶から得られるX線ロッキングカーブの解析方法であって、ピーク強度に対する裾部分の強度の比率に基づいて前記加工変質層を評価する方法である。この際、前記裾野部分の位置を、X線解析強度がバックグラウンドレベルまで減衰した位置、または、ピーク位置から±5000秒離れた位置とする。 (もっと読む)


【課題】試料の内部構造を破壊することなく分析する。
【解決手段】干渉性X線が発せられるX線源と、前記X線源からのX線をコリメートするX線コリメータと、X線を吸収又は反射する材料により形成されており、前記X線の可干渉となる位置に設けられた参照穴及びX線透過窓とを有し、前記コリメートされたX線が照射されるX線吸収部と、前記X線透過窓を透過したX線が照射される位置に設置される試料と、前記試料により生じる散乱X線と、前記参照穴を通過したX線との干渉により生じたホログラムを検出する検出器と、前記検出器により得られた前記ホログラムに基づき前記試料の内部構造のイメージ画像を得るためフーリエ変換を行う処理部と、を有し、前記試料は、前記X線吸収部に対し相対的に移動させることができるものであることを特徴とするX線分析装置により上記課題を解決する。 (もっと読む)


【課題】チタンを屋根、壁材のような大気環境中で使用した場合に発生する変色の程度を、表面皮膜の性質(材料学的特徴)の観点から簡便に評価する方法を提供するものである。
【解決手段】表面に酸化皮膜が形成されているチタンについて、以下の方法で求めた当該酸化皮膜の結晶サイズ(nm):tからチタンの大気環境中における耐変色性を評価する方法である。
(ステップ1)X線入射角度を2度以下の低角度に保った条件で大気環境中保持前である初期状態のチタン表面のX線回折図形の測定を行う。
(ステップ2)得られたX線回折図形で、散乱ベクトル:qが、5<q<30nm-1の範囲に観察されるピークの半値幅:wより次式により結晶サイズ:tを求める。
t=0.9λ/(wcosθB)(式1)、q=4π(sinθB)/λ (式2)
ここで、λ:使用した単色X線の波長(nm)、θB:ブラッグ角である。 (もっと読む)


【課題】 金属元素の深さ方向分析方法及び二次イオン質量分析装置に関し、分析に用いる一次イオンとしての酸素イオンビーム照射に誘起される金属元素の拡散現象を抑制する。
【解決手段】 一次イオンに酸素を用いて単結晶シリコンを母材とする試料中のGa、In、Cu、Au或いはAgの少なくとも一つの金属元素の深さ方向分析を二次イオン質量分析法によって行う際に、前記試料が前記一次イオンとしての酸素により酸化される領域より少なくとも深い領域を、予め試料の酸化に伴う前記金属元素の拡散を抑制する拡散抑制領域に改質しておく。 (もっと読む)


【課題】 半導体ウェーハ上の欠陥の分析に特に有利であり、自動化による製造プラント内でのウェーハのインライン検査に適するシステムを提供する。
【解決手段】 バックグラウンドに起因するx線信号を定量的に考慮する欠陥のEDX自動分析用システムを用いる。本システムは、バックグラウンドと欠陥のx線サンプリングに適切な場所を自動的に同定することができる。本システムは、また、バックグラウンドに起因し欠陥に起因しない信号を効果的に、かつ定性的ではなく定量的に除去することができる。『微量分析』と呼ばれる有利な特徴が本システムのスループットを高くすることを可能にする。 (もっと読む)


【課題】一次イオンとしてセシウムを使用した場合に、最適な分析条件を判断できる二次イオン質量分析方法及び二次イオン質量分析装置を提供する。
【解決手段】入射角が0度、加速エネルギーが250eVの条件でセシウムイオンを第1の試料に照射し、第1の試料から放出される二次イオンを質量分析して不純物元素の分布を測定する。次に、入射角が0度、加速エネルギーが1keVの条件でセシウムイオンを第2の試料に照射し、第2の試料から放出される二次イオンを質量分析して不純物元素の分布を測定する。その後、2つの不純物元素の分布のピーク値のシフト方向を調べ、その結果に応じて予め設定された分析条件から特定の分析条件を決定する。 (もっと読む)


本発明が解決すべき課題は、少なくとも一つのガルバニセルを有するバッテリーを動作させるための方法によって解決される。前記少なくとも一つのガルバニセルは、少なくとも間欠的に、特に前記バッテリーもしくはガルバニセルの所定の動作状態において検査を受ける。
(もっと読む)


1 - 20 / 84