説明

ガラス成形用金型の製造方法

【課題】成形温度において表面被覆層にクラックが発生することを防止するとともに、金型の塑性変形を防止することで、金型の形状を高い精度で維持する。
【解決手段】鋼製の基材に焼入れを施してマルテンサイト組織からなる基材を製作し、上記基材の表面に、非晶質のNi−P合金からなる表面被覆層を形成し、上記基材に加熱処理を施すことでトルースタイト組織又はソルバイト組織に変えるとともに、前記表面被覆層をNiとNiPの共晶組織に変える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、精密な加工を必要とするガラス成形用金型の製造方法に関し、特に金型の形状を高い精度で維持することができるものに関する。
【背景技術】
【0002】
プラスチック成形の分野では、成形金型の精密加工技術が確立されており、回折格子など、微細形状を有する光学素子の量産が実現している。この場合、金型の製作は、ステンレス鋼からなる基材の表面に無電解Ni−Pめっきを施し、次いで、この表面被覆層をダイヤモンドバイトで精密加工することにより行われている。
【0003】
しかし、これと同様の金型をガラス成形に適用すると、無電解Ni−P表面被覆層にクラックが発生する問題が生ずる。この現象は、成形温度に起因している。即ち、Ni−P表面被覆層は、めっき状態ではアモルファス(非晶質)構造をとっているが、約270℃以上に加熱すると結晶化が始まり、そのとき、表面被覆層に体積収縮が起こり、引張応力が作用して表面被覆層にクラックが発生する。
【0004】
この問題の対策として、熱膨張係数が10×10−6〜16×10−6(K−1)の基材を選定し、めっき後、400〜500℃で熱処理を行っている。しかし、基材の熱膨張係数をNi−P表面被覆層に合わせても、熱処理の際、結晶化に伴う体積収縮が表面被覆層だけに生ずるので、表面被覆層に大きな引張応力が作用して、クラックが発生する場合があった(例えば特許文献1参照)。
【特許文献1】特開平11−157852号公報
【発明の開示】
【発明が解決しようとする課題】
【0005】
本発明は、成形温度において表面被覆層にクラックが発生することを防止できるガラス成形用金型の製造方法を提供することを目的としている。
【課題を解決するための手段】
【0006】
前記課題を解決し目的を達成するために、本発明のガラス成形用金型の製造方法は次のように構成されている。
【0007】
鋼製の基材に焼入れを施してマルテンサイト組織からなる基材を製作し、上記基材の表面に、非晶質のNi−P合金からなる表面被覆層を形成し、上記基材に加熱処理を施すことでトルースタイト組織又はソルバイト組織に変えるとともに、前記表面被覆層をNiとNiPの共晶組織に変えることを特徴とする。
【0008】
鋼製の基材に焼入れを施した後にサブゼロ処理を施してマルテンサイト組織からなる基材を製作し、上記基材の表面に、非晶質のNi−P合金からなる表面被覆層を形成し、上記基材に加熱処理を施すことでトルースタイト組織又はソルバイト組織に変えるとともに、前記表面被覆層をNiとNiPの共晶組織に変えることを特徴とする。
【0009】
鋼製の基材に焼入れを施した後にサブゼロ処理を施し、さらに焼戻しを施してマルテンサイト中にε−炭化物が分散された組織からなる基材を製作し、上記基材の表面に、非晶質のNi−P合金からなる表面被覆層を形成し、上記基材に加熱処理を施すことでトルースタイト組織又はソルバイト組織に変えるとともに、前記表面被覆層をNiとNiPの共晶組織に変えることを特徴とする。
【発明の効果】
【0010】
本発明によれば、成形温度において表面被覆層にクラックが発生することを防止することが可能となる。
【発明を実施するための最良の形態】
【0011】
図1は、本発明の一実施の形態に係るガラス成形用金型の製造工程の概要を示すブロック図である。ガラス成形用金型の製造は次のような工程で行う。
【0012】
なお、基材として、炭素が0.3wt%以上2.7wt%以下、クロムが13wt%以下の鋼製の素材を用いる。
【0013】
このような基材に粗加工を行った後(ST1)、焼入れを行う(ST2)。次いで、めっき前加工を行った後(ST3)、無電解めっきによりNi−P合金からなる表面被覆層(めっき層)を形成する(ST4)。次いで、基材及び表面被覆層に加熱処理を行い(ST5)、表面被覆層を結晶化するとともに、基材を焼き戻し組織に変える。次いで、基材に仕上げ加工(ST6)及び表面被覆層の仕上げ加工(ST7)を行った後、表面被覆層に、離型膜をコーティングする(ST8)。
【0014】
本実施の形態では、表面被覆層を結晶化するための加熱処理の過程において、金型の基材の寸法変化を、表面被覆層の寸法変化に近付けることによって、表面被覆層に作用する引張り応力を小さく抑え、クラックの発生を防止している。
【0015】
ここで、加熱処理の過程を3つの過程(第1〜第3過程)に分けて説明する。表1は第1〜第3過程で生じる基材の温度変化、組織変化、寸法変化を示したものである。
【0016】
【表1】

【0017】
すなわち、基材は、第1過程において、組織の変化に伴い体積が収縮する。また、第2過程では、基材は膨張する。この第1過程及び第2過程の体積変化量は非常に小さいため表面被覆層にクラックは生じない。
【0018】
一方、第3過程では、基材を約270℃から約430℃まで加熱する間に、低炭素マルテンサイトからセメンタイトが析出して、母材の組織がフェライトに代わり、それに伴い体積が収縮する。このとき、無電解めっきにより金型の表面に形成される非晶質のNi−P合金層は、金型をガラスの成形温度まで加熱する際に、NiとNiPの共晶組織に変わり、その際に体積が収縮する。このような体積収縮は、約270℃から始まることから、引張応力が発生せず、表面被覆層のクラックの発生が生じない。
【0019】
なお、加熱処理温度は、金型使用温度以上に設定する。使用温度より低いと使用中に寸法変化が起き、成形品の寸法精度が低下する。但し、加熱処理温度の上限は金型使用温度よりも30℃高い程度が望ましい。必要以上に加熱処理温度を高くすると基材が軟化する等の悪影響が生じる。
【0020】
基材の組成としては、C含有量は、0.3wt%以上、2.7wt%以下とすることが望ましい。C含有量が0.3wt%より低くなると、焼戻しの第3過程(表1)における基材の体積収縮量が小さくなり過ぎてしまう。一方、C含有量が2.7wt%を超えると、基材の体積収縮量は十分ではあるが、靭性低下などの弊害が出てくる。
【0021】
また、Cr含有量は、13wt%以下とすることが望ましい。Cr含有量が13wt%を超えると、第2過程の残留オーステナイトの分解が500℃以上で起こるようになり、Ni−P表面被覆層の体積収縮履歴と合わなくなる。なお、Cr含有量の下限値については、特に制約はない。
【0022】
加熱処理前の基材の組織は、マルテンサイト組織(または、低炭素マルテンサイト+ε−炭化物)である必要がある。このマルテンサイトがフェライトとセメンタイトに分解するときに、大きな体積収縮が起こる。加熱処理後の基材の組織は、トルースタイト組織(フェライトとセメンタイトが極めて微細に混合した組織)やソルバイト組織(セメンタイトが粒状析出成長したフェライトとセメンタイトの混合組織)となる。
【0023】
Ni−PまたはNi−P−B表面被覆層の組織は、めっき状態では非晶質もしくは部分的に非晶質であり、約270℃以上の加熱で、完全に結晶化したNiとNiPの混合組織に変態する。表2に、以上の金属組織学的な特徴がまとめられている。
【0024】
【表2】

【0025】
種々の組成の基材に、無電解Ni−Pめっきを100μm被覆した金型を製作して、加熱熱処理中及び成形中に発生したクラックの数を調べた。表3に、基材の組成、サブゼロ温度、焼戻し温度及び加熱処理条件と、クラック発生率との関係を示す。ガラスの成形温度は、全て430℃とした。
【0026】
【表3】

【0027】
上述したように本実施の形態に係るガラス成形用金型の製造方法では、供試体1において加熱処理の際に表面被覆層にクラックが発生することを防止するとともに、金型の塑性変形を防止し、金型の形状を高い精度で維持することが可能となる。
【0028】
なお、供試体3に示すように、焼入れ後にサブゼロ処理を行うようにしてもよい。サブゼロ処理により焼入れ後の基材に存在する残留オーステナイトをマルテンサイトに変態させることができる。このことにより、マルテンサイト(低炭素マルテンサイト)の分解による第3過程の体積収縮がより顕著に起きるようになる。
【0029】
さらに、供試体4に示すように、焼入れ、サブゼロ処理後に350℃以下の焼戻しを行うことができる。焼戻し温度が350℃より高い場合、第3過程での基材の体積収縮が十分ではなく、表面被覆層にクラックが生じることがある。
【0030】
なお、本発明は前記実施の形態に限定されるものではない。例えば、基材及び表面被覆層の加熱処理を、基材の仕上げ加工及び表面被覆層の仕上げ加工の後に行うようにしてもよい。この他、本発明の要旨を逸脱しない範囲で種々変形実施可能であるのは勿論である。
【図面の簡単な説明】
【0031】
【図1】本発明の一実施の形態に係るガラス成形用金型の製造方法の概要を示すブロック図。

【特許請求の範囲】
【請求項1】
鋼製の基材に焼入れを施してマルテンサイト組織からなる基材を製作し、
上記基材の表面に、非晶質のNi−P合金からなる表面被覆層を形成し、
上記基材に加熱処理を施すことでトルースタイト組織又はソルバイト組織に変えるとともに、前記表面被覆層をNiとNiPの共晶組織に変えることを特徴とするガラス成形用金型の製造方法。
【請求項2】
上記基材に含まれる炭素が0.3wt%以上2.7wt%以下、クロムが13wt%以下であることを特徴とする請求項1に記載のガラス成形用金型の製造方法。
【請求項3】
上記表面被覆層は、NiとP、NiとPとB又はNiとPとWを含む無電解めっきにより形成され、
上記加熱処理は、金型の使用温度よりも高い温度であることを特徴とする請求項2に記載のガラス成形用金型の製造方法。
【請求項4】
上記加熱処理は、270℃以上で行われることを特徴とする請求項3に記載のガラス成形用金型の製造方法。
【請求項5】
鋼製の基材に焼入れを施した後にサブゼロ処理を施してマルテンサイト組織からなる基材を製作し、
上記基材の表面に、非晶質のNi−P合金からなる表面被覆層を形成し、
上記基材に加熱処理を施すことでトルースタイト組織又はソルバイト組織に変えるとともに、前記表面被覆層をNiとNiPの共晶組織に変えることを特徴とするガラス成形用金型の製造方法。
【請求項6】
上記基材に含まれる炭素が0.3wt%以上2.7wt%以下、クロムが13wt%以下であることを特徴とする請求項5に記載のガラス成形用金型の製造方法。
【請求項7】
上記表面被覆層は、NiとP、NiとPとB又はNiとPとWを含む無電解めっきにより形成され、
上記加熱処理は、金型の使用温度よりも高い温度であることを特徴とする請求項6に記載のガラス成形用金型の製造方法。
【請求項8】
上記加熱処理は、270℃以上で行われることを特徴とする請求項7に記載のガラス成形用金型の製造方法。
【請求項9】
鋼製の基材に焼入れを施した後にサブゼロ処理を施し、さらに焼戻しを施してマルテンサイト中にε−炭化物が分散された組織からなる基材を製作し、
上記基材の表面に、非晶質のNi−P合金からなる表面被覆層を形成し、
上記基材に加熱処理を施すことでトルースタイト組織又はソルバイト組織に変えるとともに、前記表面被覆層をNiとNiPの共晶組織に変えることを特徴とするガラス成形用金型の製造方法。
【請求項10】
上記基材に含まれる炭素が0.3wt%以上2.7wt%以下、クロムが13wt%以下であることを特徴とする請求項9に記載のガラス成形用金型の製造方法。
【請求項11】
上記基材の焼戻し温度が350℃以下であることを特徴とする請求項10に記載のガラス成形用金型の製造方法。
【請求項12】
上記表面被覆層は、NiとP、NiとPとB又はNiとPとWを含む無電解めっきにより形成され、
上記加熱処理は、金型の使用温度よりも高い温度であることを特徴とする請求項10に記載のガラス成形用金型の製造方法。
【請求項13】
上記加熱処理は、270℃以上で行われることを特徴とする請求項12に記載のガラス成形用金型の製造方法。

【図1】
image rotate


【公開番号】特開2008−150226(P2008−150226A)
【公開日】平成20年7月3日(2008.7.3)
【国際特許分類】
【出願番号】特願2006−337146(P2006−337146)
【出願日】平成18年12月14日(2006.12.14)
【出願人】(000003458)東芝機械株式会社 (843)
【Fターム(参考)】