説明

コンデンサ、及び配線基板

【課題】低ESL且つ高容量を実現したコンデンサを提供する。
【解決手段】第1誘電体層2を有する第1コンデンサ部11と、第2誘電体層2’を有する第2コンデンサ部12とを、間に第1、第2誘電体層2、2’の厚みより厚い第3誘電体層9を介して一体化する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、コンデンサ、及び配線基板に関するもので、特に、高周波領域において有利に適用され得るコンデンサ、および配線基板に関するものである。
【背景技術】
【0002】
代表的なコンデンサとして、積層コンデンサを例にとって説明する。
【0003】
積層コンデンサを用いた等価回路では、コンデンサの静電容量をC、等価直列インダクタンス(ESL)をLとしたとき、共振周波数(f)は、f=1/〔2π×(L×C)1/2〕の関係で表され、共振周波数(f)より高い周波数領域では、コンデンサの機能が消失してしまうことが知られている。すなわち、一定値以上の静電容量(C)を維持するためには、できるだけESL(L)を低くする必要がある。つまり、ESLが低ければ、共振周波数(f)は高くなり、より高周波領域で使用できることになる。このことから、積層コンデンサをマイクロ波領域で使うためには、より低ESL化が図られたものが必要となる。
【0004】
また、ワークステーションやパーソナルコンピュータ等のマイクロプロセッシングユニット(MPU)のMPUチップに電源を供給するために用いられ、通常デカップリングコンデンサとして配線基板上に接続されている積層コンデンサも、近年のMPUの高速、高周波化に伴って、低ESL化が求められている。
【0005】
ここで、従来の積層コンデンサについて、図4(a)(b)をもとに説明する。図4(a)は断面図、図4(b)は第1、第2導体層の重なり状態を示す概略図である。
【0006】
図に示す従来の積層コンデンサ50は、誘電体層52の一方主面に第1導体層53が、他方主面に第2導体層54が夫々形成され、これらの誘電体層52が複数積層されており、また、これらの誘電体層52の厚み方向には第1及び第2導体層53、54どうしを夫々接続する第1及び第2貫通導体55、56が形成され、積層体51が構成されている。そして、ここでは、第1及び第2貫通導体55、56が、積層体51の一方の最表面に露出し、夫々第1及び第2接続端子57、58に接続され、積層コンデンサ50が構成されている。さらに、第1及び第2導体層53、54内に、第2及び第1貫通導体56、55とは夫々接続しない第1及び第2非導体形成領域63、64が形成されている。
【0007】
そして、第1及び第2貫通導体55、56は、第1及び第2導体層53、54の全域にわたって、交互に格子状に分散して配置されてなる(特許文献1乃至4参照)。
【特許文献1】特開平7−201651号公報 (3−5頁、図1−5)
【特許文献2】特開平11−204372号公報 (4−6頁、図1−4)
【特許文献3】特開2001−148324号公報 (4−7頁、図1−6)
【特許文献4】特開2001−148325号公報 (5−7頁、図1−9)
【発明の開示】
【発明が解決しようとする課題】
【0008】
しかしながら、上記積層コンデンサ50によれば、低ESL化を図るためには、第1及び第2貫通導体55、56の数を増加するとともに、これらの中心間の距離を小さくする方法が考えられるが、このとき、第1及び第2導体層53、54内の非導体形成領域63、64の面積が増大するため、積層コンデンサ50の静電容量が低下するという問題点があった。
【0009】
本発明は、上述の問題点に鑑みて案出されたものであり、その目的は、低ESL且つ高容量を実現したコンデンサを提供することである。また、本発明の他の目的は、上述したようなコンデンサを用いて構成される、配線基板を提供することである。
【課題を解決するための手段】
【0010】
本発明のコンデンサは、第1誘電体層を有する第1コンデンサ部と、第2誘電体層を有する第2コンデンサ部とを、間に前記第1、第2誘電体層の厚みより厚い第3誘電体層を介して一体化したことを特徴とするものである。
【0011】
また本発明のコンデンサは、前記第3誘電体層が、複数の誘電体層を積層することにより形成されていることを特徴とするものである。
【0012】
本発明のコンデンサは、第1コンデンサ部及び第2コンデンサ部を厚み方向に貫通する全貫通導体が形成されていることを特徴とするものである。
【0013】
本発明の配線基板は、上述のコンデンサを備えたことを特徴とするものである。
【発明の効果】
【0014】
本発明のコンデンサによれば、第1、第2コンデンサ部を設け、第1コンデンサ部において、第1及び第2貫通導体の導体数を増加することにより、電流が流れる距離が短くなり、電流によって誘起される磁束に起因する自己インダクタンス及び相互インダクタンス成分が低くなる。このため、コンデンサ全体の等価直列インダクタンス(ESL)を低くできる。一方、第2コンデンサ部において、第3及び第4貫通導体の数を少なくすれば、第3導体層と第4導体層との対向面積を増加させることができるため、大容量のコンデンサ部とすることができる。これらによって、コンデンサ全体の等価直列インダクタンス(ESL)を低くでき、且つ大容量のコンデンサが実現できる。
【0015】
上述のコンデンサを備えた配線基板は、特に、高速動作する回路、または高周波信号で動作する回路において有効となる。
【発明を実施するための最良の形態】
【0016】
以下、本発明のコンデンサ、及び配線基板を図面に基づいて詳説する。
【0017】
図1は本発明にかかるコンデンサの一例である積層コンデンサを示す図であり、(a)は断面図、(b)は第1、第2導体層の重なり状態を示す概略図、(c)は第3、第4導体層の重なり状態を示す概略図である。
【0018】
図において、積層コンデンサ10は、積層体1の一方主面に第1及び第2接続端子7a、8aが形成されるとともに、積層体1の他方主面に第3及び第4接続端子7b、8bが形成されている。さらに、積層体1は、第1コンデンサ部11及び第2コンデンサ部12を積層方向に一体化している。
【0019】
また、第1コンデンサ部11は、複数積層された第1誘電体層2と、第1誘電体層2間に配置され、第1誘電体層2を介して対向し合う第1導体層3a及び第2導体層4aと、第1誘電体層2の厚み方向を貫き、第1導体層3aどうしを接続する第1貫通導体5aと、第2導体層4aどうしを接続する第2貫通導体6aとが夫々形成されている。さらに、第1及び第2貫通導体5a、6aは、積層体1の一方主面に露出し、夫々第1及び第2接続端子7a、8aに接続されている。そして、第1及び第2導体層3a、4a内に、第2及び第1貫通導体6a、5aとは夫々接続しない第1及び第2非導体形成領域13a、14aが形成されている。
【0020】
一方、第2コンデンサ部12は、複数積層された第2誘電体層2’と、第2誘電体層2’間に配置され、第2誘電体層2’を介して対向し合う第3導体層3b及び第4導体層4bと、第2誘電体層2’の厚み方向を貫き、第3導体層3bどうしを接続する第3貫通導体5bと、第4導体層4bどうしを接続する第4貫通導体6bとが夫々形成されてなる。また、第3及び第4貫通導体5b、6bは、積層体1の一方主面に露出し、夫々第3及び第4接続端子7b、8bに接続されている。そして、第3及び第4導体層3b、4b内に、第4及び第3貫通導体6b、5bとは夫々接続しない第3及び第4非導体形成領域13b、14bが形成されている。
【0021】
ここで、第1コンデンサ部11の第1貫通導体5aと第2貫通導体6aとの導体合計数は、第2コンデンサ部12の第3貫通導体5bと第4貫通導体6bとの導体合計数よりも多くなっている。
【0022】
また、第1コンデンサ部11の第1貫通導体5aの少なくとも1つは、第2コンデンサ部の第3貫通導体5bに接続し、同様に、第2貫通導体6aの少なくとも1つは、第4貫通導体6bに接続している。このように第1コンデンサ部11に形成された貫通導体と、第2コンデンサ部12に形成された貫通導体とが接続されてなる貫通導体を「全貫通導体」と称す。
【0023】
具体的には、第1コンデンサ部11の第1貫通導体5aは、厚み方向に積層された第1導体層3aに接続して、同時に、第2導体層4aの第2非導体形成領域14aを貫くため、第2の導体層4aには導通しない。同様に、第1コンデンサ部11の第2貫通導体6aは、厚み方向に積層された第2導体層4aに接続して、同時に、第1導体層3aの第1非導体形成領域13aを貫くため、第1の導体層3aには導通しない。また、第2コンデンサ部12側において、第3貫通導体5b、第4貫通導体6bについても同様である。
【0024】
また、電流の流れる距離を短くするとともに、電流によって誘起される磁束を互いに相殺するために、第1及び第2貫通導体5a、6aとが、交互に格子状に形成されてなることが望ましい。
【0025】
ここで本発明の特徴的なことは、図1(a)に示す如く、第1コンデンサ部11と第2コンデンサ部12とを、第1、第2誘電体層の厚みより厚い第3誘電体層9を介して一体化したことである。
【0026】
前記第1、第2誘電体層2、2’並びに第3誘電体層9は、チタン酸バリウムを主成分とする非還元性誘電体材料、及びガラス成分を含む誘電体材料からなり、この第1誘電体層2が図上、上方向に積層して積層体1が構成される。なお、第1、第2誘電体層2、2’並びに第3誘電体層9の形状、厚み、積層数は容量値によって任意に変更することができるが、第3誘電体層9の厚みは、第1、第2の誘電体層2、2’の厚みよりも厚く形成される。なお、第3誘電体層9は、間に導体層が形成されない複数の誘電体層を積層することにより形成してもよい。
【0027】
第1〜第4導体層3a〜4bは、Ni、Cu、あるいはこれらの合金を主成分とする材料から構成され、その厚みは1〜2μmとしている。また、第1〜第4貫通導体5a〜6bの材料は、Ni、Cu、あるいはこれらの合金を主成分とする材料から構成されている。
【0028】
接続端子7a、8a、7b、8bは、半田バンプ、ボール半田などが用いられる。
【0029】
次に、本発明の積層コンデンサ10の製造方法について説明する。なお、図面において、各符号は焼成の前後で区別しないことにする。
【0030】
まず、第1コンデンサ部11の誘電体層となるセラミックグリーンシート2に、第1及び第2導体層となる導体膜3a、4aを導電性ペーストの印刷・乾燥により形成する。このとき、第1及び第2非導体形成領域13a、14aも形成される。一方、第2コンデンサ部12の誘電体層となるセラミックグリーンシート2に、第3及び第4導体層となる導体膜3b、4bを導電性ペーストの印刷・乾燥により形成する。このとき、第3及び第4非導体形成領域13b、14bも形成される。なお、第1、第2誘電体層2、2’並びに第3誘電体層9として、他のペロブスカイト構造を持つセラミック材料や、有機強誘電体材料を用いても良い。
【0031】
次に、導体膜3a、4aが形成されたセラミックグリーンシート2を交互に所要枚数を積み重ね、第1コンデンサ部11が抽出される大型積層体を形成する。同様に、導体膜3b、4bが形成されたセラミックグリーンシート2を交互に所要枚数を積み重ね、第2コンデンサ部12が抽出される大型積層体を形成する。
【0032】
次に、レーザの照射や、マイクロドリル又はパンチングを用いた打ち抜き法などにより、第1コンデンサ部11が抽出される大型積層体の主面に導体膜3a、4a、セラミックグリーンシート2を厚み方向に貫く貫通孔を形成する。さらに、この貫通孔に導電性ペーストを充填することにより、第1及び第2貫通導体となる導体部5a、6aが形成される。ここで第1コンデンサ部11の第1貫通導体5aとなる貫通孔は、第1導体層3a、第2導体層4aの第2非導体形成領域14aを貫き、第2貫通導体6aとなる貫通孔は、第2導体層4a、第1導体層3aの第1非導体形成領域13aを貫くように形成される。
【0033】
同様に、第2コンデンサ部12が抽出される大型積層体の主面に導体膜3b、4b、セラミックグリーンシート2を厚み方向に貫く貫通孔を形成する。さらに、この貫通孔に導電性ペーストを充填することにより、第3及び第4貫通導体となる導体部5b、6bが形成される。ここで第2コンデンサ部12の第3貫通導体5bとなる貫通孔は、第3導体層3b、第4導体層4bの第4非導体形成領域14bを貫き、第4貫通導体6bとなる貫通孔は、第4導体層4b、第3導体層3bの第3非導体形成領域13bを貫くように形成される。
【0034】
次に、第1コンデンサ部11、第2コンデンサ部12が抽出される大型積層体を積み重ね、積層体1が抽出される大型積層体が形成される。このとき、第1コンデンサ部11に形成された第1貫通導体5aの1つは、第2コンデンサ部12に形成された第3貫通導体5bに接続して、且つ第1コンデンサ部11に形成された第2貫通導体6aの1つは、第2コンデンサ部12に形成された第4貫通導体6bに接続するように垂直方向に重なる。
【0035】
なお、誘電体層となるセラミックグリーンシート2に、マイクロドリル又はパンチングを用いた打ち抜き法などにより、あらかじめ貫通孔をあけておき、スクリーン印刷法により、セラミックグリーンシート2上に導体層3a〜4bとなる導体膜を印刷すると同時に、貫通孔に導電性ペーストを充填することにより、第1〜第4貫通導体となる導体部5a〜6bを形成後、積層するようにしても良い。
【0036】
次に、大型積層体を押し切り刃加工、ダイシング方式などにより切断し、未焼成状態の積層体1を得る。
【0037】
次に、この未焼成状態の積層体1は、脱バインダ処理後、焼成を行い、内部に第1〜第4導体層3a〜4b、第1〜第4貫通導体5a〜6bが形成されるとともに、第1貫通導体5aの少なくとも一つは、第3貫通導体5bに電気的に接続し、且つ第2貫通導体6aの少なくとも一つは、第4貫通導体6bに電気的に接続し、一方主面に第1及び第2貫通導体5a、6a、他方主面に第3及び第4貫通導体5b、6bが夫々露出した積層体1が得られる。
【0038】
このとき、第1〜第4貫通導体5a〜6bは、表面が酸化されているため、表面研磨により、酸化被膜を除去する。
【0039】
次に、第1〜第4貫通導体5a〜6bの露出部に、Niメッキ、Snメッキを形成する。ここで、AuやCuのメッキでも良い。
【0040】
次に、半田ペーストをスクリーン印刷する方法や、フラックスを塗布後にボール半田を搭載する方法により、接続端子7a、8a、7b、8bとなる半田を形成した後、リフロー処理を施すことにより、接続端子7a、8a、7b、8bが形成される。尚、第2コンデンサ部12側においても、第3及び第4貫通導体5b、6bの露出部分に,接続端子7b、8bを形成しても構わない。
【0041】
尚、第1コンデンサ部11、第2コンデンサ部12に形成された各貫通導体5a、5b、6a、6bにおいて、第1コンデンサ部11のみに貫通する第1及び第2貫通導体5a、6aのみ形成し、また必要に応じて、第2コンデンサ部12のみに貫通する第3及び第4貫通導体5b、6bのみ形成しておき、第1コンデンサ部11と第2コンデンサ部12とを積層した後に、両者を接続する第1貫通導体5aと第3貫通導体6aとを、第2貫通導体5bと第4貫通導体6bとを形成してもよい。その具体的な製造方法は、別途図7を用いて詳説する。
【0042】
このようにして、図1に示すような積層コンデンサ10が得られる。
【0043】
なお、本発明は以上の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変更・改良を加えることは何ら差し支えない。
【0044】
図2は、本発明の積層コンデンサの他の実施の形態を示す図であり、(a)は断面図、(b)は第1貫通導体5aと第3貫通導体5bとを接続し、第2貫通導体6aと第4貫通導体6bとを接続する接続電極3c、4cを形成した中間誘電体層の示す平面図である。
【0045】
図によれば、第1のコンデンサ部11と第2のコンデンサ部12の間に、図2(b)に示す中間誘電体層3c、4cの接続電極3c、4cを介して、第1及び第2貫通導体5a、6aを第3及び第4貫通導体5b、6bに接続する。例えば、第1貫通導体5aは、接続電極3cを経由して第3貫通導体5bに接続し,同様に、第2貫通導体6aは、接続電極4cを経由して第4貫通導体6bに接続している。このように、接続電極3c、4cを第1コンデンサ部11と第2コンデンサ部12の中間に配置することにより、第3及び第4貫通導体5b、6bの配置が自由になり、同時に、両貫通導体の接続信頼性が大きく向上する。尚、この接続電極3c、4cを両主面に形成して、その間をビアホール導体で表裏の接続電極を接続させても構わない。
【0046】
またこのとき、接続電極3c、4cは夫々1層であるの対し、第1〜第4導体層5a〜6b全体は複数層であることから、接続電極3c、4cは第1〜第4導体層5a〜6b全体より抵抗値が高くなり、抵抗体(ダンプ抵抗)として機能するため、共振現象を低減することができ、使用周波数範囲を拡大することができる。さらに、例えば第1〜第4導体層5a〜6bとしてNi材料を用いた場合、接続電極3c、4cとして、第1〜第4導体層5a〜6bより抵抗値が高いAg、Ag合金、Ni−Cr、炭素皮膜、メタルグレーム、酸化金属材料などを用いることにより、この共振現象を低減する効果がより効果的に得られる。
【0047】
図5は、図4の積層コンデンサ50(点線)、図1における第1及び第2コンデンサ部11、12(実線)、及び図2の積層コンデンサ10(一点鎖線)の周波数−インピーダンス曲線である。図に示すように、本発明の積層コンデンサ10は、高周波部でインピーダンスが低い第1コンデンサ部11の特性と、低周波部でインピーダンスが低い第2コンデンサ部12の特性が両方生かされて、広い周波数範囲で低インピーダンスが実現できる。また、図2のように、第1〜第4導体層5a〜6bが接続電極3c、4cに接続されることにより、共振現象を低減させることができ、使用周波数範囲を拡大することができることがわかる。
【0048】
図6は、本発明の積層コンデンサのさらに他の実施の形態を示す図であり、(a)は断面図、(b)は第1、第2導体層の重なり状態を示す概略図、(c)は第3、第4導体層の重なり状態を示す概略図である。同図によれば、互いに隣接し合う第1貫通導体5aと第2貫通導体6aとの間に容量の発生する領域が存在しない。具体的には、隣接しあう第1貫通導体5aの中心と第2貫通導体6aの中心との間隔をP、第1及び第2非導体形成領域13a、14aの各半径をm1、m2(一般的には、m1=m2である)としたときに、P≦m1+m2の関係を満足する。ここで、等価直列抵抗(ESR)の増大を防ぐためには、第1及び第2の貫通導体3、4の半径を夫々r1、r2としたときに、r1+r2≦Pの関係を満足することが望ましい。このことによって、この重なり合う部分を通って、一方、例えば第1貫通導体5aから他方、例えば第2貫通導体6aへ流れる電流は、ほとんど無くなる。このことにより、電流によって誘起される磁束に起因する自己インダクタンス成分が極めて低くなり、積層コンデンサ10全体のESLをさらに低くすることができる。また、静電容量の形成に寄与しない非導体形成領域13a、14aが重なり合う領域が存在するため、積層コンデンサ10全体からみると相対的に第1〜第4導体層3a〜4bが重なり合う領域が増加し(静電容量領域が増加し)、積層コンデンサ10のさらなる高容量化を実現できる。
【0049】
ここで、第1及び第2貫通導体5a、6aの半径r1、r2、第1及び第2非導体形成領域13a、14aの半径m1、m2は夫々等しくても良く、異なっても良い。
【0050】
また、第1〜第4貫通導体5a〜6bの断面形状、または第1〜第4非導体形成領域13a〜14bの形状は、略円形の他、楕円形、多角形など、任意の形状にすることができる。
【0051】
図7は、本発明の積層コンデンサの製造方法を示す図であり、図7(a)は、第1コンデンサ部11のみを貫通する第1及び第2貫通導体5a、6aを形成する工程を示し、図7(b)は、第2コンデンサ部12を形成する工程を示し、図7(c)は、第1及び第2コンデンサ部11、12を積層する工程を示し、図7(d)は、第1及び第2コンデンサ部11、12の両方を貫通する第1貫通導体5aと第3貫通導体5b、及び第2貫通導体6aと第4貫通導体6bを形成する工程を示している。
【0052】
このように製造することにより、第1及び第2コンデンサ部11、12の両方を貫通する第1貫通導体5aと第3貫通導体5b、または第2貫通導体6aと第4貫通導体6bの接続が良好になり、等価直列抵抗(ESR)を小さくすることができる。
【0053】
尚、図7(b)の第2コンデンサ部12には、このコンデンサ部のみに存在する第3及び第4の貫通導体がないため、第3及び第4貫通導体5b、6bは、省略しているが、第2コンデンサ部12のみに存在し、且つ第1コンデンサ部11の貫通導体5a、6aに接続しない第3及び第4の貫通導体を、図7(b)の工程で予め形成しておく必要がある。
【0054】
図3は、本発明の積層コンデンサ10をデカップリングコンデンサとして用いた、MPU20の構造例を示す断面図である。
【0055】
図に示すように、MPU20は、配線基板21上にMPUチップ30が実装されている。また、配線基板21上に、本発明の積層コンデンサ10(A)が実装されるとともに、配線基板21のキャビティ内には、本発明の積層コンデンサ10(B)が収容されている。そして、積層コンデンサ10(A)、10(B)は、ともにMPUチップ30に並列に接続され、デカップリングコンデンサとして機能する。
【0056】
配線基板21の内部には、電源側導体層23及びグランド側導体層24が形成されている。
【0057】
積層コンデンサ10(A)の第1接続端子7aは、電源側貫通導体25を介して、電源側導体層23に電気的に接続されるとともに、積層コンデンサ10(A)の第2接続端子8aは、グランド側貫通導体26を介して、MPUチップ30に電気的に接続されている。ここで、積層コンデンサ10(A)は、第3、第4接続端子7b、8bを形成しなくても良く、このとき第3、第4貫通導体5b、6bの表面の酸化被膜を除去しなければ、不必要な導通を防ぐことができる。
【0058】
このように、本発明の積層コンデンサ10は、ESLが低いので、MPU20におけるデカップリングコンデンサに用いた場合も、高速動作に十分対応することができる。さらに、積層コンデンサ10を備えた配線基板にも適用できる。
【0059】
図1に示す本発明の積層コンデンサ10と、図4に示す従来の積層コンデンサ50を作成し、静電容量C及び等価直列インダクタンスLを測定した。ここで、積層コンデンサ10、50の両方とも、寸法は3.2mm×3.2mm、第1及び第2貫通導体5a、6aを格子状に合計は36個、第3及び第4貫通導体5b、6bを中央部分に合計は2個形成した。測定の結果、図4に示す従来の積層コンデンサ50はC=7.8μF、L=20pHとなったのに対し、図1に示す本発明の積層コンデンサ10はC=15μF、L=8pHとなった。
【0060】
これらの結果から、本発明の積層コンデンサ10は、第1貫通導体5aと第2貫通導体6aとの導体合計数は、第3貫通導体5bと第4貫通導体6bとの導体合計数よりも多くなっており、第1貫通導体5aの1つが第3の貫通導体5bが接続し、第2貫通導体6aの1つが第4の貫通導体6bが接続しているため、低ESL且つ高容量を実現できることがわかった。
【0061】
以上のように、本発明のコンデンサによれば、複数積層された誘電体層と、誘電体層間に配置され、誘電体層を介して対向し合う第1導体層及び第2導体層と、誘電体層の厚み方向を貫き、第2導体層と第2非導体形成領域によって隔てられ、第1導体層どうしを接続する第1貫通導体と、第1導体層と第1非導体形成領域によって隔てられ、第2導体層どうしを接続する第2貫通導体とが夫々形成されてなる第1コンデンサ部と、複数積層された誘電体層と、誘電体層間に配置され、誘電体層を介して対向し合う第3導体層及び第4導体層と、誘電体層の厚み方向を貫き、第1導体層どうしを接続する第3貫通導体と、第4導体層どうしを接続する第4貫通導体とが夫々形成されてなる第2コンデンサ部とを積層方向に一体化してなるコンデンサであって、第1貫通導体と第2貫通導体との導体合計数は、第3貫通導体と第4貫通導体との導体合計数よりも多くなっている。そして、第1及び第2貫通導体の1つは、第3及び第4貫通導体に夫々電気的に接続してなることを特徴とする。
【0062】
すなわち、第1コンデンサ部において、第1及び第2貫通導体の導体合計数は、前記第3及び第4貫通導体との導体合計数よりも多くなっているため、電流が流れる距離が短くなることから、電流によって誘起される磁束に起因する自己インダクタンス及び相互インダクタンス成分が低くなる。このため、第1コンデンサ部が、コンデンサの等価直列インダクタンスが概略支配される等価直列インダクタンス支配部となり、コンデンサ全体の等価直列インダクタンス(ESL)を低くできる。一方、第2コンデンサ部において、第3及び第4貫通導体の数を少なくできるため、第3導体層と第4導体層との対向面積を増加させることができるため、第2コンデンサ部が、コンデンサの静電容量が概略支配される静電容量支配部となり、コンデンサ全体を大容量化できる。これらの2つのコンデンサ部の組み合わせにより、低ESL且つ高容量を実現したコンデンサが提供できる。また、従来の製造ラインを大きく変更する必要がないため、簡単且つ安価な製法となる。
【0063】
また、第1〜第4貫通導体の少なくとも一部(全部を除く)は、第1〜第4導体層より抵抗値が高い接続電極に接続されてなるため、共振現象を低減することができ、使用周波数範囲を拡大することができる。
【0064】
さらに、第1〜第4貫通導体の少なくとも一部(全部を除く)は、その他の第1〜第4貫通導体より抵抗値が高いため、このことによっても、共振現象を低減することができ、使用周波数範囲を拡大することができる。
【0065】
また、互いに隣接しあう第1貫通導体と第2貫通導体との中心間の間隔をP、該中心間を結ぶ直線上において、第1貫通導体の中心と第2非導体形成領域の周辺との間隔をm2、第2貫通導体の中心と第1非導体形成領域の周辺との間隔をm1としたときに、P≦m1+m2の関係を満足するため、第1貫通導体から他方、例えば第2貫通導体へ流れるは、ほとんど無くなる。このことにより、電流によって誘起される磁束に起因する自己インダクタンス成分が極めて低くなり、コンデンサ全体のESLをさらに低くすることができる。さらに、静電容量の形成に寄与しない非導体形成領域が重なりあうため、コンデンサ全体からみると相対的に静電容量領域が増加し、コンデンサのさらなる高容量化を実現できる。
【0066】
また、第1及び第2コンデンサ部を積層後、第1及び第2コンデンサ部の両方を貫通する第1貫通導体と第3貫通導体、または第2貫通導体と第4貫通導体を形成するため、それぞれの接続が良好になり、等価直列抵抗(ESR)を小さくすることができる。
【0067】
そして、これらの特性により、特に高速動作する回路、高周波信号で動作する回路を具備する配線基板、デカップリング回路または高周波回路に特に有効となり、第1コンデンサ部と第2のコンデンサ部との接続信頼性の高くなる。
【図面の簡単な説明】
【0068】
【図1】本発明の積層コンデンサを示す図であり、(a)は断面図、(b)は第1、第2導体層の重なり状態を示す概略図、(c)は第3、第4導体層の重なり状態を示す概略図である。
【図2】本発明の積層コンデンサの他の実施の形態を示す図であり、(a)は断面図、(b)は接続電極を示す平面図である。
【図3】本発明の積層コンデンサをデカップリングコンデンサとして用いた、MPUの構造例を示す断面図である。
【図4】従来の積層コンデンサを示す図であり、(a)は断面図、(b)は第1、第2導体層の重なり状態を示す概略図である。
【図5】図1の積層コンデンサ(点線)、図1における第1及び第2コンデンサ部(実線)、及び図2の積層コンデンサ(一点鎖線)の周波数−インピーダンス曲線である。
【図6】本発明の積層コンデンサのさらに他の実施の形態を示す図であり、(a)は断面図、(b)は第1、第2導体層の重なり状態を示す概略図、(c)は第3、第4導体層の重なり状態を示す概略図である。
【図7】本発明の積層コンデンサの製造方法を示す図であり、(a)第1コンデンサ部のみを貫通する第1及び第2貫通導体を形成する工程、(b)第2コンデンサ部を形成する工程、(c)第1及び第2コンデンサ部を積層する工程と、(d)第1及び第2コンデンサ部の両方を貫通する第1貫通導体と第3貫通導体、及び第2貫通導体と第4貫通導体を形成する工程である。
【符号の説明】
【0069】
10 積層コンデンサ
11 第1コンデンサ部
12 第2コンデンサ部
2 誘電体層
3a 第1導体層
4a 第2導体層
3b 第3導体層
4b 第4導体層
5a 第1貫通導体
6a 第2貫通導体
5b 第3貫通導体
6b 第4貫通導体
7a 第1接続端子
8a 第2接続端子
7b 第3接続端子
8b 第4接続端子
13a 第1非導体形成領域
14a 第2非導体形成領域
13b 第3非導体形成領域
14b 第4非導体形成領域
3c、4c 接続電極(抵抗体)

【特許請求の範囲】
【請求項1】
第1誘電体層を有する第1コンデンサ部と、第2誘電体層を有する第2コンデンサ部とを、間に前記第1、第2誘電体層の厚みより厚い第3誘電体層を介して一体化してなるコンデンサ。
【請求項2】
前記第3誘電体層は、複数の誘電体層を積層することにより形成されていることを特徴とする請求項1に記載のコンデンサ。
【請求項3】
第1コンデンサ部及び第2コンデンサ部を厚み方向に貫通する全貫通導体が形成されていることを特徴とするコンデンサ。
【請求項4】
請求項1乃至3のいずれかに記載のコンデンサを備えたことを特徴とする配線基板。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2006−191147(P2006−191147A)
【公開日】平成18年7月20日(2006.7.20)
【国際特許分類】
【出願番号】特願2006−80617(P2006−80617)
【出願日】平成18年3月23日(2006.3.23)
【分割の表示】特願2003−370211(P2003−370211)の分割
【原出願日】平成15年10月30日(2003.10.30)
【出願人】(000006633)京セラ株式会社 (13,660)
【Fターム(参考)】