説明

コンデンサ素子

【課題】コンデンサ素子内蔵多層配線基板において、小型化・接続信頼性および電気特性を満足できない。
【解決手段】本発明の一実施形態にかかるコンデンサ素子7は、複数の電極層5および複数の誘電体層6を積層して成る積層体と、前記複数の電極層5に対して積層方向に前記積層体を貫通する貫通孔9内に導体を充填して前記積層体と同時焼成して成り、積層方向に平行な断面形状が台形状である引き出し電極部10と、を備えたことを特徴とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、各種AV機器や家電機器・通信機器・コンピュータやその周辺機器等の電子機器に使用されるコンデンサ素子に関する。
【背景技術】
【0002】
従来、配線基板はアルミナ等のセラミック材料から成る絶縁層あるいはガラスエポキシ樹脂等の有機樹脂材料から成る絶縁層の内部および表面に複数の配線導体を形成し、上下に位置する配線導体間を絶縁層に形成した貫通導体を介して電気的に接続して成り、この配線基板の表面に半導体素子やコンデンサ・抵抗素子等の電子素子を搭載取着するとともにこれらの電極を各配線導体に接続することによって電子機器に使用される電子装置が形成されている。
【0003】
しかしながら、近年、電子機器は、移動体通信機器に代表されるように小型・薄型・軽量化が要求されてきており、このような電子機器に搭載される配線基板も小型・高密度化が要求されるようになってきている。
【0004】
このような要求に対応するために、特開平11−217262号公報には、配線基板の表面に搭載される電子素子の数を減らして配線基板を小型化する目的で、配線基板の内部にチップ状コンデンサ素子を実装することが提案されている。
【特許文献1】特開平11−217262号公報
【発明の開示】
【発明が解決しようとする課題】
【0005】
近年、電子機器のさらなる小型化が要求される中で、配線基板の小型化とともに配線基板に内蔵されるコンデンサ素子もより小型化が要求されるようになってきている。
【0006】
しかしながら、特開平11−217262号公報に示されるようなチップ状コンデンサ素子を配線基板に内蔵して配線基板内部の配線導体あるいは貫通導体と電気的な接続を行うためには、コンデンサ素子の上面および/あるいは下面に半田や導電性ペーストから成る表面電極をスクリーン印刷法等の方法によって形成する必要があるが、コンデンサ素子の小型化にともない微細な表面電極を形成することが困難と成り、配線基板内蔵用のコンデンサ素子の小型化が困難であるという問題点を有していた。
【0007】
また、コンデンサ素子の上面および/あるいは下面に電極を形成するためには、まず、コンデンサ素子の側面を研磨することにより内部電極を露出させた後、コンデンサ素子の側面にこれらの内部電極と接続する端面電極を形成し、続いて、コンデンサ素子の上面および/あるいは下面に端面電極と接続される表面電極を形成しなければならず、工程が複雑になるという問題点も有していた。
【0008】
さらに、コンデンサ素子と絶縁層の熱膨張係数が異なるために、高温と低温のサイクル試験である熱衝撃試験を行なった場合、コンデンサ素子と絶縁層との熱膨張係数の差により両者間に大きな応力が発生して、コンデンサ素子の電極と絶縁層表面に配設した配線導体との間で断線してしまうという問題点を有していた。
【0009】
また、近年、通信速度の高速化に伴い通信機器等の電子機器類は周波数が数100MHz以上の高周波領域で使用されるようになってきており、このような高周波領域においてはコンデンサ素子の電極と半導体素子等の電子部品とをつなぐ配線導体の長さに起因するインダクタンス成分が無視できなくなり、チップ状コンデンサ素子を内蔵した場合、コンデンサ素子の各電極層からコンデンサ素子側面の端面電極への電極引き出し、さらにはコンデンサ素子の上面および/あるいは下面への電極引き出しといった電極の引き回しがあるため、引き回し電極の長さに起因するインダクタンス成分が大きくなり、△V=LdI/dt(△Vは電源ノイズ、Lはインダクタンス、Iは電流値、tは時間)で定義されるインダクタンス成分により発生する電源ノイズ△Vが無視できないほど大きくなってしまい、通信機器等の電子機器類に誤動作を発生させてしまう等の問題点を有していた。
【0010】
本発明はかかる従来技術の問題点に鑑み案出されたものであり、その目的は、接続信頼性・電気特性に優れた小型で軽量なコンデンサ素子内蔵多層配線基板の提供に寄与することが可能なコンデンサ素子を提供することにある。
【課題を解決するための手段】
【0011】
本発明は、複数の電極層および複数の誘電体層を積層して成る積層体と、前記複数の電極層に対して積層方向に前記積層体を貫通する貫通孔内に導体を充填して前記積層体と同時焼成して成り、前記積層方向に平行な断面形状が台形状である引き出し電極部と、を備えたことを特徴とする。
【発明の効果】
【0012】
本発明によれば、コンデンサ素子を、複数の電極層に対して積層方向に貫通する貫通孔内に導体を充填して前記積層体と同時焼成して成る引き出し電極部を備えたものとしたことから、この引き出し電極部を介して複数の電極層と多層配線基板の貫通導体および/または配線導体とを電気的に接続することができる。その結果、コンデンサ素子に端面電極や表面電極を印刷する必要がないために工程を簡単化することができるとともに、直径が数10μmという微細な引き出し電極を容易に形成することができるためコンデンサ素子を小さなものとすることができコンデンサ素子内蔵多層配線基板を小型化することができる。
【0013】
また、コンデンサ素子側面に端面電極を配設して電極を引き回しする必要がなく、電極層の直上に最短距離で引き出し電極を形成することができるので、インダクタンス成分を小さくすることが可能で、高周波領域においても電源ノイズの小さい電気特性に優れたものとすることができる。
【0014】
さらに、コンデンサ素子の、積層体の積層方向に平行な断面形状を台形状としたことから、コンデンサ素子に形成した貫通孔に半田あるいは導電性ペーストを充填して引き出し電極部を形成する際に、半田あるいは導電性ペーストを貫通孔の底辺が長い方から充填することにより良好に充填することができ、その結果、引き出し電極部の抵抗がより小さく、かつインダクタンス成分がより小さなものとすることができる。
【図面の簡単な説明】
【0015】
【図1】本発明のコンデンサ素子内蔵多層配線基板の実施の形態の一例を示す断面図である。
【図2】本発明のコンデンサ素子内蔵多層配線基板に内蔵されるコンデンサ素子の実施の形態の一例を示す断面図である。
【図3】(a)〜(g)は、それぞれ本発明のコンデンサ素子内蔵多層配線基板の製造方法を説明するための工程毎の断面図である。
【発明を実施するための最良の形態】
【0016】
次に本発明の多層配線基板を添付の図面に基づいて詳細に説明する。図1は、本発明の多層配線基板の実施の形態の一例を示す断面図であり、本例では、コンデンサを1個内蔵した場合を示している。また、図2は、本発明のコンデンサ内蔵多層配線基板に内蔵されるコンデンサ素子の実施の形態の一例を示す断面図である。これらの図において、1は絶縁層、2は配線導体、3は貫通導体、7はコンデンサ素子で、主にこれらで本発明のコンデンサ素子内蔵多層配線基板8が構成されている。なお、本例のコンデンサ内蔵多層配線基板8は、絶縁層1を3層積層して成るとともに、絶縁層1の少なくとも1層には空洞部4が形成されており、その内部には、コンデンサ素子7が埋設されている。
【0017】
コンデンサ内蔵多層配線基板8に内蔵されるコンデンサ素子7は、縦・横・高さがそれぞれ1〜5μmの直方体であり、図2に断面図で示すように、電極層5とセラミック誘電体層6とを交互に積層することにより形成されている。
【0018】
このようなセラミック誘電体層6の材料としては、種々の誘電体セラミック材料を用いることができ、例えば、BaTiO3やLaTiO3・CaTiO3・SrTiO3等のセラミック組成物、あるいは、BaTiO3の構成元素であるBaをCaで、TiをZrやSnで部分的に置換した固溶体等のチタン酸バリウム系材料や、鉛系ペロブスカイト型構造化合物等が挙げられる。
【0019】
また、電極層5を形成する材料としては、例えばPdやAg・Pt・Ni・Cu・Pb等の金属やそれらの合金が用いられる。
【0020】
さらに、コンデンサ素子7は、多数の電極層5に対して垂直方向に貫通する貫通孔9に導体が充填されて成る引き出し電極部10を有している。また、本発明においてはこのことが重要である。
【0021】
本発明のコンデンサ内蔵多層配線基板8によれば、コンデンサ素子7を、多数の電極層5に対して垂直方向に貫通する貫通孔9に導体が充填されて成る引き出し電極部10を有するものとし、この引き出し電極部10を介して電極層5と貫通導体3および/または配線導体2とを電気的に接続したことから、コンデンサ素子7に端面電極や表面電極を印刷する必要がないために工程が簡単になるとともに、直径が数10μmという微細な引出し電極10を容易に形成することができることからコンデンサ素子7を微細化でき、その結果、コンデンサ素子内蔵多層配線基板8を小型化することができる。また、コンデンサ素子7側面に端面電極を配設して電極を引き回しする必要は無く、電極層5の直上に最短距離で引き出し電極10を形成することができるので、インダクタンス成分を小さくすることが可能で、高周波領域においても電源ノイズが小さい電気特性に優れたものとすることができる。
【0022】
このようなコンデンサ素子7に形成される貫通孔9は、電極層5とセラミック誘電体層6とから成る積層体に、パンチングによる打ち抜き加工やUV−YAGレーザやエキシマレーザ・炭酸ガスレーザ等によるレーザ穿設加工等の方法により形成され、特に微細な貫通孔9とするためには、レーザによる穿設加工により形成されることが好ましい。また、貫通孔9の径は数10μm〜数mmであり、コンデンサ素子7の大きさにあわせて適宜決めればよい。
【0023】
なお、貫通孔9は、内部に充填される導体と電極層5との電気的接続を良好にするために、打ち抜き加工やレーザ穿設加工後に超音波洗浄処理やデスミア処理等を施しても良い。
【0024】
また、貫通孔9に充填される導体としては、PdやAg・Pt・Ni・Cu・Pb等の金属やそれらの合金が用いられ、特に電極層5との電気的接続を良好にするという観点からは、電極層5と同じ材質のものを含有することが好ましい。
【0025】
このような貫通孔9に充填される導体は、有機溶剤に有機バインダ樹脂を溶解させた有機ビヒクル中に金属粉末を分散させて成る導電ペーストを貫通孔9にスクリーン印刷法等の方法で充填されることにより形成される。なお、ビヒクル中には、これらの他、各種分散剤・活性剤・可塑剤などが必要に応じて添加されても良い。
【0026】
また、導電ペーストに用いられる有機バインダ樹脂は、金属粉末を均質に分散させるとともに貫通孔9への埋め込みに適正な粘度とレオロジーを与える役割をもっており、例えば、アクリル樹脂やフェノール樹脂・アルキッド樹脂・ロジンエステル・エチルセルロース・メチルセルロース・PVA(ポリビニルアルコール)・ポリビニルブチラート等が挙げられる。特に、金属粉末の分散性を良くするという観点からは、アクリル樹脂を用いることが好ましい。
【0027】
さらに、導電ペーストに用いられる有機溶剤は、有機バインダ樹脂を溶解して金属粉末粒子を分散させ、このような混合系全体をペースト状にする役割をなし、例えば、α-テ
ルピネオールやベンジルアルコール等のアルコール系や炭化水素系・エーテル系・BCA(ブチルカルビトールアセテート)等のエステル系・ナフサ等が用いられ、特に、金属粉末の分散性を良くするという観点からは、α-テルピネオール等のアルコール系溶剤を用
いることが好ましい。
【0028】
さらにまた、導電ペーストは、埋め込み・焼成後のコンデンサ磁器への接着強度を上げるために、ガラスフリットやセラミックフリットを加えたペーストとすることができる。この場合のガラスフリットやセラミックフリットとしては特に限定されるものではなく、例えば、ホウ珪酸塩系やホウ珪酸亜鉛系のガラス・チタニア・チタン酸バリウムなどのチタン系酸化物などを適宜用いることができる。
【0029】
このようなコンデンサ素子7は、次の方法により製作される。まず、周知のシート成形法により作成された誘電体層6と成る、例えばBaTiO3誘電体セラミックグリーンシ
ート表面に、周知のペースト作成法により作成したNi金属ペーストをスクリーン印刷法により所定形状と成るように印刷して未焼成電極層を形成し、続いてこれらを所定順序に積層し、圧着して積層体を得る。そして、この積層体にレーザにより所定の位置に複数の貫通孔9を形成後、超音波洗浄により貫通孔9を水洗し、この貫通孔9に例えばNi金属粉末とアクリル樹脂とα-テルピネオールとから成る導電ペーストをスクリーン印刷法により充填する。しかる後、これらを800〜1600℃の温度で焼成することにより製作される。
【0030】
なお、貫通孔9に充填された導体は、焼成後有機バインダ樹脂や溶剤が除去され、引き出し電極部10と成り、コンデンサ素子7表面に露出した引き出し電極部10の端部でコンデンサ素子内臓多層配線基板8の貫通導体3および/または配線導体2と電気的に接続される。
【0031】
また、本発明では、引出し電極部10の電極層5に対して垂直方法の断面形状を台形状とすることが好ましく、また、重要である。本発明の多層配線基板8によれば、引き出し電極部10の電極層5に対して垂直方向の断面形状を台形状としたことから、コンデンサ素子7に形成した貫通孔9に導電性ペーストを充填して引き出し電極部10を形成する際に、導電性ペーストを貫通孔9の底辺が長い方の開口から充填することにより良好に充填することができ、その結果、導電性ペーストの充填率を高め引き出し電極部10の抵抗を小さくすることができるとともにインダクタンス成分をより小さくすることができる。
【0032】
なお、引き出し電極部10の台形状の断面形状は、長い方の底辺の長さが短い方の底辺の長さの1.2〜3倍であることが好ましく、1.2倍未満であると引き出し電極部10を形成する導電ペーストを貫通孔9に良好に充填できなくなる傾向があり、また、3倍を超えると貫通孔9の径が大きくなりコンデンサ素子7を小型化することが困難と成る傾向がある。従って、引き出し電極部10の台形状の断面形状は、長い方の底辺の長さが短い方の底辺の長さの1.2〜3倍であることが好ましい。また、引き出し電極部10は、その長い方の底辺あるいは短い方の底辺のどちらがコンデンサ素子7の上面あるいは下面に位置するように形成してもよい。
【0033】
また、コンデンサ素子7の表面は、セラミック誘電体層6の表面の算術平均粗さRの最大値Rmaxが0.2μmより大きく、望ましくは0.5μm以上、最適には1.0μm以上とすることが好ましい。
【0034】
本発明のコンデンサ素子内蔵多層配線基板8によれば、内蔵するコンデンサ素子のセラミック誘電体層6の表面を、表面粗さRの最大値Rmaxを0.2μmより大きくしたことから、温度サイクル試験を行った場合でも、絶縁層1とコンデンサ素子7の接着性が向上するため、絶縁層1の熱膨張係数がコンデンサ素子7の熱膨脹係数よりも大きくても絶縁層1がコンデンサ素子7に拘束されることにより、熱膨張係数の差により発生する応力は減少し、コンデンサ素子7の電極と絶縁層1表面に配設した配線導体2間とが断線してしまうということもない。なお、セラミック誘電体層6の表面粗さRの最大値Rmaxが5μmを超えると、コンデンサ素子に割れや欠けが発生し易くなる傾向があるため、表面粗さRの最大値Rmaxを5μm以下としておくことが好ましい。
【0035】
このようなコンデンサ素子表面のセラミック誘電体層6の表面は、焼成前のグリーンシート積層体の段階で、積層体の表面をブラシ研磨による粗化処理やあらかじめ凹凸加工した平板を押し付けるなどの方法で物理的に凹凸をつけた後、あるいはレーザによりグリーンシート積層体表面に非貫通孔を開けることによりディンプル加工を施した後、焼成することにより所望の表面粗さとすることができる。また、セラミック誘電体層6に用いられるセラミック材料よりも焼成時の耐熱性が高く平均粒子径が10μm以上のセラミック粉末、あるいはセラミック誘電体層6に用いられるセラミック材料の一部と反応性を有し平均径が10μm以上のセラミック粉末を一部が埋入するようにグリーンシート積層体表面に付着させて焼成することによって所望の表面粗さとしても良い。さらに、グリーンシート積層体の焼成後のコンデンサ素子の表面をサンドブラスト等の物理的手法あるいはエッチング等の化学的手法により粗化しても良い。
【0036】
次に、本発明のコンデンサ素子内蔵多層配線基板8の製造方法を添付の図3に基づいて詳細に説明する。図3は、図1のコンデンサ素子内蔵多層配線基板8を製作するための工
程毎の断面図である。
【0037】
まず、図3(a)に断面図で示すように、絶縁層1と成る未硬化の前駆体シートを準備し、この前駆体シートにレーザ加工により所望の個所に直径が17〜150μm程度の貫通孔11を穿設する。
【0038】
このような絶縁層1と成る未硬化の前駆体シートは、エポキシ樹脂やビスマレイミドトリアジン樹脂・熱硬化性ポリフェニレンエーテル樹脂・液晶ポリマー樹脂等の有機樹脂材料から成り、機械的強度を向上させるためのシラン系やチタネート系等のカップリング剤、熱安定性を改善するための酸化防止剤や耐光性を改善するための紫外線吸収剤等の光安定剤、難燃性を改善するためのハロゲン系もしくはリン酸系の難燃性剤、アンチモン系化合物やホウ酸亜鉛・メタホウ酸バリウム・酸化ジルコニウム等の難燃助剤、潤滑性を改善するための高級脂肪酸や高級脂肪酸エステル・高級脂肪酸金属塩・フルオロカーボン系界面活性剤等の滑剤、熱膨張係数を調整するためおよび/または機械的強度を向上させるための酸化アルミニウム・酸化珪素・酸化チタン・酸化バリウム・酸化ストロンチウム・酸化ジルコニウム・酸化カルシウム・ゼオライト・窒化珪素・窒化アルミニウム・炭化珪素・ホウ酸アルミニウム・スズ酸バリウム・ジルコン酸バリウム・ジルコン酸ストロンチウム等の充填材、あるいは、繊維状ガラスを布状に織り込んだガラスクロス等や耐熱性有機樹脂繊維から成る不織布等の基材を含有させてもよい。
【0039】
このような前駆体シートは、例えば、絶縁材料として熱硬化性樹脂と無機絶縁粉末との複合材料を用いる場合、以下の方法によって製作される。まず、前述した無機絶縁粉末に熱硬化性樹脂を無機絶縁粉末量が17〜80体積%となるように溶媒とともに加えた混合物を得、この混合物を混練機(ニーダ)や3本ロール等の手段によって混合してペーストを製作する。そして、このペーストを圧延法や押し出し法・射出法・ドクターブレード法などのシート成形法を採用してシート状に成形した後、熱硬化性樹脂が完全硬化しない温度に加熱して乾燥することにより絶縁層1となる前駆体シートが製作される。なお、ペーストは、好適には、熱硬化性樹脂と無機絶縁粉末の複合材料に、トルエン・酢酸ブチル・メチルエチルケトン・メタノール・メチルセロソルブアセテート・イソプロピルアルコール・メチルイソブチルケトン・ジメチルホルムアミド等の溶媒を添加してなる所定の粘度を有する流動体であり、その粘度は、シート成形法にもよるが100〜3000ポイズが好ましい。
【0040】
次に、図3(b)に断面図で示すように、貫通孔11内に銅・銀・金・半田等から成る導電性ペーストを従来周知のスクリーン印刷法等を採用して充填し、貫通導体3を形成する。
【0041】
次に、図3(c)に断面図で示すように、前駆体シートの表面と裏面とに被着する配線導体2を準備する。そして、図3(d)に断面図で示すように、配線導体2を前駆体シートの表面および裏面に、必要な配線導体2と貫通導体3とが電気的に接続するように重ね合わせて転写する。
【0042】
なお、本実施例では、配線導体2の形成を転写法によって行っており、このような配線導体2は、次に述べる方法により形成される。まず、離型シート等の支持体12の表面にめっき法などによって製作され、銅・金・銀・アルミニウム等から選ばれる1種または2種以上の合金からなる厚さ1〜35μmの電解金属箔を接着し、その表面に所望の配線パターンの鏡像パターンとなるようにレジスト層を形成した後、エッチング・レジスト除去によって所定の配線パターンの鏡像の配線導体2が形成する。次に、配線導体2の前駆体シートの表面および裏面への被着は、配線導体2が形成された支持体12を前駆体シートの表面および裏面へ重ね合わせ、しかる後、圧力が0.5〜10MPa、温度が60〜150℃の条件で加圧加熱した後、支持体12を剥がすことにより、図3(e)に断面図に示すように配線導体2が前駆体シートに被着される。なお、この時、貫通導体3は、完全に硬化していない未硬化状態としておくことが重要である。
【0043】
また、支持体12としては、ポリエチレンテレフタレートやポリエチレンナフタレート・ポリイミド・ポリフェニレンサルファイド・塩化ビニル・ポリプロピレン等公知のものが使用できる。支持体12の厚みは10〜100μmが適当であり、望ましくは25〜50μmが良い。支持体12の厚みが10μm未満であると支持体12の変形や折れ曲がりにより形成した配線導体2が断線し易くなり、厚みが100μmを超えると支持体12の柔軟性がなくなって、前駆体シートからの支持体12の剥離が困難となる傾向がある。また、支持体12表面に電解金属箔を形成するために、アクリル系やゴム系・シリコン系・エポキシ系等公知の接着剤を使用してもよい。
【0044】
そして、図3(f)に断面図で示すように、上記(a)〜(f)の工程を経て製作した複数の前駆体シートと、コンデンサ素子7とを準備し、次に、引き出し電極部10の先端部と貫通導体3および配線導体2との位置合わせを行い載置するとともに前駆体シートを積層し、温度が150〜300℃、圧力が0.5〜10MPaの条件で30分〜24時間ホットプレスして前駆体シートおよび導電性ペーストを完全硬化させることによって、図3(g)に断面図で示す本発明のコンデンサ素子内蔵多層配線基板8が完成する。
【0045】
また、コンデンサ素子7を収容する空洞部4は、前駆体シートを積層する前に、前駆体シートのコンデンサ素子7が収容される個所にレーザ法やパンチング法により穿設しておけばよい。
【0046】
なお、本発明のコンデンサ素子内蔵多層配線基板8は上述の実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲であれば種々の変更は可能であり、例えば、上述の実施例では3層の絶縁層1を積層することによってコンデンサ素子内蔵多層配線基板8を製作したが、4層や5層以上の絶縁層を積層してコンデンサ内蔵多層配線基板8を製作してもよい。また、上述の実施例ではコンデンサを含む絶縁層を1層としたが、2層(連続層を含む)以上としてもよい。
【0047】
さらに、内蔵するコンデンサ素子7に形成した引き出し電極部10の数は一つの電極につき2個以上形成してもよい。

【特許請求の範囲】
【請求項1】
複数の電極層および複数の誘電体層を積層して成る積層体と、
前記複数の電極層に対して積層方向に前記積層体を貫通する貫通孔内に導体を充填して前記積層体と同時焼成して成り、前記積層方向に平行な断面形状が台形状である引き出し電極部と、
を備えたことを特徴とするコンデンサ素子。
【請求項2】
請求項1に記載のコンデンサ素子において、
前記引き出し電極部の台形状を成す前記断面形状は、前記台形を構成する4辺のうち、前記電極層に対して平行な長辺と短辺の2辺の比(長辺/短辺)が1.2〜3倍に設定されていることを特徴とするコンデンサ素子。
【請求項3】
請求項1に記載のコンデンサ素子において、
前記引き出し電極部は、前記台形状の断面形状の前記電極層に対して平行な長辺側から、前記導体が前記貫通孔に充填されて成ることを特徴とするコンデンサ素子。
【請求項4】
請求項1に記載のコンデンサ素子において、
前記引き出し電極部は、その端面で外部に電気的に接続されることを特徴とするコンデンサ素子。
【請求項5】
請求項4に記載のコンデンサ素子において、
前記積層体の主面と前記引き出し電極部の端面とは、同一面をなしていることを特徴とするコンデンサ素子。
【請求項6】
請求項1に記載のコンデンサ素子において、
前記積層体の最表面に位置する誘導体層の表面は、表面粗さの最大値で0.2μmよりも大きく設定されていることを特徴とするコンデンサ素子。
【請求項7】
請求項6に記載のコンデンサ素子において、
前記積層体の最表面に位置する誘導体層の表面は、表面粗さの最大値で5μm以下に設定されていることを特徴とするコンデンサ素子。




【図1】
image rotate

【図2】
image rotate

【図3】
image rotate


【公開番号】特開2009−88567(P2009−88567A)
【公開日】平成21年4月23日(2009.4.23)
【国際特許分類】
【出願番号】特願2009−4487(P2009−4487)
【出願日】平成21年1月13日(2009.1.13)
【分割の表示】特願2006−76656(P2006−76656)の分割
【原出願日】平成13年10月30日(2001.10.30)
【出願人】(000006633)京セラ株式会社 (13,660)
【Fターム(参考)】