説明

コーティング組成物

【課題】耐候性、防汚染性が良好であり、しかも樹脂基材に対する保護性が良好なコーティング組成物等を提供する。
【解決手段】(A)成分:粒子径が1nm〜400nmの単独金属化合物粒子、(B)成分:粒子径が10nm〜800nmの重合体エマルジョン粒子、(C)成分:複数金属化合物の複合体、を含み、(B)成分が、(b1)成分:加水分解性珪素化合物、(b2)成分:2級及び/又は3級アミド基を有するビニル単量体、(b3)成分:乳化剤、(b4)成分:水、を含む重合原液を重合して得られる重合体エマルジョン粒子であり、(C)成分が、酸化亜鉛、酸化セリウム、水酸化アルミニウム、酸化ジルコニウム、酸化鉄、酸化チタン、及び二酸化珪素よりなる群から選択される2種以上の複合体であるコーティング組成物。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、コーティング組成物、積層体、太陽電池用カバー材、及び太陽電池に関する。
【背景技術】
【0002】
太陽電池は、太陽の光を直接電気エネルギーに変換できる。太陽電池は、化石燃料とは異なり枯渇することのない太陽光を資源としているため半永久的に利用可能で、しかも非常にクリーンなエネルギーである。
【0003】
太陽電池の受光面は通常、ガラスや耐候性樹脂フィルムなどからなる保護カバーによって保護されている。ここで、当該保護カバーは長期間の使用中に煤塵で汚れるため、光透過率が低下し、太陽電池のエネルギー変換効率が低下する。特に、近年の環境汚染に伴い、カバーの汚れが早く、太陽電池の変換効率が早期に減少しやすい。太陽電池カバーを定期的に又は必要に応じて清掃するのが望ましいが、太陽電池カバーは一般に屋根や建物の外壁に設置されるのでカバーの清掃は容易でない。
このような事情のもと、特許文献1:特開平10−107303号公報には、光触媒粒子とシリコーンと撥水性フッ素樹脂、或いは光触媒粒子と無定型シリカと撥水性フッ素樹脂とを有する表層部を備えた太陽電池カバーが提案されている。
また、特許文献2:特開平10−270732号公報には、電池表面に、順次、保護カバーフィルム層、フッ素系樹脂フィルム層、及び光触媒含有表層部を設けて、表面に付着した汚染物質を分解させることを特徴とする太陽電池カバーが提案されている。
【0004】
【特許文献1】特開平10−107303号公報
【特許文献2】特開平10−270732号公報
【発明の開示】
【発明が解決しようとする課題】
【0005】
しかしながら、特許文献1に記載の方法では、表層部中の光触媒の有機物分解作用によって保護カバーフィルムの基材層が劣化し、太陽電池カバーの外観が悪くなる場合がある。
また、特許文献2に記載の方法では、表層部中の光触媒の有機物分解作用によって保護カバーフィルム層が劣化するのを防ぐため、フッ素系樹脂フィルム層を設けており、製造工程が煩雑になりやすい。また、各層の間に界面が存在するため、光触媒層の剥離等の問題が懸念される。従って、層構成がより単純な太陽電池カバーが求められていた。
更に、近年の太陽電池は低コスト、軽量化の要求が強く、太陽電池カバーに用いられる基材としても、ガラスから安価で軽量な樹脂基材へと代替されつつある。環境負荷の観点を含め、樹脂基材を侵すことなく塗布できる水系のコーティング剤が望まれていた。
【0006】
本発明の課題は、耐候性、防汚染性が良好であり、しかも樹脂基材に対する保護性が良好な塗膜を形成し得るコーティング組成物等を提供することにある。
【課題を解決するための手段】
【0007】
本発明者らは上記課題を解決すべく鋭意検討した結果、本発明に到達した。
すなわち、本発明は以下の通りである。
[1]
以下の(A),(B),(C)の各成分、
(A)成分:粒子径が1nm〜400nmの単独金属化合物粒子、
(B)成分:粒子径が10nm〜800nmの重合体エマルジョン粒子、
(C)成分:複数金属化合物の複合体、
を含み、
前記(B)成分が、以下の(b1)〜(b4)の各成分、
(b1)成分:加水分解性珪素化合物、
(b2)成分:2級及び/又は3級アミド基を有するビニル単量体、
(b3)成分:乳化剤、
(b4)成分:水、
を含む重合原液を重合して得られる重合体エマルジョン粒子であり、
前記(C)成分が、酸化亜鉛、酸化セリウム、水酸化アルミニウム、酸化ジルコニウム、酸化鉄、酸化チタン、及び二酸化珪素よりなる群から選択される2種以上の複合体であることを特徴とするコーティング組成物。
[2]
前記(b2)成分と、前記(B)成分との比(b2)/(B)(質量比)が、0.1/1〜0.5/1である[1]に記載のコーティング組成物。
[3]
前記(b2)成分と、前記(A)成分との比(b2)/(A)(質量比)が、0.1/1〜1/1である[1]又は[2]に記載のコーティング組成物。
[4]
前記(B)成分が、コア層と、当該コア層を被覆する1層又は2層以上のシェル層とを備えたコア/シェル構造を有する[1]〜[3]のいずれかに記載のコーティング組成物。
[5]
前記コア層において、前記(b2)成分と前記(b1)成分との比(b2)/(b1)(質量比)が0.01/1〜1/1であり、前記シェル層の最外層において、前記(b2)成分と前記(b1)成分との比(b2)/(b1)(質量比)が0.1/1〜5/1である[4]に記載のコーティング組成物。
[6]
前記(B)成分が、前記コア層を形成するシード粒子の存在下で前記重合原液を重合して得られ、前記シード粒子が、前記(b1)成分、前記(b2)成分、及び以下の(b5)成分、
(b5)成分:(b2)成分と共重合可能な他のビニル単量体、
よりなる群から選択される少なくとも1種以上を重合して得られる[4]又は[5]に記載のコーティング組成物。
[7]
前記(b1)成分が、以下の(b1−1)成分、
(b1−1)成分:ビニル重合性基を有する加水分解性珪素化合物、
を含み、
前記(b1−1)成分と、前記(B)成分との比(b1−1)/(B)(質量比)が、0.01/100〜20/100である[1]〜[6]のいずれかに記載のコーティング組成物。
[8]
前記(b1−1)成分と、前記(b2)成分との比(b1−1)/(b2)(質量比)が、0.1/100〜100/100である[7]に記載のコーティング組成物。
[9]
前記(A)成分が、二酸化珪素、光触媒活性を有する金属酸化物、又は導電性を有する金属酸化物のいずれかを用いて形成される[1]〜[8]のいずれかに記載のコーティング組成物。
[10]
前記(A)成分の粒子長(l)と粒子直径(d)との比(l/d)が、1/1〜20/1である[1]〜[9]のいずれかに記載のコーティング組成物。
[11]
前記(A)成分が、以下の(A’)成分、
(A’)成分:式(1)で表されるトリオルガノシラン単位、式(2)で表されるモノオキシジオルガノシラン単位、式(3)で表されるジオキシオルガノシラン単位、式(4)で表されるトリオキシシラン単位、及びジフルオロメチレン単位よりなる群から選択される少なくとも1種の構造単位を有する変性剤化合物を用いて、前記単独金属化合物粒子を変性処理して形成される変性金属化合物を含む[1]〜[10]のいずれかに記載のコーティング組成物。
Si− (1)
(式中、Rは各々独立に直鎖状または分岐状の炭素数1〜30個のアルキル基、炭素数5〜20のシクロアルキル基、直鎖状または分岐状の炭素数1〜30個のフルオロアルキル基、直鎖状または分岐状の炭素数2〜30個のアルケニル基、フェニル基、炭素数1〜20のアルコキシ基、又は水酸基を表す。)
−(RSiO)− (2)
(式中、Rは式(1)で定義した通りである。)
【化1】

(式中、Rは式(1)で定義した通りである。)
【化2】

[12]
前記(A’)成分が、光触媒活性を有する[11]に記載コーティング組成物。
[13]
前記(A’)成分の粒子長(l)と粒子直径(d)の比(l/d)が、1/1から20/1である[11]又は[12]に記載のコーティング組成物。
[14]
[1]〜[13]のいずれかに記載のコーティング組成物にて形成される塗膜と、樹脂基材とを含む積層体。
[15]
前記塗膜のヘイズが20以下である[14]に記載の積層体。
[16]
前記塗膜の、波長340nmの紫外線透過率が99%以下である[14]又は[15]に記載の積層体。
[17]
[14]〜[16]のいずれかに記載の積層体を用いてなる太陽電池用カバー材。
[18]
[17]に記載の太陽電池用カバー材を含む太陽電池。
【発明の効果】
【0008】
本発明のコーティング組成物は、耐候性、防汚染性が良好であり、しかも樹脂基材に対する保護性が良好なコーティング組成物である。
【発明を実施するための最良の形態】
【0009】
以下、本発明を実施するための最良の形態(以下、「実施の形態」と略記することがある。)について詳細に説明する。尚、本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
【0010】
本実施の形態のコーティング組成物は、以下の(A),(B),(C)の各成分、
(A)成分:粒子径が1nm〜400nmの単独金属化合物粒子、
(B)成分:粒子径が10nm〜800nmの重合体エマルジョン粒子、
(C)成分:複数金属化合物の複合体、
を含み、
前記(B)成分が、以下の(b1)〜(b4)の各成分、
(b1)成分:加水分解性珪素化合物、
(b2)成分:2級及び/又は3級アミド基を有するビニル単量体、
(b3)成分:乳化剤、
(b4)成分:水、
を含む重合原液を重合して得られる重合体エマルジョン粒子であり、
前記(C)成分が、酸化亜鉛、酸化セリウム、水酸化アルミニウム、酸化ジルコニウム、酸化鉄、酸化チタン、及び二酸化珪素よりなる群から選択される2種以上の複合体であることを特徴とする。
【0011】
前記(A)成分は、前記(B)成分と相互作用することにより、前記(B)成分の硬化剤として作用すると考えられる。当該相互作用としては、例えば、前記(A)成分が一般に有する水酸基と、前記(B)成分が有する2級及び/又は3級アミド基との水素結合や、前記(A)成分が一般に有する水酸基と、前記(B)成分を構成する前記(b1)成分の重合生成物との縮合(化学結合)等を例示することができる。
また、前記(A)成分が、前記(B)成分と相互作用しながら前記(B)成分の粒子間に連続層を形成して存在することが好ましい。この場合、得られるコーティング組成物の透明性、耐候性がより向上し得る。
【0012】
前記(A)成分に用いられる単独金属化合物としては、前記(B)成分との相互作用の観点から、例えば、二酸化珪素、酸化アルミニウム、酸化アンチモン、酸化チタン、酸化インジウム、酸化スズ、酸化ジルコニウム、酸化鉛、酸化鉄、珪酸カルシウム、酸化マグネシウム、酸化ニオブ、酸化セリウム、等を例示することができる。
中でも、相互作用の強さの観点から、表面水酸基の多い二酸化珪素(シリカ)、酸化アルミニウム(アルミナ)、酸化アンチモン、及びそれらの複合酸化物等が好ましい。
なお、本実施の形態にいう「単独金属化合物粒子」とは、一つの粒子中に含まれる金属化合物が1種(単独金属化合物)であることを意味する。ここで、前記(A)成分として前記「単独金属化合物粒子」の2種以上を併用することについては差し支えない。
【0013】
前記(A)成分に用いられる単独金属化合物としては、防汚染性を付与する観点から、光照射により、光触媒活性及び/又は親水性を発現する化合物(以下、単に「光触媒」と略記することがある)を用いることが好適である。前記(A)成分として、光照射により光触媒活性を発現する化合物を用いた場合、得られるコーティング組成物の表面は優れた汚染有機物質の分解活性や耐汚染性を発現し得る。また、前記(A)成分として、光照射により親水性を発現する化合物を用いた場合、得られるコーティング組成物の表面は降雨等の水による自己浄化能(セルフクリーニング)を発現し得、耐汚染性を発現し得る。なお、本実施の形態において「親水性」とは、測定対象物表面に対する水(20℃)の接触角として、好ましくは60゜以下、より好ましくは30゜以下、更に好ましくは20゜以下になることを意味する。
なお、可視光(例えば約400nm〜800nmの波長)の照射により光触媒活性及び/又は親水性を発現する光触媒(可視光応答型光触媒)を選択すると、得られるコーティング組成物の表面は、紫外線が十分に照射されない場所(室内等)における環境浄化効果や防汚効果が非常に大きなものとなるため好ましい。
【0014】
前記光触媒としてより具体的には、例えば、TiO、ZnO、SrTiO、BaTiO、BaTiO、BaTi、KNbO、Nb、Fe、Ta、KTaSi、WO、SnO、Bi、BiVO、NiO、CuO、RuO、CeO等、さらにはTi、Nb、Ta、Vから選ばれた少なくとも1種の元素を有する層状酸化物(例えば特開昭62−74452号公報、特開平2−172535号公報、特開平7−24329号公報、特開平8−89799号公報、特開平8−89800号公報、特開平8−89804号公報、特開平8−198061号公報、特開平9−248465号公報、特開平10−99694号公報、特開平10−244165号公報等参照)を挙げることができる。これらの光触媒の中でもTiO(酸化チタン)は無害であり、化学的安定性にも優れるため好ましい。酸化チタンとしては、アナターゼ型、ルチル型、ブルッカイト型のいずれも使用できるが、紫外線吸収の観点から光触媒活性が比較的穏やかなルチル型が好ましい。
【0015】
前記可視光応答型光触媒としては、例えば、TaON、LaTiON、CaNbON、LaTaON、CaTaON等のオキシナイトライド化合物(例えば特開2002−66333号公報参照)、SmTi等のオキシサルファイド化合物(例えば特開2002−233770号公報参照)、CaIn、SrIn、ZnGa、NaSb等のd10電子状態の金属イオンを含む酸化物(例えば特開2002−59008号公報参照)、アンモニアや尿素等の窒素含有化合物存在下でチタン酸化物前駆体(オキシ硫酸チタン、塩化チタン、アルコキシチタン等)や高表面酸化チタンを焼成して得られる窒素ドープ酸化チタン(例えば特開2002−29750号公報、特開2002−87818号公報、特開2002−154823号公報、特開2001−207082号公報参照)、チオ尿素等の硫黄化合物存在下にチタン酸化物前駆体(オキシ硫酸チタン、塩化チタン、アルコキシチタン等)を焼成して得られる硫黄ドープ酸化チタン、酸化チタンを水素プラズマ処理したり真空下で加熱処理したりすることによって得られる酸素欠陥型の酸化チタン(例えば特開2001−98219号公報参照)、さらには光触媒粒子をハロゲン化白金化合物で処理したり(例えば特開2002−239353号公報参照)、タングステンアルコキシドで処理(特開2001−286755号公報参照)したりすることによって得られる表面処理光触媒、等を好適に挙げることができる。
上記可視光応答型光触媒の中でオキシナイトライド化合物、オキシサルファイド化合物は可視光による光触媒活性が大きく、特に好適に使用することができる。
【0016】
また、前記(A)成分に用いられる単独金属化合物としては、得られるコーティング組成物の帯電防止性能等を発現する観点から、導電性を有する金属酸化物が好適に用いられる。
このような導電性を有する金属酸化物としては、例えば、錫をドープした酸化インジウム(ITO)、アンチモンをドープした酸化錫(ATO)、酸化スズ、酸化亜鉛等を挙げることができる。
【0017】
なお、前記(A)成分は、上述した種々の単独金属化合物を用いて(好ましくは主成分として用いて)形成することができる。ここで、本実施の形態において「主成分」とは、特定成分(2種以上の特定成分を併用する場合には、それらの総量)がマトリックス成分中に占める割合が好ましくは50質量%以上、より好ましくは70質量%以上、更に好ましくは90質量%以上であり、100質量%であっても良いことを意味する。
【0018】
前記(A)成分を用いる際の形態としては、例えば、粉体、分散液、ゾル等が挙げられる。
ここでいう分散液、またはゾルとは、前記(A)成分が水及び/又は親水性有機溶媒中に0.01〜80質量%、好ましくは0.1〜50質量%の濃度で、一次粒子及び/又は二次粒子として分散された状態を意味する。
上記親水性有機溶媒としては、例えば、エチレングリコール、ブチルセロソルブ、n−プロパノール、イソプロパノール、n−ブタノール、エタノール、メタノール等のアルコール類、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類、テトラヒドロフラン、ジオキサン等のエーテル類、ジメチルアセトアミド、ジメチルホルムアミド等のアミド類、ジメチルスルホキシド、ニトロベンゼン等、さらにはこれらの2種以上の混合物が挙げられる。
【0019】
上記分散液又はゾル中に観察される前記(A)成分の数平均粒子径(1次粒子と2次粒子との混合物であっても良いし、1次粒子、2次粒子何れかのみであってもよい)としては、好ましくは1nm〜400nm、より好ましくは1nm〜100nm、更に好ましくは3nm〜80nm、特に好ましくは5nm〜50nmである。前記(A)成分の数平均粒子径は、得られるコーティング組成物を用いて形成される積層体(太陽電池用カバー材等)の光学特性等に寄与し得る。特に、100nm以下とすることは、得られる太陽電池用カバー材の透明性を大きく向上させ得る。
なお、本実施の形態における数平均粒子径(単に、「粒子径」と略記することがある)とは、後述する実施例の方法に準じて測定された値である。
【0020】
前記(A)成分としては、溶媒に対する分散安定性、化学的安定性、耐久性を向上させる観点から、以下の(A’)成分、
(A’)成分:式(1)で表されるトリオルガノシラン単位、式(2)で表されるモノオキシジオルガノシラン単位、式(3)で表されるジオキシオルガノシラン単位、式(4)で表されるトリオキシシラン単位、及びジフルオロメチレン単位よりなる群から選択される少なくとも1種の構造単位を有する変性剤化合物にて、前記単独金属化合物粒子を変性処理して形成される変性金属化合物、
を含むことが好ましい。なお、「変性処理」とは、上記変性剤化合物を前記単独金属化合物粒子の表面に固定化することを意味する。上記変性剤化合物の前記単独金属化合物粒子表面への固定化は、ファン・デル・ワールス力(物理吸着)または化学結合によるものと考えられる。
【0021】
Si− (1)
(式中、Rは各々独立に直鎖状または分岐状の炭素数1〜30個のアルキル基、炭素数5〜20のシクロアルキル基、直鎖状または分岐状の炭素数1〜30個のフルオロアルキル基、直鎖状または分岐状の炭素数2〜30個のアルケニル基、フェニル基、炭素数1〜20のアルコキシ基、又は水酸基を表す。)
−(RSiO)− (2)
(式中、Rは式(1)で定義した通りである。)
【0022】
【化3】

(式中、Rは式(1)で定義した通りである。)
【0023】
【化4】

【0024】
前記変性剤化合物としては、例えばSi−H基、加水分解性シリル基(アルコキシシリル基、ヒドロキシシリル基、ハロゲン化シリル基、アセトキシシリル基、アミノキシシリル基等)、エポキシ基、アセトアセチル基、チオール基、酸無水物基等を有することが好適である。また、前記変性剤化合物としては、ケイ素化合物、フルオロアルキル化合物、フルオロオレフィン重合体であることが好ましい。このような変性剤化合物は、前記単独金属化合物粒子と強固に結合し得る。
【0025】
前記変性剤化合物の中でフルオロアルキル化合物の具体例を示すと、式(5)で示される化合物を挙げることができる。
CF(CF)g−Y−(V)w (5)
{式中、gは0〜29の整数を表す。Yは分子量14〜50000のw価の有機基を表す。wは1〜20の整数である。Vは、エポキシ基、水酸基、アセトアセチル基、チオール基、環状酸無水物基、カルボキシル基、スルホン酸基、ポリオキシアルキレン基、リン酸基、及び下式(6)で表される基からなる群から選ばれた少なくとも1つの官能基を表す。
−SiWxRy (6)
(式中、Wは炭素数1〜20のアルコキシ基、水酸基、炭素数1〜20のアセトキシ基、ハロゲン原子、水素原子、炭素数1〜20のオキシム基、フエノキシ基、アミノキシ基、アミド基から選ばれた少なくとも1種の基を表す。Rは、直鎖状または分岐状の炭素数が1〜30個のアルキル基、炭素数5〜20のシクロアルキル基、及び置換されていないか或いは炭素数1〜20のアルキル基又は炭素数1〜20のアルコキシ基、又はハロゲン原子で置換されている炭素数6〜20のアリール基から選ばれる少なくとも1種の炭化水素基を表す。xは1以上3以下の整数であり、yは0以上2以下の整数である。また、x+y=3である。)}
【0026】
また、上記変性剤化合物としては、得られる(A’)成分の表面エネルギーを小さくして自己傾斜機能を発現させる観点から、表面エネルギーの小さい化合物{例えば、上記式(1)〜(4)における置換基Rが直鎖状または分岐状の炭素数1〜30個のアルキル基、直鎖状または分岐状の炭素数1〜30個のフルオロアルキル基、直鎖状または分岐状の炭素数2〜30個のアルケニル基から選ばれる少なくとも1種である化合物、及び/又はジフルオロメチレン単位を有する化合物}を選択することが好ましい。
【0027】
ここで、上記「自己傾斜機能を発現」とは、前記(A’)成分と前記(B)成分とを含むコーティング組成物を基材上に積層して太陽電池用カバー材を形成する際、基材表面の性状(特に親水/疎水性)に対応して前記(A’)成分の濃度勾配(コーティング組成物にて形成される層中の濃度の偏り)が自立的に形成されることを意味する。
前記(A’)成分として、表面エネルギーの小さな化合物で変性された光触媒を用い、表面親水性の大きな基材を用いて太陽電池用カバー材を形成する場合、前記(A’)成分は空気と接する側に偏在して前記基材表面付近の存在量が少なくなる傾向となる。このような場合、高い光触媒活性を期待し得ると共に、基材が分解され難くなる(基材の耐久性が向上する)ため好ましい。
【0028】
なお、上記変性処理の方法としては、例えば、水及び/又は有機溶媒の存在下、あるいは非存在下において、前記単独金属化合物粒子と前記変性剤化合物とを混合し、好ましくは0〜200℃、より好ましくは10〜80℃にて加熱する方法や、混合溶媒の存在下で前記単独金属化合物粒子と前記変性剤化合物とを混合し、(減圧)蒸留等して混合溶媒の溶媒組成を変化させる方法、等が挙げられる。
【0029】
前記(A’)成分が、前記(A)成分中に占める割合としては、好ましくは0.01〜100質量%、より好ましくは0.01〜99.99質量%、更に好ましくは0.1〜95質量%、特に好ましくは1〜90質量%である。当該割合を0.01質量%以上とすることは、自己傾斜性を付与する観点から好適である。なお、当該割合を99.99質量%以下とすることは、光触媒性能を比較的短時間で発現させる観点から好適である。
【0030】
また、前記(A)成分、又は前記(A’)成分について、その粒子長(l)と粒子直径(d)の比(l/d)としては、比表面積を確保する観点、及び粒子の配向効果の観点から、好ましくは1/1〜20/1、より好ましくは1/1〜15/1、さらに好ましくは1/1〜10/1である。
なお、上記粒子長や粒子直径の測定方法としては、透過型電子顕微鏡観察する方法を用いることができる。
【0031】
前記(B)成分は、以下の(b1)〜(b4)の各成分、
(b1)成分:加水分解性珪素化合物、
(b2)成分:2級及び/又は3級アミド基を有するビニル単量体、
(b3)成分:乳化剤、
(b4)成分:水、
を含む重合原液を重合して得られる重合体エマルジョン粒子である。このようにして得られる(B)成分としては、前記(b1)成分に由来する水酸基と、前記(b2)成分の重合生成物とが、水素結合等により複合化されたものを用いることが好適である。
【0032】
前記(b1)成分としては、下記式(7)で表される化合物やその縮合生成物、シランカップリング剤を例示することができる。
SiWxRy (7)
(式中、Wは炭素数1〜20のアルコキシ基、水酸基、炭素数1〜20のアセトキシ基、ハロゲン原子、水素原子、炭素数1〜20のオキシム基、エノキシ基、アミノキシ基、アミド基から選ばれた少なくとも1種の基を表す。Rは、直鎖状又は分岐状の炭素数が1〜30個のアルキル基、炭素数5〜20のシクロアルキル基、及び置換されていないか又は炭素数1〜20のアルキル基若しくは炭素数1〜20のアルコキシ基若しくはハロゲン原子で置換されている炭素数6〜20のアリール基から選ばれる少なくとも1種の炭化水素基を表す。xは1以上4以下の整数であり、yは0以上3以下の整数である。また、x+y=4である。)
なお、シランカップリング剤とは、ビニル重合性基、エポキシ基、アミノ基、メタクリル基、メルカプト基、イソシアネート基等の有機物と反応性を有する官能基が分子内に存在する化合物を意味する。
【0033】
前記式(7)で表される化合物の具体例としては、例えばテトラメトキシシラン、テトラエトキシシラン、テトラ−n−プロポキシシラン、テトライソプロポキシシラン、テトラ−n−ブトキシシラン等のテトラアルコキシシラン類;
メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、n−プロピルトリメトキシシラン、n−プロピルトリエトキシシラン、イソプロピルトリメトキシシラン、イソプロピルトリエトキシシラン、n−ブチルトリメトキシシラン、n−ブチルトリエトキシシラン、n−ペンチルトリメトキシシラン、n−ヘキシルトリメトキシシラン、n−ヘプチルトリメトキシシラン、n−オクチルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、アリルトリメトキシシラン、シクロヘキシルトリメトキシシラン、シクロヘキシルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、3−クロロプロピルトリメトキシシラン、3−クロロプロピルトリエトキシシラン、3,3,3−トリフロロプロピルトリメトキシシラン、3,3,3−トリフロロプロピルトリエトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、2−ヒドロキシエチルトリメトキシシラン、2−ヒドロキシエチルトリエトキシシラン、2−ヒドロキシプロピルトリメトキシシラン、2−ヒドロキシプロピルトリエトキシシラン、3−ヒドロキシプロピルトリメトキシシラン、3−ヒドロキシプロピルトリエトキシシラン、3−メルカプトプロピルトリメトキシシラン、3−メルカプトプロピルトリエトキシシラン、3−イソシアナートプロピルトリメトキシシラン、3−イソシアナートプロピルトリエトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリエトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリエトキシシラン、3−(メタ)アクリルオキシプロピルトリメトキシシラン、3−(メタ)アタクリルオキシプロピルトリエトキシシラン、3−(メタ)アクリロイルオキシプロピルトリ−n−プロポキシシラン、3−(メタ)アクリロイルオキシプロピルトリイソプロポキシシラン、3−ウレイドプロピルトリメトキシシラン、3−ウレイドプロピルトリエトキシシラン等のトリアルコキシシラン類;
ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジメトキシシラン、ジエチルジエトキシシラン、ジ−n−プロピルジメトキシシラン、ジ−n−プロピルジエトキシシラン、ジイソプロピルジメトキシシラン、ジイソプロピルジエトキシシラン、ジ−n−ブチルジメトキシシラン、ジ−n−ブチルジエトキシシラン、ジ−n−ペンチルジメトキシシラン、ジ−n−ペンチルジエトキシシラン、ジ−n−ヘキシルジメトキシシラン、ジ−n−ヘキシルジエトキシシラン、ジ−n−ヘプチルジメトキシシラン、ジ−n−ヘプチルジエトキシシラン、ジ−n−オクチルジメトキシシラン、ジ−n−オクチルジエトキシシラン、ジ−n−シクロヘキシルジメトキシシラン、ジ−n−シクロヘキシルジエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、3−(メタ)アクリロイルオキシプロピルメチルジメトキシシラン等のジアルコキシシラン類;
トリメチルメトキシシラン、トリメチルエトキシシラン等のモノアルコキシシラン類;
等を挙げることができる。また、これらは、単独で又は2種以上を混合して使用することができる。
【0034】
また、前記(b1)成分としては、フェニル基を有する珪素アルコキシド(例えばフェニルトリメトキシシラン、フェニルトリエトキシシラン、ジフェニルジメトキシシラン等)を用いることができる。フェニル基を有する珪素アルコキシドを用いた場合、水及び乳化剤の存在下における重合安定性が良好となり好適である。
更に、前記(b1)成分としては、チオール基を有するシランカップリング剤や、以下の(b1−1)成分、
(b1−1)成分:ビニル重合性基を有する加水分解性珪素化合物
を含んでも良い。これらを用いた場合、得られる太陽電池用カバー材の耐候性、防汚染性が良好となり好適である。
【0035】
上記チオール基を有するシランカップリング剤としては、例えば、3−メルカプトプロピルトリメトキシシラン、3−メルカプトプロピルトリエトキシシラン等、を挙げることができる。
また、前記(b1−1)成分としては、例えば、3−(メタ)アクリルオキシプロピルトリメトキシシラン、3−(メタ)アタクリルオキシプロピルトリエトキシシラン、3−(メタ)アクリロイルオキシプロピルメチルジメトキシシラン、3−(メタ)アクリロイルオキシプロピルトリn−プロポキシシラン、3−(メタ)アクリロイルオキシプロピルトリイソプロポキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、アリルトリメトキシシラン、2−トリメトキシシリルエチルビニルエーテル等のビニル重合性基を有するシランカップリング剤、等を挙げることができる。
これらシランカップリング剤は、後述する(b2)成分との共重合又は連鎖移動反応により化学結合を生成し得る。このため、ビニル重合性基やチオール基を有するシランカップリング剤を上述した前記(b1)成分と混合若しくは複合化させて用いた場合、前記(b1)の重合生成物と後述する(b2)成分の重合生成物とを化学結合により複合化し得る。
なお、(b1−1)成分にいう「ビニル重合性基」としては、例えば、ビニル基、アリル基等を挙げることができ、中でも3(メタ)アクリルオキシプロピル基が好ましい。
【0036】
また、前記(b1)成分としては、以下の(b1−2)成分、
(b1−2)成分:環状シロキサンオリゴマー
を含んでいても良い。当該(b1−2)成分を用いた場合、得られる太陽電池用カバー材の柔軟性がより良好となり好適である。
【0037】
前記環状シロキサンオリゴマーとしては、下記式(8)で表される化合物を例示することができる。
(R’SiO)m (8)
(式中、R’は、水素原子、直鎖状又は分岐状の炭素数が1〜30個のアルキル基、炭素数5〜20のシクロアルキル基、及び置換されていないか又は炭素数1〜20のアルキル基若しくは炭素数1〜20のアルコキシ基若しくはハロゲン原子で置換されている炭素数6〜20のアリール基から選ばれる少なくとも1種を表す。mは整数であり、2≦m≦20である。)
中でも、反応性等の点からオクタメチルシクロテトラシロキサン等の環状ジメチルシロキサンオリゴマーが好ましい。
【0038】
なお、前記(b1)成分が縮合生成物として使用される場合、当該縮合生成物のポリスチレン換算重量平均分子量(GPC法による)は、好ましくは200〜5000、より好ましくは300〜1000である。
【0039】
前記(b1)成分と、後述する(B)成分との比(b1)/(B)(質量比)としては、重合安定性の観点から、好ましくは0.01/100〜20/100、より好ましくは0.1/100〜10/100である。
また、前記(b1)成分と、後述する(b2)成分との比(b2)/(b1)(質量比)としては、前記(A)成分との反応性の観点から、好ましくは5/95〜95/5、より好ましくは10/90〜90/10である。
【0040】
一方、前記(b1−1)成分と、前記(B)成分との比(b1−1)/(B)(質量比)としては、重合安定性の観点から、好ましくは0.01/100〜20/100、より好ましくは0.5/100〜10/100である。
また、前記(b1−1)成分と、前記(b2)成分との比(b1−1)/(b2)(質量比)としては、重合安定性の観点から、好ましくは0.1/100〜100/100、より好ましくは0.5/100〜50/100である。
他方、前記(b1−2)成分と、前記(B)成分との比(b1−2)/(B)(質量比)としては、親水性の観点から、好ましくは0.01/100〜20/100、より好ましくは0.5/100〜5/100である。
また、前記(b1−2)成分と、前記(b2)成分との比(b1−2)/(b2)(質量比)としては、重合安定性の観点から、好ましくは0.5/100〜50/100、より好ましくは1.0/100〜20/100である。
【0041】
前記(b2)成分としては、例えば、N−アルキル又はN−アルキレン置換(メタ)アクリルアミドを例示することができる。
より具体的には、例えばN−メチルアクリルアミド、N−メチルメタアクリルアミド、N−エチルアクリルアミド、N,N−ジメチルアクリルアミド、N,N−ジメチルメタアクリルアミド、N,N−ジエチルアクリルアミド、N−エチルメタアクリルアミド、N−メチル−N−エチルアクリルアミド、N−メチル−N−エチルメタアクリルアミド、N−イソプロピルアクリルアミド、N−n−プロピルアクリルアミド、N−イソプロピルメタアクリルアミド、N−n−プロピルメタアクリルアミド、N−メチル−N−n−プロピルアクリルアミド、N−メチル−N−イソプロピルアクリルアミド、N−アクリロイルピロリジン、N−メタクリロイルピロリジン、N−アクリロイルピペリジン、N−メタクリロイルピペリジン、N−アクリロイルヘキサヒドロアゼピン、N−アクリロイルモルホリン、N−メタクリロイルモルホリン、N−ビニルピロリドン、N−ビニルカプロラクタム、N,N’−メチレンビスアクリルアミド、N,N’−メチレンビスメタクリルアミド、N−ビニルアセトアミド、ダイアセトンアクリルアミド、ダイアセトンメタアクリルアミド、N−メチロールアクリルアミド、N−メチロールメタアクリルアミド等を挙げることができる。
【0042】
前記(b2)成分としては、他成分との水素結合性をより向上させる観点から、2級及び/または3級アミド基を有するビニル単量体を用いることが好ましい。
また、水及び乳化剤の存在下における重合安定性を向上させる観点から、前記(b2)成分としては、N,N−ジエチルアクリルアミドを用いることが好適である。
【0043】
前記(b2)成分と、前記(B)成分との比(b2)/(B)(質量比)としては、重合安定性の観点から、好ましくは0.1/1〜0.5/1である。
また、前記(b2)成分と、前記(A)成分との比(b2)/(A)(質量比)としては、(A)成分との水素結合性や配合安定性の観点から、好ましくは0.1/1〜1.0/1である。
【0044】
前記(b3)成分としては、例えば、アルキルベンゼンスルホン酸、アルキルスルホン酸、アルキルスルホコハク酸、ポリオキシエチレンアルキル硫酸、ポリオキシエチレンアルキルアリール硫酸、ポリオキシエチレンジスチリルフェニルエーテルスルホン酸等の酸性乳化剤、酸性乳化剤のアルカリ金属(Li、Na、K等)塩、酸性乳化剤のアンモニウム塩、脂肪酸石鹸等のアニオン性界面活性剤;
アルキルトリメチルアンモニウムブロミド、アルキルピリジニウムブロミド、イミダゾリニウムラウレート等の四級アンモニウム塩、ピリジニウム塩、イミダゾリニウム塩型のカチオン性界面活性剤;
ポリオキシエチレンアルキルアリールエーテル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンオキシプロピレンブロックコポリマー、ポリオキシエチレンジスチリルフェニルエーテル等のノニオン型界面活性剤;
等が挙げられる。これらは1種を単独で、又は2種以上を併用することができる。
【0045】
前記(b3)成分としては、得られる前記(B)成分の水分散安定性を向上させる観点、及び、得られる太陽電池用カバー材の耐候性、防汚染性を向上させる観点から、ラジカル重合性の二重結合を有する反応性乳化剤を用いることが好ましい。
【0046】
上記反応性乳化剤としてより具体的には、例えば、スルホン酸基又はスルホネート基を有するビニル単量体、硫酸エステル基を有するビニル単量体やそれらのアルカリ金属塩、アンモニウム塩、ポリオキシエチレン等のノニオン基を有するビニル単量体、4級アンモニウム塩を有するビニル単量体等を挙げることができる。
上記スルホン酸基又はスルホネート基を有するビニル単量体としては、例えば、ラジカル重合性の二重結合を有し、且つスルホン酸基のアンモニウム塩、ナトリウム塩又はカリウム塩のような置換基により一部が置換された、炭素数1〜20のアルキル基、炭素数2〜4のアルキルエーテル基、炭素数2〜4のポリアルキルエーテル基、フェニル基、ナフチル基、及びコハク酸基よりなる群から選ばれる置換基を有する化合物;
スルホン酸基のアンモニウム塩、ナトリウム塩又はカリウム塩のような置換基が結合しているビニル基を有するビニルスルホネート化合物;
等が挙げられる。
【0047】
硫酸エステル基を有するビニル単量体としては、例えば、ラジカル重合性の二重結合を有し、かつ硫酸エステル基のアンモニウム塩、ナトリウム塩又はカリウム塩のような置換基により一部が置換された、炭素数1〜20のアルキル基、炭素数2〜4のアルキルエーテル基、炭素数2〜4のポリアルキルエーテル基、フェニル基、及びナフチル基よりなる群から選ばれる置換基を有する化合物が挙げられる。
【0048】
上記スルホン酸基のアンモニウム塩、ナトリウム塩又はカリウム塩のような置換基により一部が置換されたコハク酸基を有する化合物の具体例としては、アリルスルホコハク酸塩が挙げられる。より詳しくは、例えば、エレミノールJS−2(商品名)(三洋化成(株)製)、ラテムルS−120、S−180A又はS−180(商品名)(花王(株)製)等を挙げることができる。
また、上記スルホン酸基のアンモニウム塩、ナトリウム塩又はカリウム塩である基により一部が置換された、炭素数2〜4のアルキルエーテル基又は炭素数2〜4のポリアルキルエーテル基を有する化合物の具体例としては、例えばアクアロンHS−10又はKH−1025(商品名)(第一工業製薬(株)製)、アデカリアソープSE−1025N又はSR−1025(商品名)(旭電化工業(株)製)等を挙げることができる。
【0049】
また、ノニオン基を有するビニル単量体として具体的には、例えば、α−〔1−〔(アリルオキシ)メチル〕−2−(ノニルフェノキシ)エチル〕−ω−ヒドロキシポリオキシエチレン(商品名:アデカリアソープNE−20、NE−30、NE−40等、旭電化工業(株)製)、ポリオキシエチレンアルキルプロペニルフェニルエーテル(商品名:アクアロンRN−10、RN−20、RN−30、RN−50等、第一製薬工業(株)製)等を挙げることができる。
【0050】
前記(b3)成分の使用量としては、重合安定性の観点から、前記(B)成分100質量部に対して、好ましくは10質量部以下、より好ましくは0.001〜5質量部である。
【0051】
前記(B)成分は上述した(b1)〜(b3)の各成分、及び前記(b4)成分(即ち「水」)を含む重合原液を重合して得られる重合体エマルジョン粒子である。前記(b4)成分の使用量としては、重合安定性の観点から、重合原液中の含有率として好ましくは30〜99.9質量%である。
【0052】
前記重合原液には、(b1)〜(b4)成分に加え、更に種々の成分を混合することができる。
まず、前記重合原液には、以下の(b5)成分、
(b5)成分:(b2)成分と共重合可能な他のビニル単量体、
を混合することができる。このような(b5)成分を用いることは、生成する重合生成物の特性(ガラス転移温度、分子量、水素結合力、極性、分散安定性、耐候性、加水分解性珪素化合物(b1)の重合生成物との相溶性等)を制御する観点から好適である。
【0053】
前記(b5)成分としては、例えば、アクリル酸エステル、メタクリル酸エステル、芳香族ビニル化合物、シアン化ビニル類の他、カルボキシル基含有ビニル単量体、水酸基含有ビニル系単量体、エポキシ基含有ビニル単量体、カルボニル基含有ビニル単量体、アニオン型ビニル単量体のような官能基を含有する単量体、等を挙げることができる。
前記(b5)成分が全ビニル単量体中に占める割合としては、好ましくは0.001〜30質量%であり、より好ましくは0.05〜10質量%の範囲である。このような使用量とすることは、ガラス転移温度、分子量、水素結合力、極性、分散安定性、耐候性、加水分解性珪素化合物(b1)の重合生成物との相溶性等を制御する観点から好適である。
【0054】
また、前記重合原液には、連鎖移動剤を混合することができる。
このような連鎖移動剤としては、例えば、n−オクチルメルカプタン、n−ドデシルメルカプタン、t−ドデシルメルカプタンのようなアルキルメルカプタン類;ベンジルメルカプタン、ドデシルベンジルメルカプタンのような芳香族メルカプタン類;チオリンゴ酸のようなチオカルボン酸又はそれらの塩若しくはそれらのアルキルエステル類、又はポリチオール類、ジイソプロピルキサントゲンジスルフィド、ジ(メチレントリメチロールプロパン)キサントゲンジスルフィド及びチオグリコール、さらにはα−メチルスチレンのダイマー等のアリル化合物等を挙げることができる。
これら連鎖移動剤の使用量としては、全ビニル単量体合計量100質量部に対して、好ましくは0.001〜30質量部、より好ましくは0.05〜10質量部である。このような使用量とすることは、重合安定性の観点から好適である。
【0055】
更に、前記重合原液には分散安定剤を混合することができる。
このような分散安定剤としては、例えば、ポリカルボン酸及びスルホン酸塩からなる群から選ばれる各種の水溶性オリゴマー類や、ポリビニルアルコール、ヒドロキシエチルセルロース、澱粉、マレイン化ポリブタジエン、マレイン化アルキッド樹脂、ポリアクリル酸(塩)、ポリアクリルアミド、水溶性又は水分散性アクリル樹脂などの合成又は天然の水溶性又は水分散性の各種の水溶性高分子物質が挙げられ、これらの1種又は2種以上の混合物を使用することができる。
これらの分散安定剤の使用量としては、重合体エマルジョン粒子(B)100質量部に対して、好ましくは10質量部以下であり、より好ましくは0.001〜5質量部である。
【0056】
上述した重合原液の重合は、重合触媒の存在下で実施するのが好ましい。
前記(b1)成分の重合触媒としては、例えば、塩酸、フッ酸等のハロゲン化水素類、酢酸、トリクロル酢酸、トリフルオロ酢酸、乳酸等のカルボン酸類、硫酸、p−トルエンスルホン酸等のスルホン酸類、アルキルベンゼンスルホン酸、アルキルスルホン酸、アルキルスルホコハク酸、ポリオキシエチレンアルキル硫酸、ポリオキシエチレンアルキルアリール硫酸、ポリオキシエチレンジスチリルフェニルエーテルスルホン酸等の酸性乳化剤類、酸性又は弱酸性の無機塩、フタル酸、リン酸、硝酸のような酸性化合物類;水酸化ナトリウム、水酸化カリウム、ナトリウムメチラート、酢酸ナトリウム、テトラメチルアンモニウムクロリド、テトラメチルアンモニウムヒドロキシド、トリブチルアミン、ジアザビシクロウンデセン、エチレンジアミン、ジエチレントリアミン、エタノールアミン類、γ−アミノプロピルトリメトキシシラン、γ−(2−アミノエチル)−アミノプロピルトリメトキシシランのような塩基性化合物類;ジブチル錫オクチレート、ジブチル錫ジラウレートのような錫化合物等を挙げることができる。
中でも、加水分解性珪素化合物(b1)の重合触媒としては、重合触媒のみならず乳化剤としての作用を有する酸性乳化剤類、特に炭素数が5〜30のアルキルベンゼンスルホン酸(ドデシルベンゼンスルホン酸等)が非常に好ましい。
【0057】
前記(b2)成分の重合触媒としては、熱又は還元性物質などによってラジカル分解してビニル単量体の付加重合を起こさせるラジカル重合触媒が好適である。水溶性又は油溶性の過硫酸塩、過酸化物、アゾビス化合物等が好ましく使用される。より具体的には、例えば、過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム、過酸化水素、t−ブチルヒドロパーオキシド、t−ブチルパーオキシベンゾエート、2,2−アゾビスイソブチロニトリル、2,2−アゾビス(2−ジアミノプロパン)ヒドロクロリド、2,2−アゾビス(2,4−ジメチルバレロニトリル)等が挙げられる。
なお、重合触媒の使用量としては、全ビニル単量体100質量部に対して、好ましくは0.001〜5質量部である。なお、重合速度の促進、及び70℃以下での低温の重合を望むときには、例えば重亜硫酸ナトリウム、塩化第一鉄、アスコルビン酸塩、ロンガリット等の還元剤をラジカル重合触媒と組み合わせて用いると有利である。
【0058】
本実施の形態において、前記(b1)成分の重合と、前記(b2)成分との重合とは、別々に実施することも可能であるが、同時に実施すると水素結合等によるミクロな有機・無機複合化が達成できるので好ましい。
【0059】
前記(B)成分を得る方法としては、乳化剤がミセルを形成するのに十分な量の水の存在下に前記(b1)成分と前記(b2)成分とを重合する、いわゆる乳化重合が適している。
乳化重合の方法としては、例えば、前記(b1)成分と前記(b2)成分、更には必要に応じて前記(b3)成分を、そのまま、又は乳化した状態で、一括若しくは分割で、又は連続的に反応容器中に滴下し、前記重合触媒の存在下、好ましくは大気圧から必要により10MPaの圧力下で、約30〜150℃の反応温度で重合させる方法が挙げられる。場合によっては、これ以上の圧力で、又はこれ以下の温度条件で重合を行っても差し支えない。
なお、重合原液の配合としては、重合安定性の観点から、最終固形分量が0.1〜70質量%、好ましくは1〜55質量%の範囲になるように前記(b1)〜(b4)の各成分を配合するのが好ましい。
【0060】
更に、前記乳化重合を行なうに際しては、粒子径を適度に成長又は制御する観点から、シード重合法を用いることが好ましい。シード重合法とは、予め水相中にエマルジョン粒子(シード粒子)を存在させて重合させる方法である。シード重合法を行なう際の重合系中のpHとしては、好ましくは1.0〜10.0、より好ましくは1.0〜6.0である。pHは、燐酸二ナトリウムやボラックス、又は、炭酸水素ナトリウム、アンモニアなどのpH緩衝剤を用いて調節することが可能である。
なお、前記(B)成分を得る方法としては、前記(b1)成分を重合させるのに必要な前記(b3)成分及び前記(b4)成分の存在下、前記(b1)成分及び前記(b2)成分を、必要により溶剤存在下で重合した後、重合生成物がエマルジョンとなるまで水を添加する手法も適用できる。
【0061】
前記(B)成分としては、得られるコーティング組成物を用いて形成される塗膜の機械的物性(強度と柔軟性のバランス等)を向上させる観点から、コア層と、当該コア層を被覆する1層又は2層以上のシェル層とを備えたコア/シェル構造を有することが好ましい。そして、当該コア/シェル構造を形成する方法としては、前記乳化重合を多段で行なう、多段乳化重合が非常に有用である。
また、前記(B)成分がコア/シェル構造であると共に、そのシェル層が前記(A)成分と相互作用した状態で連続層を形成し、粒子状のコア層が該連続層中に存在することが好ましい。この場合、得られるコーティング組成物の耐薬品性、光学特性、機械的特性(強度と柔軟性のバランス等)が向上し得る。
【0062】
多段乳化重合の例としてより具体的には、例えば第一段階として、前記(b3)成分及び前記(b4)成分の存在下、前記(b1)、(b2)、及び(b5)成分よりなる群から選択される少なくとも1種以上を重合してシード粒子を形成し、第二段階として、当該シード粒子の存在下、前記(b1)成分及び前記(b2)成分、更には必要に応じ前記(b5)成分を含む重合原液を添加して重合する方法(2段重合法)が挙げられる。このような方法は、重合安定性の観点からも好適である。
【0063】
ここで、前記第一段階において用いられる重合原液中の固形分質量(M1)と、前記第二段階において添加される重合原液中の固形分質量(M2)の質量比としては、重合安定性の観点から、好ましくは(M1)/(M2)=9/1〜1/9、より好ましくは8/2〜2/8である。
また、前記コア/シェル構造としては、重合安定性の観点から、前記シード粒子の粒径分布(体積平均粒子径/数平均粒子径)が大きく変化することなく、前記第二段階の重合によって粒子径が増大した構造を有することが好ましい。なお、体積平均粒子径は、数平均粒子径と同様に測定し得る。
【0064】
前記コア/シェル構造は、例えば、透過型電子顕微鏡等による形態観察や粘弾性測定による解析等により観察することができる。
また、3段以上の多段乳化重合を実施する場合は、上述した2段重合法を参考に、重合する段数の数を増加させれば良い。
【0065】
前記コア/シェル構造のコア層のガラス転移温度(Tg)としては、好ましくは0℃以下である。この場合、得られるコーティング組成物の物性として、室温における柔軟性に優れ、割れ等が生じにくい太陽電池用カバー材を形成することが可能となり、好ましい。
なお、本実施の形態におけるTgは示差走査熱量測定装置(DSC)にて測定することができる。
【0066】
前記コア層において、前記(b2)成分と前記(b1)成分との比(b2)/(b1)(質量比)としては、好ましくは0.01/1〜1/1である。また、前記シェル層の最外層において、前記(b2)成分と前記(b1)成分との比(b2)/(b1)(質量比)としては、好ましくは0.1/1〜5/1である。それらの比が上記範囲に設定された場合、得られるコーティング組成物の耐候性、機械的物性が共に特に良好であり好ましい。
【0067】
前記(B)成分の粒子径としては、10nm〜800nmである。この様な粒子径の範囲に調整し、粒子径が1nm〜400nmの前記(A)成分と組み合わせて組成物を形成することにより、耐候性、防汚染性が良好であり、しかも樹脂基材に対する保護性が良好なコーティング組成物を実現し得る。また、前記(B)成分の粒子径を50nm〜300nmとすることは、得られる塗膜の透明性向上の観点から好適である。
【0068】
前記(A)成分と前記(B)成分の比(A)/(B)(質量比)としては、好ましくは1/99〜99/1、より好ましくは5/95〜90/10、さらに好ましくは9/91〜83/17である。この範囲で配合されたコーティング組成物からは、耐候性、防汚染性に優れた太陽電池用カバー材を実現し得るため好ましい。
また、前記(A)成分の表面積(SA)と前記(B)成分の表面積(SB)との比(SA)/(SB)としては、好ましくは0.001〜1000の範囲である。なお表面積は、前記(A)成分及び前記(B)成分の各々の粒子径、及び各々の配合質量数から算出することができる。
【0069】
前記(C)成分としては、酸化亜鉛、酸化セリウム、水酸化アルミニウム、酸化ジルコニウム、酸化鉄、酸化チタン、及び二酸化珪素よりなる群から選択される2種以上の複合体が用いられる。本実施の形態において「複数金属化合物の複合体」とは、上記の群に含まれるいずれかの金属化合物の複数を用い、それらが複合化されたものである。複合化の態様に特に限定されない。例えば、一つの金属化合物がコアを形成し、その他の金属化合物が前記コアを被覆する1層又は複数層のシェルを形成するコア/シェル構造であっても良いし、一つの金属化合物が海相、その他の金属化合物が島相を形成する海島構造であっても良い。
【0070】
前記酸化チタンとしては、分散安定性と基材保護性の観点からルチル型酸化チタンが好ましい。また、前記酸化亜鉛、酸化セリウム、水酸化アルミニウム、酸化ジルコニウム、酸化鉄、酸化チタンとしては、分散安定性の観点から表面の一部又は全部がシリカで被覆されていることが好ましい。
ここで、前記(C)成分の配合量としては、前記(A)成分と前記(B)成分との合計量100質量部に対して、好ましくは0.1質量部〜80質量部である。(C)成分の配合量を0.1質量部以上とすることは、340nmの波長の紫外光の塗膜透過率を低減し、基材の紫外線による劣化を防止する観点から好適である。一方、80質量部以下とすることは、十分な塗膜強度を実現する観点から好適である。
また、前記(C)成分の粒子径としては、塗膜透明性の観点から、好ましくは10nm〜600nm、より好ましくは20nm〜200nmである。粒子径を10nm以上とすることは、塗膜のヘイズを低減する観点から好適である。
なお、前記(C)成分としては市販品を用いることができる。このような市販品としては、例えば石原産業(株)製商品名「MPT−144」、「TTO−S−1」、「TTO−F−1」等を挙げることができる。
【0071】
本実施の形態のコーティング組成物には、その用途及び使用方法などに応じて、通常、塗料や成型用樹脂に添加配合される添加剤成分、例えば、光安定剤、紫外線吸収剤、増粘剤、レベリング剤、チクソ化剤、消泡剤、凍結安定剤、艶消し剤、架橋反応触媒、顔料、硬化触媒、架橋剤、充填剤、皮張り防止剤、分散剤、湿潤剤、酸化防止剤、紫外線吸収剤、レオロジーコントロール剤、成膜助剤、防錆剤、染料、可塑剤、潤滑剤、還元剤、防腐剤、防黴剤、消臭剤、黄変防止剤、静電防止剤又は帯電調整剤等をそれぞれの目的に応じて選択したり、組み合わせたりして配合することができる。
【0072】
前記光安定剤としては、例えば、ヒンダードアミン系光安定剤が好ましく用いられる。中でも、分子内にラジカル重合性の二重結合を有するラジカル重合性光安定剤が好ましい。
また、前記紫外線吸収剤としては、例えば有機系紫外線吸収剤を挙げることができる。このような有機系紫外線吸収剤としては、例えば、ベンゾフェノン系紫外線吸収剤、ベンゾトリアゾール系紫外線吸収剤、トリアジン系紫外線吸収剤が挙げられる。中でも、分子内にラジカル重合性の二重結合を有するラジカル重合性紫外線吸収剤を用いることが好ましい。また、紫外線吸収能の高いベンゾトリアゾール系紫外線吸収剤、トリアジン系紫外線吸収剤が好ましい。
【0073】
なお、前記光安定剤は、前記有機系紫外線吸収剤と併用することが好ましい。両者を併用することは、得られるコーティング組成物の耐候性向上に寄与し得る。
また、これらの有機系紫外線吸収剤や、光安定剤、各種添加剤成分は、前記(A)成分及び前記(B)成分と単に配合することも可能であるし、前記(B)成分を合成する際に共存させることも可能である。
【0074】
本実施の形態の積層体は、樹脂基材と、上述したコーティング組成物にて形成される塗膜とを含む積層体であり、好ましくは、樹脂基材と、上述したコーティング組成物からなる塗膜とからなる積層体である。
また、本実施の形態の太陽電池用カバー材は、当該積層体を用いて形成され、好ましくは樹脂基材と、上述したコーティング組成物からなる塗膜とからなる積層体として形成される。
更に、本実施の形態の太陽電池は、当該太陽電池用カバー材を含む。
ここで、前記基材としては、例えば、合成樹脂、天然樹脂等の有機基材や、ガラス等の無機基材や、それらの組み合わせ等を挙げることができる。
【0075】
上述したコーティング組成物は、特に限定されるものではないが、水等の溶媒等に溶解乃至分散させた状態として調製することができる。
また、前記塗膜は、例えば、水等の溶媒等に分散させた前記コーティング組成物(「水分散体」と略記することがある)を前記基材上に塗工し、乾燥して形成される。ここで、水分散体の固形分濃度としては、好ましくは0.01〜60質量%、より好ましくは1〜40質量%である。また、水分散体の粘度としては、好ましくは20℃において0.1〜100000mPa・s、好ましくは1〜10000mPa・sである。更に、前記塗工方法としては、例えばスプレー吹き付け法、フローコーティング法、ロールコート法、刷毛塗り法、ディップコーティング法、スピンコーティング法、スクリーン印刷法、キャスティング法、グラビア印刷法、フレキソ印刷法等が挙げられる。なお、前記積層体は、例えば、前記塗膜を前記基材上で乾燥した後、所望により好ましくは20℃〜500℃、より好ましくは40℃〜250℃での熱処理や紫外線照射等を行い、形成することも可能である。
【0076】
前記塗膜の厚みとしては、好ましくは0.05〜100μm、より好ましくは0.1〜10μmである。透明性の面から、100μm以下の厚みであることが好ましく、耐候性、防汚染性等の機能を発現するためには0.05μm以上の厚みであることが好ましい。
なお、本実施の形態に言う「塗膜」は、必ずしも連続膜である必要はなく、不連続膜、島状分散膜等の態様であっても構わない。
【0077】
前記塗膜のヘイズとしては、塗膜の強度や耐久性、太陽電池の変換効率の観点から総合的に選定すれば良いが、太陽電池の変換効率の観点から好ましくは20以下、より好ましくは10以下、さらに好ましくは5以下である。
また、前記積層体の、波長340nmの紫外線透過率としては、好ましくは99%以下、より好ましくは95%以下である。
なお、ここでいう「ヘイズ」、「紫外線透過率」とは、後述する実施例に準じて測定することができ、前記(A)〜(C)成分の粒子径の大小により調節することが可能である。
【実施例】
【0078】
次に、実施例及び比較例を挙げて本実施の形態をより具体的に説明するが、本実施の形態はその要旨を超えない限り、以下の実施例に限定されるものではない。なお、各種物性は下記の方法で評価した。
【0079】
1.数平均粒子径
試料中の固形分含有量が1〜20質量%となるよう適宜溶媒を加えて希釈し、湿式粒度分析計(日本国日機装製マイクロトラックUPA−9230)を用いて測定した。
2.組成物の安定性
コーティング組成物を作成した後、粒子の沈降状態を目視にて判定した。以下の基準で評価した。
○:良好
×:沈降あり
3.初期CA
太陽電池用カバー材の表面(コーティング組成物の塗工面)に脱イオン水の水滴を乗せ、20℃で1分間放置した後、接触角測定装置(日本国協和界面科学製 CA−X150型接触角計)を用いて測定した。
4.初期ヘイズ、耐水後ヘイズ
濁度計(日本国日本電色工業製NDH2000)を用い、コーティング組成物の塗膜について、JIS−K7105に準じてヘイズ値を測定した(初期ヘイズ値)。
なお、耐水後ヘイズは、23℃の脱イオン水に24時間浸漬した後、23℃で12時間乾燥した後に測定したヘイズ値である。
5.紫外線透過率
PETフィルム上に太陽電池カバー材用組成物を膜厚1μmになるように形成し、日本分光社製V−550にて波長340nmの透過率を測定し、膜厚1μmあたりの紫外線透過率を求めた。
6.耐汚染目視
太陽電池用カバー材用組成物を作成した後、一般道路に面した暴露台(南面、暴露角度90度)に1ヶ月貼り付けた後、汚染の度合いを以下の基準で評価した。
◎:ほぼ汚れ付着なし
○:雨スジ汚れなどが若干付着する
7.耐候性後ヘイズ
サンシャインウェザーメーター(スガ試験器製)を使用して曝露試験(ブラックパネル温度63℃、降雨18分/2時間)を行った。曝露2000時間後のヘイズ値を4.記載の方法に準じて評価し、耐候性後ヘイズ値とした。
8.基材保護性
太陽電池用カバー材に対し、UV照射機(オーク製作所製 UV300)を使用して照度10mWで6時間、紫外光を照射した。その後、基材(PETフィルム)の黄変度を色差計(BYK Gardner製 カラーガイド45/0)を用いて評価した。UV光照射前のPETフィルムに対するΔb値を測定し、以下の基準で評価した。
○:1未満
△:1以上5未満
【0080】
[製造例1]
[エマルジョン粒子の10質量%水分散体]
還流冷却器、滴下槽、温度計および撹拌装置を有する反応器に、イオン交換水1600g、ドデシルベンゼンスルホン酸3gを投入した後、撹拌下で温度を80℃に加温した。これに、ジメチルジメトキシシラン185g、フェニルトリメトキシシラン117gの混合液を反応容器中の温度を80℃に保った状態で約2時間かけて滴下し、その後、反応容器中の温度が80℃の状態で約1時間撹拌を続行した。次にアクリル酸ブチル86g、フェニルトリメトキシシラン133g、3−メタクリロキシプロピルトリメトキシシラン1.3gの混合液とジエチルアクリルアミド137g、アクリル酸3g、反応性乳化剤(商品名「アデカリアソープSR−1025」、旭電化(株)製、固形分25%水溶液)13g、過硫酸アンモニウムの2質量%水溶液40g、イオン交換水1900gの混合液を、反応容器中の温度を80℃に保った状態で約2時間かけて同時に滴下した。さらに反応容器中の温度が80℃の状態で約2時間撹拌を続行した後、室温まで冷却した。100メッシュの金網で濾過した後、イオン交換水で固形分を10質量%に調整し、エマルジョン粒子((B)成分)の10質量%水分散体(数平均粒子径160nm)を得た。
【0081】
[実施例1〜3、比較例1]
表1に示す配合にてコーティング組成物を得た。
10cm×10cmのPETフィルム上に、得られたコーティング組成物を膜厚が1μmとなるようにバーコートした後、70℃、10分間乾燥して、太陽電池用カバー材を得た。これらの評価結果を表1に記載した。
【0082】
【表1】

【0083】
[コロイダルシリカの10質量%水分散体]
日産化学工業(株)製商品名「スノーテックスO」((A)成分)を水中に分散させたもの(固形分10質量%、数平均粒子径10nm)。
[シリカ被覆酸化チタンの10質量%水分散体]
石原産業(株)製商品名「TSK−5」((A)成分)を水中に分散させたもの(固形分10質量%、数平均粒子径73nm)。
[「MPT−144」の10質量%水分散体]
石原産業(株)製商品名「MPT−144」((C)成分)を水中に分散させたもの(固形分10質量%)。「MPT−144」に含まれるSiO/ZnO(質量比)=1.3/3.8。
[「TTO−S−1」の10質量%水分散体]
石原産業(株)製商品名「TTO−S−1」((C)成分)を水中に分散させたもの(固形分10質量%)。「TTO−S−1」に含まれるTiO/Al(OH)/ZrO(質量比)=4.4/0.5/0.2。
[「TTO−F−1」の10質量%水分散体]
石原産業(株)製商品名「TTO−F−1」((C)成分)を水中に分散させたもの(固形分10質量%)。「TTO−F−1」に含まれるTiO/Al(OH)/ZrO/Fe(質量比)=3.9/0.7/0.2/0.3。
[酸化マグネシウムの10質量%水分散体]
和光純薬(株)製酸化マグネシウムを水中に分散させたもの(固形分10質量%)。

【特許請求の範囲】
【請求項1】
以下の(A),(B),(C)の各成分、
(A)成分:粒子径が1nm〜400nmの単独金属化合物粒子、
(B)成分:粒子径が10nm〜800nmの重合体エマルジョン粒子、
(C)成分:複数金属化合物の複合体、
を含み、
前記(B)成分が、以下の(b1)〜(b4)の各成分、
(b1)成分:加水分解性珪素化合物、
(b2)成分:2級及び/又は3級アミド基を有するビニル単量体、
(b3)成分:乳化剤、
(b4)成分:水、
を含む重合原液を重合して得られる重合体エマルジョン粒子であり、
前記(C)成分が、酸化亜鉛、酸化セリウム、水酸化アルミニウム、酸化ジルコニウム、酸化鉄、酸化チタン、及び二酸化珪素よりなる群から選択される2種以上の複合体であることを特徴とするコーティング組成物。
【請求項2】
前記(b2)成分と、前記(B)成分との比(b2)/(B)(質量比)が、0.1/1〜0.5/1である請求項1に記載のコーティング組成物。
【請求項3】
前記(b2)成分と、前記(A)成分との比(b2)/(A)(質量比)が、0.1/1〜1/1である請求項1又は2に記載のコーティング組成物。
【請求項4】
前記(B)成分が、コア層と、当該コア層を被覆する1層又は2層以上のシェル層とを備えたコア/シェル構造を有する請求項1〜3のいずれか一項に記載のコーティング組成物。
【請求項5】
前記コア層において、前記(b2)成分と前記(b1)成分との比(b2)/(b1)(質量比)が0.01/1〜1/1であり、前記シェル層の最外層において、前記(b2)成分と前記(b1)成分との比(b2)/(b1)(質量比)が0.1/1〜5/1である請求項4に記載のコーティング組成物。
【請求項6】
前記(B)成分が、前記コア層を形成するシード粒子の存在下で前記重合原液を重合して得られ、前記シード粒子が、前記(b1)成分、前記(b2)成分、及び以下の(b5)成分、
(b5)成分:(b2)成分と共重合可能な他のビニル単量体、
よりなる群から選択される少なくとも1種以上を重合して得られる請求項4又は5に記載のコーティング組成物。
【請求項7】
前記(b1)成分が、以下の(b1−1)成分、
(b1−1)成分:ビニル重合性基を有する加水分解性珪素化合物、
を含み、
前記(b1−1)成分と、前記(B)成分との比(b1−1)/(B)(質量比)が、0.01/100〜20/100である請求項1〜6のいずれか一項に記載のコーティング組成物。
【請求項8】
前記(b1−1)成分と、前記(b2)成分との比(b1−1)/(b2)(質量比)が、0.1/100〜100/100である請求項7に記載のコーティング組成物。
【請求項9】
前記(A)成分が、二酸化珪素、光触媒活性を有する金属酸化物、又は導電性を有する金属酸化物のいずれかを用いて形成される請求項1〜8のいずれか一項に記載のコーティング組成物。
【請求項10】
前記(A)成分の粒子長(l)と粒子直径(d)との比(l/d)が、1/1〜20/1である請求項1〜9のいずれか一項に記載のコーティング組成物。
【請求項11】
前記(A)成分が、以下の(A’)成分、
(A’)成分:式(1)で表されるトリオルガノシラン単位、式(2)で表されるモノオキシジオルガノシラン単位、式(3)で表されるジオキシオルガノシラン単位、式(4)で表されるトリオキシシラン単位、及びジフルオロメチレン単位よりなる群から選択される少なくとも1種の構造単位を有する変性剤化合物を用いて、前記単独金属化合物粒子を変性処理して形成される変性金属化合物、
を含む請求項1〜10のいずれか一項に記載のコーティング組成物。
Si− (1)
(式中、Rは各々独立に直鎖状または分岐状の炭素数1〜30個のアルキル基、炭素数5〜20のシクロアルキル基、直鎖状または分岐状の炭素数1〜30個のフルオロアルキル基、直鎖状または分岐状の炭素数2〜30個のアルケニル基、フェニル基、炭素数1〜20のアルコキシ基、又は水酸基を表す。)
−(RSiO)− (2)
(式中、Rは式(1)で定義した通りである。)
【化1】

(式中、Rは式(1)で定義した通りである。)
【化2】

【請求項12】
前記(A’)成分が、光触媒活性を有する請求項11に記載コーティング組成物。
【請求項13】
前記(A’)成分の粒子長(l)と粒子直径(d)の比(l/d)が、1/1から20/1である請求項11又は12に記載のコーティング組成物。
【請求項14】
請求項1〜13のいずれかに記載のコーティング組成物にて形成される塗膜と、樹脂基材とを含む積層体。
【請求項15】
前記塗膜のヘイズが20以下である請求項14に記載の積層体。
【請求項16】
前記塗膜の、波長340nmの紫外線透過率が99%以下である請求項14又は15に記載の積層体。
【請求項17】
請求項14〜16のいずれかに記載の積層体を用いてなる太陽電池用カバー材。
【請求項18】
請求項17に記載の太陽電池用カバー材を含む太陽電池。

【公開番号】特開2009−286859(P2009−286859A)
【公開日】平成21年12月10日(2009.12.10)
【国際特許分類】
【出願番号】特願2008−138984(P2008−138984)
【出願日】平成20年5月28日(2008.5.28)
【出願人】(309002329)旭化成イーマテリアルズ株式会社 (771)
【Fターム(参考)】