説明

ゴム材料の変形挙動予測方法及びゴム材料の変形挙動予測装置

【課題】実際のゴム材料の変形挙動が大きい場合でも、変形挙動を精密に解析することを可能とする。
【解決手段】ゴムにゴムとは異なる材料を配合した所定形状のゴム材料について、ノードにより構成される3次元モデルを生成するステップと、各ノードに歪と応力との関係を定めた構成条件を付与するステップと、構成条件が付与された3次元モデルを用いて変形挙動を解析するステップとを備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ゴムにゴムとは異なる材料を配合したゴム材料の変形挙動を予測するための変形挙動予測方法及び変形挙動予測装置に関するものである。
【背景技術】
【0002】
近年、有限要素法などを用いて、ゴムと充填剤とにより構成されるゴム材料の変形挙動を解析することが可能な変形挙動予測方法が発明されている(例えば、特許文献1参照)。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2006−200937号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、特許文献1に開示された変形挙動予測方法は、ゴム材料から生成された3次元モデルの変形が小さい部分は計算を行うことが可能であるが、変形が大きい部分は、計算が不可能になるという問題がある。
【0005】
例えば、4辺形の要素が三角形になるような変形は、要素内の任意の位置において、変形前の要素に含まれる線素と変形後の要素に含まれる線素との間で1対1対応が取れなくなり、それ以上の解析ができない。ゴム材料が実際に受ける応力等に基づく入力条件での解析では、このような現象がしばしば起こり、技術開発の障害となっていた。
【0006】
本発明は、上記問題点を解決するためになされたものであり、ゴムとゴムとは異なる材料とにより構成されるゴム材料から生成された3次元モデルの変形が大きい場合でも、ゴム材料の変形挙動を正確に解析することができるゴム材料の変形挙動予測方法及びゴム材料の変形挙動予測装置を提供することを目的とする。
【課題を解決するための手段】
【0007】
上述した課題を解決するために、本発明は以下のような特徴を有している。
【0008】
請求項1に記載された発明の特徴は、ゴムに前記ゴムとは異なる材料を配合した所定形状のゴム材料について所定平面により所定間隔でスライスしたときの内部構造を含む断面形状を表す複数のスライス画像(スライス画像P1)を取得するステップ(ステップ154)と、前記ゴム材料に配合したゴムとゴムとは異なる材料とを判別するための前記スライス画像における画像濃度を示す濃度値のしきい値を予め定め、前記スライス画像を縦横所定数で分割して作られる単位方形の各々の濃度値と前記しきい値とに基づいて前記スライス画像の各々を2値化画像(2値化画像P2)に変換するステップ(ステップ158)と、変換された複数の2値化画像の各々を対応するスライス画像のスライス位置の順序でかつ前記所定間隔で積層し、前記2値化画像における前記単位方形に対応する要素を置き換えたノード(ノードe102〜ノードe108)により構成される3次元モデル(立体像M1)を生成するステップ(ステップ164)と、前記ノードに対して前記2値化された値に基づいてゴムあるいはゴムとは異なる材料の歪と応力との関係を定めた構成条件を付与するステップ(ステップ204)と、構成条件が付与された前記3次元モデルを用いて変形挙動を解析するステップ(ステップ206)とを備え、前記変形挙動を解析するステップは、前記ゴム材料の任意位置での変位又は速度を、前記任意位置に対応する前記3次元モデルの前記ノードに対して定義された基本変数と重み関数との積によって近似させ、前記重み関数は、少なくとも、前記任意位置から前記任意位置に対応する前記ノードまでの距離を用いて算出されることを要旨とする。
【0009】
このようなゴム材料の変形挙動予測方法によれば、実際のゴムとゴムとは異なる材料とにより構成されるゴム材料から生成した3次元モデルを用いて解析処理を行うため、ゴム材料の変形挙動を正確に解析することが可能となる。
【0010】
また、ゴム材料の任意の位置での変位又は速度は、基本変数と重み関数から求められ、重み関数は、前記任意位置から前記任意位置に対応する前記ノードまでの距離を用いて算出されるため、ゴム材料から生成された3次元モデルの変形が大きい場合でも、ゴム材料が実際に使用される環境に基づいた入力条件で解析することが可能となる。
【0011】
請求項2に記載された発明の特徴は、前記ゴムとは異なる材料が充填剤であることを要旨とする。
【0012】
請求項3に記載された発明の特徴は、前記ゴムの歪と応力の関係を定めた構成条件が、一般化ムーニ・リブリン方程式、一般化オグデン方程式、下記に示す式(1)の方程式、の何れか1つであることを要旨とする。
【数1】

【0013】
このようなゴム材料の変形挙動予測方法によれば、3次元モデルのゴム部分の構成条件として一般化ムーニ・リブリン(MOONEY−RIVLIN)方程式、一般化オグデン(OGDEN)方程式、上記式( 1 )の方程式、の何れか1つの方程式を用いることにより、ゴム部分での弾性率及び応力分布を適性に解析することが可能となる。
【0014】
請求項4に記載された発明の特徴は、前記3次元モデルのゴム部分とゴムとは異なる材料の部分との界面に対して滑りを示す構成条件をさらに付与することを要旨とする。
【0015】
このようなゴム材料の変形挙動予測方法によれば、ゴム部分とゴムとは異なる材料の部分との界面に一定以上の相互にずれる方向の力が発生すると滑りを生じるため、この界面の構成条件に滑りを示す構成条件をさらに付与することにより、より精密に変形挙動を解析することが可能となる。
【0016】
請求項5に記載された発明の特徴は、前記ノードを中心とする球状の領域であり、前記変形挙動を解析するステップにおいて前記任意位置における前記変位又は前記速度の算出に用いられる、前記任意位置に対応する前記ノードを特定する領域を影響領域(影響領域s102〜s108)とし、前記影響領域の半径の長さを影響半径Rとし、前記ノードを中心とする球状の領域であり、同一平面上にない少なくとも4つの前記ノードのそれぞれが前記任意位置を前記影響領域に含むために最低限必要な前記球状の領域の半径の長さを基準半径R0とした場合、前記影響半径Rが前記基準半径R0の1.0倍以上1.5倍以下である、前記任意位置を前記影響領域に含む、前記任意位置に対応する前記ノードの情報は、前記任意位置における前記変位又は前記速度の算出に用いられることを要旨とする。
【0017】
このようなゴム材料の変形挙動予測方法によれば、重み関数の算出は、前記任意位置が前記ノードの影響領域に含まれるか否かに基づいて行われるため、実際のゴム材料の変形が大きい場合でも、ゴム材料が実際に使用される環境に基づいた入力条件で解析することが可能となる。
【0018】
請求項6に記載された発明の特徴は、ゴムに前記ゴムとは異なる材料を配合した所定形状のゴム材料について所定平面により所定間隔でスライスしたときの内部構造を含む断面形状を表す複数のスライス画像を取得する取得手段と、前記ゴム材料に配合したゴムとゴムとは異なる材料とを判別するための前記スライス画像における画像濃度を示す濃度値のしきい値を予め定め、前記スライス画像を縦横所定数で分割して作られる単位方形の各々の濃度値と前記しきい値とに基づいて前記各スライス画像の各々を2値化画像に変換する変換手段と、前記変換手段により変換された複数の2値化画像の各々を対応するスライス画像のスライス位置の順序でかつ前記所定間隔で積層し、前記2値化画像における前記単位方形に対応する要素を置き換えたノードにより構成される3次元モデルを生成する生成手段と、前記生成手段により生成された前記3次元モデルの前記ノードに対して前記2値化された値に基づいてゴムあるいはゴムとは異なる材料の歪と応力の関係を定めた構成条件を付与する付与手段と、前記付与手段により構成条件が付与された前記3次元モデルを用いて変形挙動を解析する解析手段と、前記解析手段による解析結果を提示する提示手段とを備え、前記解析手段は、前記ゴム材料の任意位置での変位又は速度を、前記任意位置に対応する前記3次元モデルの前記ノードに対して定義された基本変数と重み関数との積によって近似させ、前記重み関数は、少なくとも、前記任意位置から前記任意位置に対応する前記ノードまでの距離を用いて算出されることを要旨とする。
【発明の効果】
【0019】
本発明によれば、ゴムとゴムとは異なる材料とにより構成されるゴム材料から生成された3次元モデルの変形が大きい場合でも、ゴム材料の変形挙動を正確に解析することが可能となる。
【図面の簡単な説明】
【0020】
【図1】第1の実施の形態に係るゴム材料変形挙動予測システムの全体構成図である。
【図2】第1の実施の形態に係るコンピュータの電気系の構成図である。
【図3】第1の実施の形態に係るスライス画像生成処理の処理の流れを示すフローである。
【図4】第1の実施の形態に係る3次元モデル生成処理の処理の流れを示すフローである。
【図5】第1の実施の形態に係る解析処理の処理の流れを示すフローである。
【図6】第1の実施の形態に係るスライス画像の一例を示す図である。
【図7】第1の実施の形態に係る図6のスライス画像を2値化した2値化画像を示す図である。
【図8】第1の実施の形態に係る図7に示される2値化画像の各方形を数値に変換した2値化画像データの配列を含めたイメージを示す図である。
【図9】第1の実施の形態に係るディスプレイに表示される3次元モデルの立体像の一例を示す図である。
【図10】第1の実施の形態に係るノードの変形イメージを示す図である。
【図11】第1の実施の形態においてディスプレイに表示される解析結果の一例を示す図である。
【図12】第1の実施の形態に係るノードの影響半径の設定に用いられるグラフである。
【図13】第1の実施の形態に係る基準半径R0を示す図である。
【図14】従来の有限要素法に係る要素の変形イメージを示す図である。
【図15】従来の有限要素法においてディスプレイに表示される解析結果の一例を示す図である。
【図16】第2の実施の形態に係る3次元モデル生成処理の処理の流れを示すフローである。
【図17】第2の実施の形態に係る解析処理の処理の流れを示すフローである。
【発明を実施するための形態】
【0021】
(第1の実施の形態)
図面を参照して、本発明の第1の実施形態を説明する。具体的には、(1)ゴム材料変形挙動予測システムの全体概略構成、(2)コンピュータの電気系の要部構成、(3)ゴム材料変形挙動予測システムの動作、(4)作用・効果について説明する。以下の実施形態における図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。
【0022】
(1)ゴム材料変形挙動予測システムの全体概略構成
図1には、第1の実施の形態に係るゴム材料変形挙動予測システム10の構成が示されている。
【0023】
ゴム材料変形挙動予測システム10は、CTスキャナ( コンピュータ・トモグラフィ・スキャナ)11と、コンピュータ12と、から構成されている。CTスキャナ11とコンピュータ12とはケーブル20により接続されている。
【0024】
CTスキャナ11は、透過型電子顕微鏡と試料台とを内蔵している。CTスキャナ11は、試料台に載置された解析対象ゴム材料を透過型電子顕微鏡により撮影し、撮影により得られたデータを計算機トモグラフィー法(CT法) により3次元基本モデルに再構成する。CTスキャナ11は、再構成した3次元基本モデルを所定平面により所定間隔でスライスした複数枚のスライス画像データを生成する。
【0025】
コンピュータ12は、解析を行う際の各種条件を入力するためのキーボード15と、予め記憶された処理プログラムに従ってゴム材料の変形挙動を解析するコンピュータ本体13と、及びコンピュータ本体13の演算結果等を表示するディスプレイ14と、から構成されている。コンピュータ12は、CTスキャナ11により生成されたスライス画像データを用いてゴム材料の変形挙動等の解析を実施する。
【0026】
また、コンピュータ本体13には、記録媒体としてのフレキシブルディスク( 以下、FDという。)16が挿抜可能なフレキシブルディスクドライブユニット( 以下、FDUという。)18を備えている。
【0027】
(2)コンピュータの電気系の要部構成
次に、図2を参照して、コンピュータ12の電気系の要部構成を説明する。
【0028】
コンピュータ12は、装置全体の動作を司るCPU(中央処理装置)40と、コンピュータ12を制御する制御プログラムを含む各種プログラムや各種パラメータ等が予め記憶されたROM42と、各種データを一時的に記憶するRAM48と、ケーブル20に接続されたコネクタ59に接続され、コネクタ59を介してCTスキャナ11からスライス画像データを取得する外部I/O制御部60と、取得したスライス画像データを記憶するHDD(ハードディスクドライブ)56と、FDU18に装着されたFD16とのデータの入出力を行うフレキシブルディスクI/F部52と、ディスプレイ14への各種情報の表示を制御するディスプレイドライバ44と、キーボード15へのキー操作を検出する操作入力検出部46と、を備えている。
【0029】
CPU40、RAM48、ROM42、HDD56、外部I/O制御部60、フレキシブルディスクI/F部52、ディスプレイドライバ44、及び操作入力検出部46は、システムバスBUSを介して相互に接続されている。従って、CPU40は、RAM48、ROM42、HDD56へのアクセス、フレキシブルディスクI/F部52を介してのFDU18に装着されたFD16へのアクセス、外部I/O制御部60を介したデータの送受信の制御、ディスプレイドライバ44を介したディスプレイ14への各種情報の表示、を各々行うことができる。また、CPU40は、キーボード15に対するキー操作を常時把握できる。
【0030】
なお、後述する3次元モデル生成処理プログラム、解析処理プログラム、スライス画像のゴム部分と充填剤部分とを判別する濃度値のデータ、及び3次元モデル等は、FDU18を用いてFD16に対して読み書き可能である。従って、後述する3次元モデル生成処理プログラム、解析処理プログラム、濃度値のデータ、及び3次元モデル等を予めFD16に記録しておき、FDU18 を介してFD16に記録された各処理プログラムを実行してもよい。また、FD16に記録された各処理プログラムをHDD56へ格納(インストール)して実行するようにしてもよい。また、記録媒体としては、記録テープ、CD−ROMやDVD等の光ディスクや、MD、MO等の光磁気ディスクがあり、これらを用いるときには、上記FDU18に代えてまたはさらに対応する読み書き装置を用いればよい。
【0031】
次に、第1の実施の形態の係るゴム材料の変形挙動の予測を行う際の動作を説明する。
【0032】
第1の実施の形態では、ユーザよって解析対象の所定形状のゴム材料に対して金コロイドでマーキングが行われ、CTスキャナ11に設けられた試料台に載置され、CTスキャナ11に対して処理開始の所定操作が行われると後述するスライス画像生成処理が実行される。
【0033】
第1の実施の形態に係るCTスキャナ11は、透過型電子線トモグラフィー法(Transmission Electron Microtomography、TEMT)を用いたコンピュータ構成を含む計測装置として構成されている。CTスキャナ11は、透過型電子顕微鏡とゴム材料が載置された試料台とを所定の角度範囲(本実施の形態では、−60度から+60度の範囲) で所定角度(例えば、2度間隔)ずつ相対的に回転移動させつつスキャンすることによりゴム材料の連続傾斜画像を撮影する。CTスキャナ11は、撮影した61枚の傾斜画像の画像データを用い、各画像間の回転軸を求め、計算機トモグラフィー法により3次元基本モデルに再構成する。そして、CTスキャナ11は、再構成した3次元基本モデルを各面に平行な所定間隔でスライスしたスライス画像を生成する。この生成されたスライス画像データはケーブル20を介してコンピュータ12へ出力される。
【0034】
コンピュータ12は、ケーブル20を介して取得したスライス画像データをHDD56に記憶する。
【0035】
コンピュータ12は、ユーザによりキーボード15を介して3次元モデルの生成開始の所定操作が行われると後述する3次元モデル生成処理を実行する。後述する3次元モデル生成処理では、HDD56に記憶されたスライス画像データにより示される3次元モデルを生成し、生成した3次元モデルをHDD56に記憶させる。
【0036】
さらに、コンピュータ12は、ユーザによりキーボード15を介して解析対象とする3次元モデルと解析条件とが指定され、解析開始の所定操作が行われると、後述する解析処理を実行して解析を行う。第1の実施の形態に係る解析処理では、解析条件として、3次元モデルを変化させる方向と、その方向へ3次元モデルを伸張又は圧縮変化させる変化率を指定することができる。解析処理では、3次元モデルを解析条件として指定された方向へ伸張又は圧縮した場合の3次元モデルの歪み、内部応力分布、3次元モデル全体で応力値を解析して解析結果をディスプレイ14に表示する。
【0037】
なお、第1の実施の形態に係る解析処理では、3次元モデルのゴム部分の構成条件として、歪と応力の関係を定めた一般化MOONEY−RIVLIN方程式の1次項までを用いている。また、充填剤はゴムよりも十分に硬いため、3次元モデルの充填剤部分の構成条件として、予め実験等により充填剤の硬さを測定して求めた実測値、又は、充填剤の結晶部とアモルファス部の比率から計算した推定値(10[GPa]から100[GPa]程度の値) を用いる。なお、3次元モデルの充填剤部分の構成条件として、ゴム部分で指定された構成条件より求まるヤング率( 弾性率)の所定倍(例えば1000倍等)のヤング率を用いてもよい。また、3次元モデルのゴム部分の構成条件として、一般化OGDEN方程式、及び本出願人が開示(特願2004−168401号) した下記の式(2)に示す弾性率の温度及び歪依存性を表す構成方程式を用いてもよい。
【数2】

【0038】
但し、Gはヤング率を表し、Sはゴム変形時のエントロピー変化を表し、P及びQは弾性率と関係する係数を表し、I1は歪の不変量を表し、Tは絶対温度を表す。βは1/(kΔT)に等しく、kはボルツマン定数、ΔTはゴムのガラス転移温度からの差分を表す。この他にも、ゴム状材料の挙動を表すために用いられるArruda−Boyce形式、Marlow形式、Van der Waals形式の構成条件などを用いてもよい。
【0039】
(3)ゴム材料変形挙動予測システムの動作
(3−1)スライス画像生成処理
次に、図3を参照しつつ、CTスキャナ11により実行されるスライス画像生成処理の作用を詳細に説明する。なお、図3は、スライス画像生成処理プログラムの流れを示すフローチャートである。
【0040】
同図のステップ100では、初期処理として所定形状のゴム材料が載置された試料台と透過型電子顕微鏡とを相対的に移動させて位置関係を初期位置(本実施の形態では−60度の位置) とする。
【0041】
次のステップ102 では、透過型電子顕微鏡によりゴム材料の撮影を行いゴム材料の傾斜画像を取得する。
【0042】
次のステップ104では、透過型電子顕微鏡と試料台と位置関係が所定の角度範囲の終了位置(本実施の形態では、+60度)であるか否かから、所定の角度範囲(本実施の形態では、−60度から+60度まで)での撮影が完了したか否かを判定しており、肯定判定の場合はステップ108へ移行し、否定判定の場合はステップ106へ移行する。ステップ106では、透過型電子顕微鏡と試料台とを相対的に所定角度(例えば、2度)だけ回転移動させてステップ102へ移行し、再度ゴム材料の撮影を行う。
【0043】
一方、ステップ108では、上述した所定の角度範囲での撮影が完了しているので、撮影によって得られた各傾斜画像からゴム材料にマーキングされた金コロイドの位置を特定し、各傾斜像の金コロイドの位置の変化(軌跡)からゴム材料の回転軸を特定する。そして、この特定した回転軸と複数の傾斜画像の画像データからCT法により3次元基本モデルを生成する。
【0044】
次のステップ110では、生成した3次元基本モデルを所定平面によりこの所定平面に平行な面で所定間隔(本実施の形態では、数[nm]間隔)毎にスライスしたときの内部構造を含む断面形状を表す複数枚(本実施の形態では、数十枚) のスライス画像を生成する。このスライス画像のスライス画像データは、ケーブル20を介してコンピュータ12へ出力される。なお、この所定間隔は、ゴム材料に配合される充填剤により変更可能あり、予め実験的に求めた値を用いることができる。
【0045】
ここで、図6には、本実施の形態に係るCTスキャナ11により生成されたスライス画像の一例が示されている。以降、スライス画像を縦横所定数で分割してできる方形の各々を単位方形とする。
【0046】
図6に示されるスライス画像P1では、ゴム材料を構成するゴムと充填剤とで物質的に透過率が異なるため、充填剤部分P12が濃く(濃度値が大きく)、ゴム部分P14及びゴム部分P16が薄く(濃度値が小さく)示されている。よって、スライス画像P1の単位方形の濃度に基づいてスライス画像P1のゴム部分P14及びゴム部分P16と充填剤部分P12とを判別することができる。このスライス画像P1のゴム部分P14及びゴム部分P16と充填剤部分P12とを判別することができる濃度値は、予め実験等により定めることができる。
【0047】
(3−2)3次元モデル生成処理
次に、図4を参照しつつ、コンピュータ12により実行される3次元モデル生成処理の作用を詳細に説明する。なお、図4は、3次元モデル生成処理プログラムの流れを示すフローチャ−トである。
【0048】
同図のステップ150では、実験等により予め定められているスライス画像のゴム部分と充填剤部分とを判別する濃度値をしきい値hとして設定する。次のステップ152では、カウンタnに1を設定する。次のステップ154では、HDD56からn枚目のスライス画像を示すスライス画像データの読み込みを行う。次のステップ156では、読み込んだスライス画像データにより示されるスライス画像の単位方形の濃度値をしきい値hと比較して単位方形を2値化した2値化画像の2値化画像データを生成する。図7には、図6に示されるスライス画像P1を2値化した2値化画像P2が示されている。
【0049】
具体的には、スライス画像の単位方形の濃度値をしきい値hと比較して、濃度値がしきい値h以上の単位方形を、充填剤が存在する領域として黒色で示される方形P22とし、その他の単位方形を白色で示される方形P24として2値化画像の2値化画像データを生成する。
【0050】
なお、スライス画像生成処理では、ゴム材料内の充填剤と他に配合された部材とを区別して充填剤部分をより的確に抽出するため、スライス画像の単位方形の濃度値をしきい値hと比較して、濃度値がしきい値h以上の単位方形が上下左右で所定個数(例えば、5個以上)連続している部分の単位方形を黒色で示される方形P22とし、その他の単位方形を白色で示される方形P24とした2値化画像の2値化画像データを生成する。
【0051】
次のステップ158では、2値化画像データに対して2値化画像の黒の部分の方形の値を「1」、その他の方形の値を「0」とした2値化画像データに変換する。
【0052】
図8には、図7に示される2値化画像P2の単位方形を数値に変換した2値化画像データP3がその配列を含めたイメージとして示されている。ここで、黒色で示される方形P22が「1」(P32)に変換され、白色で示される方形P24が「0」(P34)に変換されている。
【0053】
次のステップ160では、全てのスライス画像に対して読み込みからスライス画像データへの変換までの処理が終了したか否かを判定しており、肯定判定の場合はステップ164へ移行し、否定判定の場合はステップ162へ移行する。ステップ162では、カウンタnを1カウントアップしてステップ154へ移行し、次のスライス画像の読み込みを行う。
【0054】
一方、ステップ164では、変換した各2値化画像データに基づき、2値化画像を各スライス画像のスライス位置の順序でかつ上述した所定間隔で積層する。そして、各2値化画像における単位方形に対応する要素を置き換えたノードにより構成される3次元モデルを生成する。この3次元モデルでは、方形の値が「1」の部分は充填剤部分、方形の値が「0」の部分はゴム部分となっている。次のステップ166では、生成したゴム材料の3次元モデルの3次元モデルデータをHDD56に記憶する。
【0055】
次のステップ168では、上記ステップ164で生成された3次元モデルについて、各2値化画像の間で同一値の方形を同一の要素として統合した3次元領域を形成する画像処理を行い、ゴム材料の計算上の立体像を生成し、立体像をディスプレイ14に表示する。
【0056】
ここで、図9には、ディスプレイ14に表示される立体像M1の一例が示されている。図9に示されるように、充填剤M12はゴムM14の内部でネットワーク構造を形成しており、複雑な3次元構造となっている。なお、図9に示す立体像M1において、ゴムM14のノードは表示されていない。また、立体像M1は、スライス画像として取得したゴムM14の範囲内で再構築を行っているので、取得したスライス画像の境界までのゴムM14が表示される。このため、ゴムM14がスライス画像をまたいで連続する場合、境界部分は、所定の平面で切断されたようになる。
【0057】
(3−3)解析処理
次に、図5を参照しつつ、コンピュータ12により実行される解析処理の作用を詳細に説明する。なお、図5は、解析処理プログラムの流れを示すフローチャ−トである。
【0058】
ステップ200では、本処理を遂行するための初期処理を行う。まず、ユーザにより指定された3次元モデルを解析対象の3次元モデルとして設定する。次に、本解析処理における解析条件を設定する。解析条件は、解析対象の3次元モデルに付与するエネルギーの種類、エネルギーの付与の方法、エネルギー付与後に変動または発生する構造や状態の種類、その取得方法、など何れかが対応する。本実施の形態では、付与するエネルギーの種類として、圧縮または伸張のための圧力や応力を対応させると共にその付与方向も対応させる。また、エネルギー付与後の変動として、圧力分布や応力分布を対応させる。これらの設定は、予めユーザーによる入力で実施してもよいし、予めプログラム上で規定してもよい。これにより、解析条件として、3次元モデルを変化させる方向、3次元モデルを伸張又は圧縮変化させる圧力や応力、そして変化量や変化率、それらの分布を設定することができる。なお、解析条件では、3次元モデルのゴム部分のノードの構成条件を上述した一般化MOONEY−RIVLIN方程式の1次項とすること設定することを含んでいる。また、充填剤部分のノードの構成条件として上記実測値、又は推定値より求まるヤング率を設定することも含んでいる。
【0059】
ステップ202では、ステップ200において設定した解析対象の3次元モデルの3次元モデルデータをHDD56から読み込む。
【0060】
ステップ204では、HDD56から読み込んだ3次元モデルデータにより示される3次元モデルのゴム部分及び充填剤部分の各ノードの構成条件として、ステップ200において設定した構成条件を付与し、3次元モデルデータを再構成する。また、ステップ204では、各ノードの影響半径Rを設定する。なお、影響半径Rを設定する方法については、(3−4)ノードの設定で詳細に説明される。
【0061】
次のステップ206では、再構成した3次元モデルデータを用いてステップ200において設定した解析条件とステップ204において設定した各ノードの影響半径Rとで3次元モデルを変化させた際の3次元モデルの歪み、内部応力分布、3次元モデル全体で応力値をエレメントフリー法のうち、RKPM法により解析する。
【0062】
次のステップ208では、解析により求まった3次元モデルの歪み状態、内部応力分布、3次元モデル全体で応力値をディスプレイ14に表示して処理終了となる。
【0063】
図11には、第1の実施の形態に係る解析処理による解析結果の一例が示されている。なお、図11は、3次元モデルデータを用いて3次元モデル全体をZ方向へ100%伸張させる解析を行った際の変形状態及び歪み分布の解析結果である。歪み分布は歪み値が高い部分ほど濃い濃度として表している。
【0064】
(3−4)ノードの設定
先行技術の有限要素法において生成される3次元モデルは、2値化画像における単一方形を要素とする格子領域の要素によって構成されている。
【0065】
図14には、要素の構成が2次元の図において示されている。要素モデルa10は変形前の要素モデル(図14においては4つ)であり、要素モデルa20は変形後の要素モデルである。
【0066】
要素a102から要素a108のそれぞれは要素を示す。節点n102から節点n118は各要素の節点である。
【0067】
有限要素法は、解析処理において、実際のゴム材料を用いて生成される3次元モデルの変形が小さい場合は計算が収束するが、変形が大きくなると、それ以上の計算が不可能になってしまうという問題がある。
【0068】
ここで、図15において、ディスプレイ表示された3次元モデルD3は、充填剤D32とゴムD34とを含み、ゴムD34の要素の一部が、変形が大きいため三角形になっている。
【0069】
また、図15と同様に、図14の変形前の要素モデルa10の要素a104が、変形後の要素モデルa20において、変形が大きいため三角形になっている。この場合、要素内の任意の位置で、変形前の要素モデルa10の要素a104に含まれる線素と、変形後の要素モデルa20の要素a104における線素との間に、1対1の対応が取れなくなり、解析ができない。
【0070】
一方、本実施形態では、本実施形態において生成される3次元モデルは、2値化画像における単位方形に対応する要素を置き換えたノードによって構成されている。
【0071】
図10には、ノードの構成が2次元の図において示されている。
【0072】
ノードモデルs10は変形前のノード(図10においては5つ)であり、ノードモデルs20は変形後のノードである。ノードe102からノードe110はそれぞれがノードを示す。影響領域s102はノードe102の影響領域を示す。影響領域s104はノードe104の影響領域を示す。影響領域s106はノードe106の影響領域を示す。影響領域s108はノードe108の影響領域を示す。影響領域s110はノードe110の影響領域を示す。
【0073】
影響領域s102とは、ノードe102を中心とする球状の領域であり、その半径の長さが影響半径Rである球状の領域である。なお、他の影響領域とノードとの関係も同様である。解析対象内の任意の位置を位置Xとすると、位置Xをその影響領域に含む全てのノードの所定の情報は、位置Xの解析を行う際に使用される。また、同一平面上にない、少なくとも4つのノードが位置Xをその影響領域に含むために最低限必要な、各ノードを中心とする領域の半径を基準半径R0とする。
【0074】
図13には、基準半径R0の具体例が示されている。
【0075】
ノードe204からノードe210はそれぞれがノードを示す。領域s204はノードe204を中心とする領域を示す。領域s206はノードe206を中心とする領域を示す。領域s208はノードe208を中心とする領域を示す。領域s210はノードe210を中心とする領域を示す。領域s204〜s210は同一の半径を持つ球体とする。
【0076】
位置Xが、ノードe204、e206、e208、e210の4つの領域s204、s206、s208、s210に含まれるために必要な、これらの領域の半径の最小値を基準半径R0とする。
【0077】
なお、第1の実施の形態では、変形前のノードモデルs10のノードが間隔dの格子状に並んでおり、更に全てのノードで同一の影響半径を用いているため、

となる。
【0078】
図12には、解析処理の計算時間指標と応力振動指標との関係が示されている。計算時間指標は、解析処理にかかる時間の指標であり、応力振動指標は、解析処理により求められる応力値等の不確かさを表す指標である。
【0079】
影響半径Rが1.5R0の場合に、計算時間指標と応力振動指標とを100とする。影響半径Rが1.3R0の場合は、計算時間指標が20であり、応力振動指標が130である。影響半径Rが1.0R0の場合は、計算時間指標が15であり、応力振動指標が195である。従って、図12に基づくと、計算時間指標と応力振動指標とのバランスを考えた場合、影響半径Rを1.3R0とすることが好ましい。
【0080】
なお、第1の実施の形態では、影響半径R=1.3R0としている。ただし、影響半径Rは1.5R0であってもよく、1.0R0であってもよい。
【0081】
ここで第1の実施の形態においては、3次元モデルを変化させた際の3次元モデルの歪みや内部応力分布等を、各ノードに設定された基本変数と重み関数との積によって近似される変位から算出させる。
【0082】
基本変数とは、図5のステップ204において各ノードに対して設定する変数であり、連続体の変位や速度を有限個の値で近似するための変数である。重み関数とは図5のステップ204において設定した各ノードの影響半径Rに基づいて算出される値である。
【0083】
任意のノードに設定される重み関数の算出方法を、図10によって説明する。
【0084】
変形前のノードモデルs10における位置Xは、ノードe102、104、e106、e108、e110の影響領域に含まれる。この場合、位置Xにおいて設定される上記各ノードの重み関数を算出するために、ノードe102、104、e106、e108、e110及び位置Xに対応する所定の情報が用いられる。本実施の形態では、位置Xと各ノードとの変形前の距離に応じて重み関数を決定している。距離の長いノードほど重み関数の値は小さく、距離が影響半径Rよりも長いノードの重み関数はゼロとしている。
【0085】
本実施形態では、変形後のノードモデルs20においても位置Xは、ノードe102、104、e106、e108、e110の変形後の影響領域に含まれる。先行技術である有限要素法のように定まった形の要素を持たないため、変形の大きさにかかわらず変形前の線素と変形後の線素との間で1対1の対応を保ちながら解析処理を行うことができるため、有限要素法よりも大変形解析を行うことができる。
【0086】
図11において、変形後の3次元モデルD2のディスプレイ表示例を示す。3次元モデルD2は、充填剤D22とゴムD24とを含む。なお、3次元モデルD2には、充填剤及びゴムのノードにおける影響領域は表示されていない。
【0087】
(4)作用・効果
このように、第1の実施の形態によれば、ゴムと充填剤とにより構成されるゴム材料から生成された3次元モデルを用いることにより、ゴム材料の応力及び歪状態の解析が可能となる。この応力及び歪状態の解析により、ゴム材料における充填剤の配合量等の最適化が可能となり、ゴム材料のより高い精度での性能コントロールが可能となる。
【0088】
また、CTスキャナ11により実際のゴム材料を撮影して得られたスライス画像をしきい値hに基づいて2値化し、積層された2値化画像における単位方形に対応する要素を置き換えたノードにより構成される3次元モデルを生成しているため、実際のゴム材料の構造に近い構造の3次元モデルを生成することができる。
【0089】
また、実際のゴム材料の構造に近い構造の3次元モデルであり、その構成要素が、有限要素法の要素と異なり結合情報を持たないノードである3次元モデルを用いてエレメントフリー法による解析を行うことにより、変形の大きさが解析処理に影響を与えることなく、ゴム材料の内部のひずみ及び応力分布を正確に解析することができる。
【0090】
(第2の実施の形態)
次に、図面を参照して、第2の実施の形態について説明する。第2の実施の形態の特徴は、3次元モデルの充填剤部分とゴム部分の界面の滑りを構成条件としてさらに付与して解析を行う点にある。具体的には、(1)ゴム材料変形挙動予測システムの動作、(2)作用・効果について説明する。以下の実施形態における図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。
【0091】
(1)ゴム材料変形挙動予測システムの動作
第2の実施の形態に係るゴム材料変形挙動予測システム10の構成及びコンピュータ12の電気系の要部構成は、第1の実施の形態の図1及び図2と同様であるため説明を省略する。また、第2の実施の形態に係るCTスキャナ11により実行されるスライス画像生成処理の流れについても、第1の実施の形態の図3と同様であるため説明を省略する。
【0092】
(1−1)3次元モデル生成処理
図16には、第2の実施の形態に係る3次元モデル生成処理の流れを示すフローチャートが示されている。なお、図16に示される3次元モデル生成処理は、第1の実施の実施の形態の3次元モデル生成処理(図4)と異なる処理の部分に符号にAを付しており、同一符号箇所は同様の処理である。このため、以下では符号にAを付した部分についてのみ説明し、図4と同一符号箇所の説明を省略する。
【0093】
次のステップ158Aでは、2値化画像データに対して2値化画像の黒の部分の方形の値を「1」(充填剤部分)、その他の方形の値を「0」(ゴム部分)とする。さらに、方形の値が「1」であり且つ隣接する方形の値が「0」である方形の値を「2」とした多値化画像データに変換する。すなわち、充填剤部分の方形からゴム部分と隣り合っている方形の値を「2」(界面層)としている。
【0094】
ステップ164Aでは、変換された各多値化画像データに基づき、多値化画像を各スライス画像のスライス位置の順序でかつ上述した所定間隔で積層して3次元の構造とする。そして、各多値化画像における単位方形に対応する要素を置き換えたノードにより構成される3次元モデルを生成する。なお、この3次元モデルでは、方形の値が「1」の部分は充填剤部分、方形の値が「0」の部分はゴム部分、方形の値が「2」の部分は充填剤部分のうちの界面層部分となる。
【0095】
(1−2)解析処理
次に、第2の実施の形態に係る解析処理について説明する。
【0096】
第2の実施の形態に係る解析処理では、3次元モデルのゴム部分の構成条件を上述した式(2)に示す弾性率の温度及び歪依存性を表す構成方程式を用いている。3次元モデルの充填剤部分の構成条件には、上述した実測値又は推定値より求まるヤング率(弾性率)を用いている。また、3次元モデルの界面層となる充填剤部分の構成条件には、ゴムのガラス転移温度付近のヤング率を用いる。すなわち、界面層となる充填剤部分の構成条件には、(2)に示した構成方程式のΔTを1〜10として演算したヤング率を用いている。これは、例えば、充填剤としてカーボンブラックを配合したゴム材料では、界面層にゴムとカーボンブラックとが吸着した高密度のポリマー(所謂、カーボンゲル)が存在するため、当該ポリマーの影響を考慮したためである。なお、3次元モデルのゴム部分の構成条件を一般化MOONEY−RIVLIN方程式あるいは一般化OGDEN方程式とした場合は、3次元モデルの界面層となる充填剤部分の構成条件に一般化MOONEY−RIVLIN方程式あるいは一般化OGDEN方程式より求まるヤング率を所定倍(本実施の形態では、1000倍)したヤング率を用いればよい。
【0097】
また、実際のゴム材料では、界面層に充填剤とゴムとが吸着しているため、ゴムと充填剤との間で相互にずれる方向に生じる力が一定以上となると滑りを生じる。従って、第2の実施の形態に係る解析処理では、3次元モデルの界面層での充填剤部分の構成条件として、ゴム層と間に所定の静止摩擦係数を与えている。
【0098】
次に、図17を参照しつつ、第2の実施の形態に係る解析処理についての作用を詳細に説明する。なお、図17に示される解析処理において、第1の実施の形態の図5と同一符号箇所は、図5と同様の処理であるため説明を省略し、異なる部分についてのみ符号にAを付して説明する。
【0099】
ステップ200Aでは、ユーザにより指定された3次元モデルを解析対象の3次元モデルを設定する。また、ユーザにより指定された解析条件を3次元モデルに対する処理条件として設定する。
【0100】
また、ステップ200Aでは、解析処理の処理条件として、3次元モデルのゴム部分の構成条件を上述した式(2)に示す構成方程式とすることを設定する。また、充填剤部分のノードの構成条件を実測値又は推定値より求まるヤング率とすることを設定する。さらに、界面層となる充填剤部分の構成条件をゴムのガラス転移温度付近のヤング率とすることを設定する。
【0101】
さらに、ステップ200Aでは、界面層の充填剤とゴムの間に所定の静止摩擦係数(本実施の形態では、静止摩擦係数μ=5)を3次元モデルの構成条件として設定する。
【0102】
ステップ204Aでは、3次元モデルのゴム部分、充填剤部分、及び界面層となる充填剤部分の各ノードの構成条件として、ステップ200Aにおいて処理条件として設定した構成条件を付与する。また、ステップ204Aでは、各ノードの影響半径Rを設定する。さらに、3次元モデルの界面層に充填剤部分とゴム部分の間の滑りの構成条件として所定の静止摩擦係数μを付与する。そして、構成条件が付与された3次元モデルを再構成する。次のステップ206では、再構成した3次元モデルデータを用いてエレメントフリー法のうち、RKPM法により解析を行う。
【0103】
(2)作用・効果
以上のように第2の実施の形態によれば、ゴム部分と充填剤部分との界面に一定以上の相互にずれる方向の力が発生すると滑りを生じるため、3次元モデルのゴム部分と充填剤部分との界面に滑りを示す構成条件を付与することにより、より正確に変形挙動を解析することができる。
【0104】
(その他の実施の形態)
第1の実施の形態及び第2の実施の形態では、生成された3次元モデルの全ての領域において解析処理を行ったが、例えば、実際にゴム材料に配合された充填剤の体積比率をキーボード15から入力し、解析処理において充填剤部分の体積比率が実際の充填剤の体積比率となる3次元モデルの領域を解析対象の領域としてもよい。これにより、実際のゴム材料の充填剤の体積比率の領域の3次元モデルを用いて解析を行うことができるため、実際の充填剤の配合量に応じた弾性率及び応力分布を適切に解析することができる。
【0105】
また、第1の実施の形態及び第2の実施の形態では、コンピュータ12はケーブル20でCTスキャナ11と接続してスライス画像データを取得する場合について説明したが、本発明はこれに限定されるものではなく、例えば、記録テープ、MO 、メモリーカード、CD−ROM等の記録媒体を介して取得する構成としてもよい。これらを用いるときには、コンピュータ12に対応する読み書き装置を備えるようにすればよい。
【0106】
また、第1実施の形態及び第2の実施の形態で説明したCTスキャナ11及びコンピュータ12の構成は、一例であり、本発明の主旨を逸脱しない範囲内において適宜変更可能であることは言うまでもない。
【0107】
また、第1実施の形態及び第2の実施の形態で説明したスライス画像生成処理、3次元モデル生成処理、解析処理の処理の流れ(図3〜図5、図16、図17参照。)も一例であり、本発明の主旨を逸脱しない範囲内において適宜変更可能であることは言うまでもない。
【産業上の利用可能性】
【0108】
本発明のゴム材料の変形挙動予測方法及びゴム材料の変形挙動予測装置は、ゴムとゴムとは異なる材料とにより構成されるゴム材料から生成された3次元モデルの変形が大きい場合でも、ゴム材料の変形挙動を正確に解析することが可能であり、ゴム材料の変形挙動予測方法及びゴム材料の変形挙動予測装置として有用である。
【符号の説明】
【0109】
10 ゴム材料変形挙動予測システム
12 コンピュータ(変形挙動予測装置)
14 ディスプレイ(提示手段)
40 CPU(変換手段、生成手段、付与手段、解析手段)
60 外部I/O制御部(取得手段)

【特許請求の範囲】
【請求項1】
ゴムに前記ゴムとは異なる材料を配合した所定形状のゴム材料について所定平面により所定間隔でスライスしたときの内部構造を含む断面形状を表す複数のスライス画像を取得するステップと、
前記ゴム材料に配合したゴムとゴムとは異なる材料とを判別するための前記スライス画像における画像濃度を示す濃度値のしきい値を予め定め、前記スライス画像を縦横所定数で分割して作られる単位方形の各々の濃度値と前記しきい値とに基づいて前記スライス画像の各々を2値化画像に変換するステップと、
変換された複数の2値化画像の各々を対応するスライス画像のスライス位置の順序でかつ前記所定間隔で積層し、前記2値化画像における前記単位方形に対応する要素を置き換えたノードにより構成される3次元モデルを生成するステップと、
前記ノードに対して前記2値化された値に基づいてゴムあるいはゴムとは異なる材料の歪と応力との関係を定めた構成条件を付与するステップと、
構成条件が付与された前記3次元モデルを用いて変形挙動を解析するステップとを備え、
前記変形挙動を解析するステップは、前記ゴム材料の任意位置での変位又は速度を、前記任意位置に対応する前記3次元モデルの前記ノードに対して定義された基本変数と重み関数との積によって近似させ、
前記重み関数は、少なくとも、前記任意位置から前記任意位置に対応する前記ノードまでの距離を用いて算出されるゴム材料の変形挙動予測方法。
【請求項2】
前記ゴムとは異なる材料は充填剤である請求項1に記載のゴム材料の変形挙動予測方法。
【請求項3】
前記ゴムの歪と応力の関係を定めた構成条件は、一般化ムーニ・リブリン方程式、一般化オグデン方程式、下記に示す式(1)の方程式、の何れか1つである請求項1又は2に記載のゴム材料の変形挙動予測方法。
【数3】

〔但し、Gはヤング率を表し、Sはゴム変形時のエントロピー変化を表し、P及びQは弾性率と関係する係数を表し、I1は歪の不変量を表し、Tは絶対温度を表す。βは1/(kΔT)に等しく、kはボルツマン定数、ΔTはゴムのガラス転移温度からの差分を表す。〕
【請求項4】
前記3次元モデルのゴム部分とゴムとは異なる材料の部分との界面に対して滑りを示す構成条件をさらに付与する請求項1乃至3のいずれかに記載のゴム材料の変形挙動予測方法。
【請求項5】
前記ノードを中心とする球状の領域であり、前記変形挙動を解析するステップにおいて前記任意位置における前記変位又は前記速度の算出に用いられる、前記任意の位置に対応する前記ノードを特定する領域を影響領域とし、前記影響領域の半径の長さを影響半径Rとし、前記ノードを中心とする球状の領域であり、同一平面上にない少なくとも4つの前記ノードのそれぞれが前記任意位置を前記影響領域に含むために最低限必要な前記球状の領域の半径の長さを基準半径R0とした場合、
前記影響半径Rが前記基準半径R0の1.0倍以上1.5倍以下である、前記任意位置を前記影響領域に含む、前記任意位置に対応する前記ノードの情報は、前記任意位置における前記変位又は前記速度の算出に用いられる請求項1乃至4のいずれかに記載のゴム材料の変形挙動予測方法。
【請求項6】
ゴムに前記ゴムとは異なる材料を配合した所定形状のゴム材料について所定平面により所定間隔でスライスしたときの内部構造を含む断面形状を表す複数のスライス画像を取得する取得手段と、
前記ゴム材料に配合したゴムとゴムとは異なる材料とを判別するための前記スライス画像における画像濃度を示す濃度値のしきい値を予め定め、前記スライス画像を縦横所定数で分割して作られる単位方形の各々の濃度値と前記しきい値とに基づいて前記各スライス画像の各々を2値化画像に変換する変換手段と、
前記変換手段により変換された複数の2値化画像の各々を対応するスライス画像のスライス位置の順序でかつ前記所定間隔で積層し、前記2値化画像における前記単位方形に対応する要素を置き換えたノードにより構成される3次元モデルを生成する生成手段と、
前記生成手段により生成された前記3次元モデルの前記ノードに対して前記2値化された値に基づいてゴムあるいはゴムとは異なる材料の歪と応力の関係を定めた構成条件を付与する付与手段と、
前記付与手段により構成条件が付与された前記3次元モデルを用いて変形挙動を解析する解析手段と、
前記解析手段による解析結果を提示する提示手段とを備え、
前記解析手段は、前記ゴム材料の任意位置での変位及び速度を、前記任意位置に対応する前記3次元モデルの前記ノードに対して定義された基本変数と重み関数との積によって近似させ、
前記重み関数は、少なくとも、前記任意位置から前記任意位置に対応する前記ノードまでの距離を用いて算出されるゴム材料の変形挙動予測装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate


【公開番号】特開2011−158280(P2011−158280A)
【公開日】平成23年8月18日(2011.8.18)
【国際特許分類】
【出願番号】特願2010−18372(P2010−18372)
【出願日】平成22年1月29日(2010.1.29)
【出願人】(000005278)株式会社ブリヂストン (11,469)
【Fターム(参考)】