説明

パルスレーダ装置

【課題】目標との間の相対速度が0でない場合に、1回の高分解能の測距結果を得るために必要な信号送信時間間隔を、本来検出すべき目標までの距離に適用できる範囲で短くした上で高精度に目標までの相対距離を検出する。
【解決手段】所定の周波数間隔ずつ変化する送信パルス列A、Bを時分割で目標方向へ送信することにより得られた受信信号から、パルス列Aに対応する複素ディジタルビデオ信号Aおよびパルス列Bに対応する複素ディジタルビデオ信号Bを生成し、複素ディジタルビデオ信号Aおよび複素ディジタルビデオ信号Bの虚部の符号を反転した複素共役ディジタルビデオ信号Bを乗算して相対速度計測用複素信号を生成する複素乗算手段17と、相対速度計測用複素信号の周波数スペクトルを求める周波数スペクトル分析手段18と、周波数スペクトルを用いて目標との相対速度を求める相対速度計測手段19とを備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、目標との相対速度が0でない場合においても、合成帯域処理によって、正しい高距離分解能の測距を行うパルスレーダ装置に関する。
【背景技術】
【0002】
従来のパルスレーダ装置において、パルスレーダ装置と目標との間の相対速度が0でない場合に合成帯域処理を行うためには、合成帯域モードと相対速度計測モードを設け、相対速度計測モードで計測した相対速度を用いて、合成帯域モードで取得した信号に対して相対速度補正を行った後の合成帯域処理を行うものがある(例えば、特許文献1参照)。また、合成帯域処理に関する先行技術文献としては、非特許文献1がある。
【0003】
【特許文献1】特許第3709698号公報(第5頁、図1)
【非特許文献1】Donald R.Wehner著「High-Resolution Radar」、Second Edition、Artech House、Chapter 5、第197頁〜第237頁
【発明の開示】
【発明が解決しようとする課題】
【0004】
しかしながら、従来技術には以下の課題がある。図6は、従来のパルスレーダ装置における送信パルスを示した図である。合成帯域処理を用いたパルスレーダ装置では、送信時に、図6に示すように、N個の送信パルスSt〜StN−1に対して、パルス毎に送信周波数をf〜fN−1まで周波数ステップ間隔Δf毎に変化させる。
【0005】
受信時に、目標から反射してきた各受信信号を、レンジゲートによってレンジビン毎に分割して受信し、送信パルスと同じ周波数、同じ初期位相の局部発振信号でダウンコンバートして、I成分ビデオ信号、Q成分ビデオ信号を生成する。さらに、同じレンジビンのN個のI成分ビデオ信号、Q成分ビデオ信号を逆フーリエ変換することによって帯域を合成し、各レンジビン内の高分解能相対距離を得ることができる。
【0006】
図7は、従来のパルスレーダ装置における受信信号強度の状態を示した図である。パルスレーダ装置と目標との相対速度が0でない場合には、この相対速度の影響により、相対距離Rが正確に求まらない問題がある。すなわち、相対速度が0でない場合には、合成帯域処理によって距離分解能ΔRの高距離分解能化して得られたパルスレーダ装置と目標との相対距離は、基準の時刻のパルスレーダ装置と目標との相対距離Rと異なる距離を示すこととなる。
【0007】
図7において、Srpは、目標との相対速度が0のときの目標からの反射信号を示しており、Srp’は、目標との相対速度が0でないときの目標からの反射信号を示している。相対速度が0の場合には、反射信号Srpから相対距離Rを求めることができるが、相対速度が0でない場合には、反射信号Srp’から相対距離Rを求めることができないこととなる。
【0008】
その解決策として、特許文献1に記載されている従来技術では、合成帯域モードと相対速度計測モードを設け、相対速度計測モードで計測した相対速度を用いて、合成帯域モードで取得した信号に対して相対速度補正を行った後に合成帯域処理を行い、高分解能測距結果を得ている。
【0009】
そのため、1回の高分解能測距結果を得るために、相対速度計測モードによる観測時間と合成帯域モードによる観測時間の両方が必要になる。さらに、相対速度計測モードと合成帯域モードのそれぞれの処理に別々の受信信号を用いるため、相対速度変化の大きい目標に対しては、相対速度補正の精度が劣化するという問題点があった。
【0010】
一方、合成帯域処理において、あいまいさ(アンビギュイティ)なく測距可能な最大の計測距離Rmaxは、周波数ステップ間隔Δfを用いて次式(1)で表される。
【0011】
【数1】

【0012】
ただし、cは光速を表す。一方、1レンジビンの距離範囲Rbinは、送信パルス幅Tを用いて次式(2)で表される。
【0013】
【数2】

【0014】
よって、合成帯域処理によって、1レンジビンの距離範囲Rbin内をあいまいさなく高距離分解能化するためには、あいまいさなく測距可能な最大の距離Rmaxを1レンジビンの距離範囲Rbin以上にする必要がある。よって、周波数ステップ幅Δfと、送信パルス幅Tは、次式(3)の関係となるように設定する必要がある。
【0015】
【数3】

【0016】
よって、周波数ステップ幅Δfは、最大でも、送信パルス幅Tの逆数の値となる。また、目標反射信号対雑音電力を最大にするためには、受信機最終段のマッチドフィルターの3dBDown帯域幅を送信パルス幅の逆数の1.2倍とすることが望ましい。よって、周波数ステップ幅Δfを送信パルス幅Tの逆数とした場合、受信機の最終段の帯域Brxは、次式(4)で表される。
【0017】
【数4】

【0018】
図8は、従来のパルスレーダ装置における受信機最終段のマッチドフィルター特性を示す図であり、中心周波数を0とした特性を示している。また、図9は、従来のパルスレーダ装置における2通りの距離(R、R)からの受信パルスのタイミングを示した図である。
【0019】
図9(a)は、目標までの距離がRのときに、送信パルスと同一のパルス繰り返し周期Tpri内に、送信パルスに対応する受信パルスを受信している場合を示している。また、図9(b)は、目標までの距離がRのときに、送信パルスの次のパルス繰り返し周期Tpri内に、送信パルスに対応する受信パルスを受信している場合を示している。
【0020】
さらに、図10は、従来のパルスレーダ装置における図9に対応したマッチドフィルター特性を示す図である。図10(a)は、図9(a)の受信パルスのパターンに対応するマッチドフィルター特性を示している。また、図10(b)は、図9(b)の受信パルスのパターンに対応するマッチドフィルター特性を示している。
【0021】
パルス毎に送信周波数をfからfN−1まで一定の周波数ステップ間隔Δf毎に変化させた場合、図9(a)に示すように、目標との相対距離が、次式(5)に示すパルス繰り返し周期に相当する距離Rpriより短い距離Rのときには、必ず受信パルスの周波数と局部発振信号の周波数が一致する。
【0022】
【数5】

【0023】
例えば、周波数fの受信パルスは、周波数fの局部発振信号でダウンコンバートすることとなり、生成したビデオ信号の中心周波数は0となり、3dBDownの帯域幅Bは次式(6)で表される値となる。
【0024】
【数6】

【0025】
そのため、受信パルスのスペクトルとマッチドフィルター形状とは、周波数軸上では、図10(a)に示すようになり、マッチドフィルターを受信パルスが通過する関係を有し、受信パルスを正確に抽出できる。
【0026】
しかし、図9(b)に示すように、例えば、目標との相対距離がRよりパルス繰り返し周期に相当する距離Rpriだけ長いRのときには、周波数fの局部発振信号のところに周波数fの受信パルスが帰ってくることになる。そのため、周波数fの受信パルスをfの局部発振信号でダウンコンバートすることになり、生成したビデオ信号に−Δfの周波数成分が生じる。
【0027】
このことは、周波数軸上で、図10(b)に示すように、マッチドフィルターに対して−Δfだけ周波数がシフトした受信パルスのスペクトルが入力されることとなる。よって、図10(b)に示す受信パルスのスペクトルの内、斜線で示した成分がマッチドフィルターを通過していくこととなる。
【0028】
そのため、送信パルス毎の初期位相が等間隔に変化している場合、合成帯域処理を行うと、受信信号強度はある程度劣化するが、相対距離がRの目標についても、あたかも、相対距離がRよりパルス繰り返し周期に相当する距離Rpriだけ短い距離Rに存在するように測距を行う。
【0029】
このことは、本来目標がいない相対距離に目標がいると誤測距する危険性があることを示す。また、地面からの反射等のように、パルス繰り返し周期に相当する距離Rpriより遠くにある反射物からの受信信号強度が非常に大きい場合、パルス繰り返し周期に相当する距離Rpriより近い目標が、パルス繰り返し周期に相当する距離Rpriより遠くにある反射物からの受信信号に埋もれて、検出ができなくなるという問題が生じる。
【0030】
本発明は、上述のような課題を解決するためになされたもので、パルスレーダ装置と目標との間の相対速度が0でない場合にも、1回の高分解能の測距結果を得るために必要な信号送信時間間隔を、本来検出すべき目標までの距離に適用できる範囲で短くした上で、高精度に目標までの相対距離を検出することができるパルスレーダ装置を得ることを目的とする。
【課題を解決するための手段】
【0031】
本発明に係るパルスレーダ装置は、パルス繰り返し周期毎に送信周波数が所定の周波数間隔ずつ変化する送信パルス列A、およびパルス列Aと同じパルス数で送信周波数が所定の周波数間隔ずつ変化するパルス列Bを時分割で目標方向へ送信し、パルス繰り返し周期毎に得られる反射信号を受信してI成分ビデオ信号およびQ成分ビデオ信号を生成するパルスレーダ装置であって、パルス列Aの送信信号に対する受信信号から得られた同じレンジビン番号のI成分ビデオ信号を実部、Q成分ビデオ信号を虚部とした複素ディジタルビデオ信号A、およびパルス列Bの送信信号に対する受信信号から得られた同じレンジビン番号のI成分ビデオ信号を実部、Q成分ビデオ信号を虚部とした複素ディジタルビデオ信号Bを生成し、複素ディジタルビデオ信号Aと複素ディジタルビデオ信号Bの虚部の符号を反転した複素共役ディジタルビデオ信号Bとを乗算して相対速度計測用複素信号を生成する複素乗算手段と、相対速度計測用複素信号の周波数スペクトルを求める周波数スペクトル分析手段と、周波数スペクトルを用いて目標との相対速度を求める相対速度計測手段とを備えるものである。
【発明の効果】
【0032】
本発明によれば、所定の条件を満たす複数のパルス列からなる送信信号を用いることにより、同じ受信信号に基づいて相対速度の検出を行うことができ、パルスレーダ装置と目標との間の相対速度が0でない場合にも、1回の高分解能の測距結果を得るために必要な信号送信時間間隔を、本来検出すべき目標までの距離に適用できる範囲で短くした上で、高精度に目標までの相対距離を検出することができるパルスレーダ装置を得ることができる。
【発明を実施するための最良の形態】
【0033】
以下、本発明のパルスレーダ装置の好適な実施の形態につき図面を用いて説明する。
本発明のパルスレーダ装置は、同一の受信信号を用いて、目標との相対速度計測、および相対速度補正後の合成帯域処理による目標との高分解能相対距離計測を行うことによって、相対速度補正の精度の向上と、1回の合成帯域処理による目標との高分解能相対距離を得るために必要な受信信号観測時間の短縮化の両立を図り、さらに、パルス繰り返し周期に相当する距離より遠い距離にある物体からの反射信号の抑圧を図ることができる。
【0034】
実施の形態1.
図1は、本発明の実施の形態1におけるパルスレーダ装置の構成図である。図1を用いて、各構成要素の機能について説明する。タイミング発生器1は、パルス繰り返し周期Tpriの間隔で、タイミング信号を発生する。このタイミング信号は、周波数シンセサイザ2では周波数切替信号として使用され、パルス変調器7ではパルス変調信号として使用され、送受切替器9では送受切替信号として使用される。
【0035】
一方、周波数設定器3は、同じN個からなる2つのパルス列A、Bの周波数の順番を、以下に示す条件を満たすように設定し、その周波数の順番を周波数シンセサイザ2へ出力する。
(条件1)パルス列A、Bとも周波数間隔は同じとする。
(条件2)パルス列A、B間で同じ順番の周波数の差は全て同じとする。
【0036】
図2は、本発明の実施の形態1におけるパルス列A、Bの一例を示した図であり、上述の条件1、2に基づいて設定されたものである。図2においては、Nを16、パルス列Aの周波数間隔およびパルス列Bの周波数間隔を、それぞれ周波数ステップ間隔Δfの2倍である2Δfとし、A、B間の同じ番号の周波数差をΔfとした場合を示している。
【0037】
周波数シンセサイザ2は、タイミング発生器1からのタイミング信号(周波数切替信号に相当)によって、周波数設定器3から入力されたパルス列A、Bの各順番に従って、交互にパルス繰り返し周期Tpri毎に周波数を生成し、分配器4aに出力する。より具体的には、まずパルス列Aのf、f、・・・、f30を出力し、続いてパルス列Bのf、f、・・・、f31を出力し、このような32個からなる出力を繰り返すこととなる。
【0038】
条件1、2に基づいて図2に示すようにパルス列A、Bの周波数を設定することによって、相対距離がRよりパルス繰り返し周期に相当する距離Rpriだけ長いRのところからの反射信号(すなわち、本来検出したい目標以外からの反射信号)は、周波数fの局部発振信号のところに周波数fの受信パルスとして帰ってくることになる。そのため、周波数fの受信パルスをfの局部発振信号でダウンコンバートすることになり、生成したビデオ信号に−2Δfの周波数成分が生じる。また、パルス列Aとパルス列Bの境界では、さらに大きい29Δfの周波数成分が生じる。
【0039】
図3は、本発明の実施の形態1における図2のパルス列に対応したマッチドフィルターの説明図である。Rからの受信信号をダウンコンバートすることにより生成されたビデオ信号に−2Δfの周波数成分が生じることは、周波数軸上で、図3に示すように、マッチドフィルターに−2Δfだけ周波数がシフトした受信パルスのスペクトルが入力されることとなる。
【0040】
従って、このように受信パルスのスペクトルの周波数が−2Δfだけシフトしている場合には、受信パルスが、マッチドフィルターを通過していくことはなくなる。この結果、相対距離がパルス繰り返し周期に相当する距離Rpriより長い目標からの反射信号は、マッチドフィルターを通過することなく、その後の合成帯域処理に影響を及ぼさなくなり、誤検出を防止することができる。
【0041】
分配器4aは、周波数シンセサイザ2からの入力信号を2分し、一方を送信信号生成用の局部発振信号として周波数変換器6aに出力し、もう一方を中間周波数信号生成用の局部発振信号として、周波数変換器6bに出力する。
【0042】
基準中間周波数信号生成器5は、基準中間周波数信号を生成する。周波数変換器6aは、分配器4aからの局部発振信号の周波数と、基準中間周波数信号生成器5で生成された基準中間周波数信号の周波数との和の周波数の送信キャリア信号を生成する。
【0043】
パルス変調器7は、周波数変換器6aで生成された送信キャリア信号に対して、タイミング発生器1からのタイミング信号(パルス変調信号に相当)によって、パルス繰り返し周期Tpri毎に、予め定めたパルス幅Tのパルス変調を行う。電力増幅器8は、パルス変調器7の出力信号を取り込み、電力増幅を行う。
【0044】
送受切替器9は、タイミング発生器1からのタイミング信号(送受切替信号に相当)によって、パルス繰り返し周期Tpri毎に、予め定めた時間間隔で、電力増幅器8からの入力信号を出力する。アンテナ10は、送受切替器9からの入力信号を、送信信号として空間へ放射する。
【0045】
送信信号は、目標11、および背景に反射し、反射信号となってアンテナ10で受信され、送受切替器9に出力される。送受切替器9は、タイミング発生器1からのタイミング信号(送受切替信号に相当)によって、パルス繰り返し周期Tpri毎に、予め定めた時間間隔で、アンテナ10からの入力信号を周波数変換器6bに出力する。
【0046】
また、周波数変換器6bには、中間周波数信号の生成用として、分配器4aからの局部発振信号も入力される。そして、周波数変換器6bは、受信信号の周波数と局部発振信号の周波数との差の周波数である中間周波数信号を生成し、中間周波数増幅器12へ出力する。
【0047】
中間周波数増幅器12は、中間周波数信号の電力の増幅を行い、その結果を分配器4bに出力する。分配器4bは、中間周波数増幅器12で増幅された中間周波数信号を2分し、それぞれを位相検波器14a、14bに出力する。
【0048】
一方、90度ハイブリッド器13は、基準中間周波数信号生成器5で生成された基準中間周波数信号を、90度の位相差を持った2つの信号に分離し、位相検波器14a、14bに出力する。位相検波器14a、14bは、分配器4bからの入力信号、および90度ハイブリッド器13からの入力信号から、中間周波数信号の周波数と基準中間周波数信号の周波数との差の周波数を持ち、互いに90度の位相差を持つI成分、Q成分のビデオ信号(以下、I、Qビデオ信号と称す)を生成する。
【0049】
生成されたI、Qビデオ信号は、サンプリング周波数が1/T(送信パルス幅Tの逆数に相当)のA/D変換器15a、15bに入力され、送信パルス幅Tと同じ間隔のレンジビン毎のディジタルI、Qビデオ信号に変換され、ビデオ信号保存用メモリ16に記憶される。ビデオ信号保存用メモリ16は、パルス繰り返し周期Tpriの2N倍の時間間隔のすべてのレンジビン番号のディジタルIビデオ信号を実部、ディジタルQビデオ信号を虚部とした複素ディジタルビデオ信号を保存する。
【0050】
複素乗算器17は、ビデオ信号保存用メモリ16から、周波数シンセサイザ2で生成されたパルス列Aに含まれる周波数の異なるN個の送信パルスに対する受信信号から得られた同じレンジビン番号の複素ディジタルビデオ信号Aを取り出す。
【0051】
さらに、複素乗算器17は、ビデオ信号保存用メモリ16から、周波数シンセサイザ2で生成されたパルス列Bに含まれる周波数の異なるN個の送信パルスに対する受信信号から得られた同じレンジビン番号の複素ディジタルビデオ信号Bを取り出す。
【0052】
そして、複素乗算器17は、それぞれN個からなる複素ディジタルビデオ信号Aおよび複素ディジタルビデオ信号Bの虚部の符号を反転させた複素共役ディジタルビデオ信号Bを同じ番号同士で乗算することによって、N個の相対速度計測用複素ディジタル信号(X(0)〜X(N−1))を生成する。図4は、本発明の実施の形態1における複素乗算器17により生成される相対速度計測用複素ディジタル信号の説明図である。さらに、複素乗算器17は、生成したN個の相対速度計測用複素ディジタル信号を周波数スペクトル分析器18に出力する。
【0053】
パルスレーダ装置と目標との相対速度がvの場合の複素ディジタルビデオ信号Aに相当するV(n)(n=0、1、・・・、N−1)と、複素ディジタルビデオ信号Bに相当するV(n)(n=0、1、・・・、N−1)は、それぞれ次式(7)(8)で表される。
【0054】
【数7】

【0055】
ただし、Iは、複素ディジタルビデオ信号の振幅を表し、ここでは、複素ディジタルビデオ信号A、複素ディジタルビデオ信号B共に、全てのnに対して、同じ値としている。よって、複素ディジタルビデオ信号Aに相当するV(n)と、複素ディジタルビデオ信号Bの虚部の符号を反転させた複素共役ディジタルビデオ信号Bに相当するV(n)に対して、図4に示す処理を行った場合、その出力信号である相対速度計測用複素ディジタル信号X(n)(n=0、1、・・・N−1)は、次式(9)で表される。
【0056】
【数8】

【0057】
ただし、V(n)の「*」、は複素共役を示す。
【0058】
上式(9)で表される相対速度計測用複素ディジタル信号X(n)(n=0、1、・・・、N−1)に対して、周波数スペクトル分析を行った場合、第1項exp(−j2πf(2v/c)NTpri)、第2項exp(−j2πΔf(−2R/c))、第3項exp(−j2πNΔf(2v/c)Tpri)は、それぞれ、変数nには関係のない項なので、これらは初期位相としてしか影響しない。
【0059】
一方、第4項exp(−j2π(2N−1)Δf(2v/c)nTpri)は、送信キャリア周波数が(2N−1)Δfの信号に対するドップラ周波数を表す。周波数スペクトル分析方法として逆フーリエ変換を用いた場合、上式(9)で表される相対速度計測用複素ディジタル信号X(n)に対してN点で逆フーリエ変換した信号、すなわち、相対速度計測用複素ディジタル信号の周波数スペクトルP(k’)は、下式(10)で表される。
【0060】
【数9】

【0061】
周波数スペクトル分析器18は、上述のように、逆フーリエ変換を用いて、複素乗算器17からの相対速度計測用複素ディジタル信号の周波数スペクトルを求め、その結果を相対速度計測器19に出力する。
【0062】
上式(10)より、下式(11)が成り立つときに、P(k′)の絶対値として求められる振幅値(強度)がピーク値となることがわかる。
【0063】
【数10】

【0064】
(k′)の振幅値が最大値をとるk′の値をkとすると、kを求めることにより、下式(12)を用いて、パルスレーダ装置と目標との相対速度vを求めることができる。
【0065】
【数11】

【0066】
相対速度計測器19は、上述のように、周波数スペクトル分析器18からの相対速度計測用複素ディジタル信号の周波数スペクトルの振幅値のピーク信号を検出することにより目標との相対速度を求め、その結果を相対速度補正器20に出力する。
【0067】
相対速度補正器20は、相対速度計測器19で求めた目標との相対速度をvcalとして、下式(13)(14)で表される相対速度補正量Z(n)、Z(n)を求める。
【0068】
【数12】

【0069】
さらに、相対速度補正器20は、目標との相対速度計測のために複素乗算器17で用いたものと同じ複素ディジタルビデオ信号Aと複素ディジタルビデオ信号Bをビデオ信号保存用メモリ16から取り出し、下式(15)、(16)で示す相対速度の補正を行い、それぞれに対する相対速度補正後の複素ディジタルビデオ信号VcA(n)、VcB(n)を求める。
【0070】
【数13】

【0071】
そして、相対速度補正器20は、求めた相対速度補正後の複素ディジタルビデオ信号VcA(n)、VcB(n)を並び替え器21に出力する。並び替え器21は、相対速度補正後の複素ディジタルビデオ信号VcA(n)、VcB(n)の両方を合わせた信号に対して、対応する送信周波数が昇順、あるいは降順になるように並び替え、並び替え後の複素ディジタルビデオ信号を生成し、合成帯域器22に出力する。
【0072】
すなわち、並び替え器21は、先の図2を例にすれば、パルス列Aとパルス列Bを交互に取り出し、周波数番号がf0、f1、・・・、f31の順番となるように並べ替えることにより、並び替え後の複素ディジタルビデオ信号を生成する。
【0073】
合成帯域器22は、並び替え器21から入力された並び替え後の複素ディジタルビデオ信号を逆フーリエ変換することによって、帯域の合成を行い、パルス幅T以下の距離分解能ΔRを持つ複素信号を生成し、その結果を包絡線検波器23に出力する。包絡線検波器23は、合成帯域器22から入力されるすべての複素信号の振幅値を求め、合成帯域処理による高距離分解能相対距離計測結果として、表示器24に出力する。表示器24は、包絡線検波器23からの入力信号を表示する。
【0074】
以上のように、実施の形態1によれば、パルスレーダ装置と目標との間の相対速度が0でない場合に、所定の条件を満たす複数のパルス列からなる送信信号を用いることにより、送信信号に対応した受信結果から相対速度計測用複素信号を算出して相対速度を容易に求めることが可能となる。
【0075】
さらに、相対速度を算出するために使用したものと同じ受信結果に対して、相対速度による補正を施し、相対速度の補正後の受信結果に基づいて合成帯域処理を行うことにより目標までの測距結果を求めることができる。これにより、パルスレーダ装置と目標との間の相対速度が0でない場合にも、相対速度の影響により測距結果を間違うことがなく、高分解能相対距離計測結果を得ることができる。
【0076】
さらに、隣同士の送信信号の周波数差を周波数ステップ間隔の2倍以上に設定することにより、パルス繰り返し周期に相当する距離Rpriより遠い目標からの反射信号を除去することができる。これにより、パルス繰り返し周期に相当する距離Rpriより近いところにある検出すべき本来の目標の誤検出あるいは未検出を防ぐことができる。
【0077】
さらに、相対速度の影響による相対距離計測結果の劣化を防止することができ、パルス繰り返し周期に相当する距離Rpriより遠い目標からの反射信号を除去することができることにより、パルスレーダ装置と目標との間の相対速度が0でない場合にも、1回の高分解能の測距結果を得るために必要な信号送信時間間隔を、本来検出すべき目標までの距離に適用できる範囲で短くした上で、高精度に目標までの相対距離を検出することができるパルスレーダ装置を得ることが可能となる。
【0078】
実施の形態2.
図5は、本発明の実施の形態2におけるパルスレーダ装置の構成図である。図5における本実施の形態2のパルスレーダ装置は、図1における実施の形態1のパルスレーダ装置と比較すると、包絡線検波器23の後段に加算器(加算手段)25がさらに設けられている点と、並べ替え器21がない点が異なっている。
【0079】
次に、本実施の形態2におけるパルスレーダ装置の動作について、実施の形態1と異なる構成を中心に説明する。図5において、相対速度補正器20までの動作は、先の実施の形態1の動作と同様である。相対速度補正器20で求めた相対速度補正後の複素ディジタルビデオ信号VcA(n)、VcB(n)は、合成帯域器22に出力される。
【0080】
合成帯域器22は、相対速度補正器20から入力された相対速度補正後の複素ディジタルビデオ信号VcA(n)、VcB(n)のそれぞれを逆フーリエ変換することによって、帯域の合成を行い、パルス幅T以下の距離分解能ΔRを持つ複素信号を生成し、その結果を包絡線検波器23に出力する。包絡線検波器23では、合成帯域器22から入力されるそれぞれの合成帯域結果である複素信号の振幅値を求め、加算器25に出力する。
【0081】
加算器25は、包絡線検波器23からのそれぞれの合成帯域結果の振幅値を同じレンジビン同士で加算し、その結果を合成帯域処理による高距離分解能相対距離計測結果として、表示器24に出力する。表示器24は、包絡線検波器23からの入力信号を表示する。
【0082】
以上のように、実施の形態2によれば、複数のパルス列に対応したそれぞれの合成帯域処理の後に、同じレンジビン同士の加算処理を行うことによっても、実施の形態1と同様の効果を得ることができる。
【0083】
なお、上述の実施の形態においては、2組のパルス列A、Bを用いる場合について説明したが、本発明はこれに限定されるものではない。例えば、4組のパルス列A〜Dを用い、同じパルス列内の隣同士の周波数差をΔfの4倍とし、パルス列AとB、BとC、CとDの同じ順番の周波数差をΔfとしてもよい。この場合には、演算処理量は増えるものの、隣同士の周波数差が4Δfであることから、マッチドフィルターによる不要信号の除去効果を高めることが可能となる。
【図面の簡単な説明】
【0084】
【図1】本発明の実施の形態1におけるパルスレーダ装置の構成図である。
【図2】本発明の実施の形態1におけるパルス列A、Bの一例を示した図である。
【図3】本発明の実施の形態1における図2のパルス列に対応したマッチドフィルターの説明図である。
【図4】本発明の実施の形態1における複素乗算器により生成される相対速度計測用複素ディジタル信号の説明図である。
【図5】本発明の実施の形態2におけるパルスレーダ装置の構成図である。
【図6】従来のパルスレーダ装置における送信パルスを示した図である。
【図7】従来のパルスレーダ装置における受信信号強度の状態を示した図である。
【図8】従来のパルスレーダ装置における受信機最終段のマッチドフィルター特性を示す図である。
【図9】従来のパルスレーダ装置における2通りの距離からの受信パルスのタイミングを示した図である。
【図10】従来のパルスレーダ装置における図9に対応したマッチドフィルター特性を示す図である。
【符号の説明】
【0085】
1 タイミング発生器、2 周波数シンセサイザ、3 周波数設定器、4a、4b 分配器、5 基準中間周波数信号生成器、6a、6b 周波数変換器、7 パルス変調器、8 電力増幅器、9 送受切替器、10 アンテナ、11 目標、12 中間周波数増幅器、13 90度ハイブリッド器、14a、14b 位相検波器、15a、15b A/D変換器、16 ビデオ信号保存用メモリ、17 複素乗算器(複素乗算手段)、18 周波数スペクトル分析器(周波数スペクトル分析手段)、19 相対速度計測器(相対速度計測手段)、20 相対速度補正器(相対速度補正手段)、21 並び替え器(並び替え手段)、22 合成帯域器(合成帯域手段)、23 包絡線検波器、24 表示器、25 加算器(加算手段)。

【特許請求の範囲】
【請求項1】
パルス繰り返し周期毎に送信周波数が所定の周波数間隔ずつ変化する送信パルス列A、および前記パルス列Aと同じパルス数で送信周波数が所定の周波数間隔ずつ変化するパルス列Bを時分割で目標方向へ送信し、パルス繰り返し周期毎に得られる反射信号を受信してI成分ビデオ信号およびQ成分ビデオ信号を生成するパルスレーダ装置であって、
前記パルス列Aの送信信号に対する受信信号から得られた同じレンジビン番号のI成分ビデオ信号を実部、Q成分ビデオ信号を虚部とした複素ディジタルビデオ信号A、および前記パルス列Bの送信信号に対する受信信号から得られた同じレンジビン番号のI成分ビデオ信号を実部、Q成分ビデオ信号を虚部とした複素ディジタルビデオ信号Bを生成し、前記複素ディジタルビデオ信号Aと前記複素ディジタルビデオ信号Bの虚部の符号を反転した複素共役ディジタルビデオ信号Bとを乗算して相対速度計測用複素信号を生成する複素乗算手段と、
前記相対速度計測用複素信号の周波数スペクトルを求める周波数スペクトル分析手段と、
前記周波数スペクトルを用いて前記目標との相対速度を求める相対速度計測手段と
を備えたことを特徴とするパルスレーダ装置。
【請求項2】
請求項1に記載のパルスレーダ装置において、
前記パルス列Aと前記パルス列Bとの間で、同じ順番のパルスの送信周波数の差を一定にする周波数設定手段をさらに備えたことを特徴とするパルスレーダ装置。
【請求項3】
請求項1または2に記載のパルスレーダ装置において、
前記複素乗算手段で前記相対速度計測用複素信号を生成するために用いた前記複素ディジタルビデオ信号Aおよび前記複素ディジタルビデオ信号Bに対して、前記相対速度計測手段で算出された相対速度を用いた補正を行い、相対速度補正後の複素ディジタルビデオ信号Aおよび相対速度補正後の複素ディジタルビデオ信号Bを生成する相対速度補正手段と、
前記相対速度補正手段により生成された前記相対速度補正後の複素ディジタルビデオ信号Aおよび前記相対速度補正後の複素ディジタルビデオ信号Bの両方を合わせた信号に対して、対応する送信周波数が昇順あるいは降順になるように並び替えた複素ディジタルビデオ信号を生成する並び替え手段と、
前記並べ替え手段で生成された前記複素ディジタルビデオ信号を用いて帯域の合成を行い、所定の分解能で前記目標との相対距離を得る合成帯域手段と
をさらに備えたことを特徴とするパルスレーダ装置。
【請求項4】
請求項1または2に記載のパルスレーダ装置において、
前記複素乗算手段で前記相対速度計測用複素信号を生成するために用いた前記複素ディジタルビデオ信号Aおよび前記複素ディジタルビデオ信号Bに対して、前記相対速度計測手段で算出された相対速度を用いた補正を行い、相対速度補正後の複素ディジタルビデオ信号Aおよび相対速度補正後の複素ディジタルビデオ信号Bを生成する相対速度補正手段と、
前記相対速度補正手段で生成された前記相対速度補正後の複素ディジタルビデオ信号Aおよび前記相対速度補正後の複素ディジタルビデオ信号Bのそれぞれを用いて帯域の合成を行い、それぞれの合成帯域後の信号を生成する合成帯域手段と
前記複素ディジタルビデオ信号Aを用いた合成帯域後の信号、および前記複素ディジタルビデオ信号Bを用いた合成帯域後の信号を加算して、所定の分解能で前記目標との相対距離を算出する加算手段と
をさらに備えたことを特徴とするパルスレーダ装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公開番号】特開2007−212245(P2007−212245A)
【公開日】平成19年8月23日(2007.8.23)
【国際特許分類】
【出願番号】特願2006−31428(P2006−31428)
【出願日】平成18年2月8日(2006.2.8)
【出願人】(000006013)三菱電機株式会社 (33,312)
【Fターム(参考)】