説明

プラズマ反応装置部品の製造方法及び装置

【課題】イットリア部品の製造方法を提供する。
【解決手段】固形イットリアサンプルが処理開始時に用意される。固形イットリアサンプルを高温環境に曝露することでイットリアサンプルを焼結し、機械加工して部品を形成し、部品を既定の加熱速度で加熱してアニーリングする。部品を一定のアニーリング温度で維持し、部品を既定の冷却速度で冷却することを含む。この方法を用いて製造したバルクイットリア部品は、例えば応力の軽減や強化された耐化学薬品性を含む、特性の改善を示すことが判明した。

【発明の詳細な説明】
【発明の背景】
【0001】
(分野)
本発明の実施形態は概してプラズマ処理法及び装置に係り、更に詳細には、改良されたコンポーネント部品を用いたプラズマ処理方法及び装置に関する。
【0002】
(関連技術の説明)
マイクロエレクトロニクス又は集積回路デバイスの製造は、典型的には、半導体、誘電性、導電性基板に施す数百もの個別工程を必要とする複雑な処理シーケンスを伴う。これらの処理工程の例には酸化、拡散、イオン注入、薄膜蒸着、洗浄、エッチング、リソグラフィーが含まれる。
【0003】
リソグラフィーとエッチング(パターン転写工程と呼ばれることも多い)を用い、まず、所望のパターンを感光性材料層、例えばフォトレジストに転写し、その後、次のエッチング中にその下の材料層に転写する。リソグラフィー工程で、ブランケットフォトレジスト層をパターンを含むレチクル又はフォトマスクを介して放射線源に曝露すると、パターンの像がフォトレジストに形成される。適切な化学溶液中でフォトレジストを現像するとフォトレジストの一部が除去され、パターン形成されたフォトレジスト層が得られる。このフォトレジストパターンをマスクとして用いて、その下の材料層を、例えば、ウェット又はドライエッチングにより反応環境に曝露すると、その下の材料層にパターンが転写される。「マスク」、「フォトマスク」又は「レチクル」という用語は、パターンを含む基板を総称して同じ意味で用いられる。
【0004】
典型的にはガラス又は石英基板上に支持された金属含有層に形成されるフォトマスク上のパターンは、フォトレジストパターンを介してエッチングすることでも形成できる。しかしながら、この場合、フォトレジストパターンを、レチクルを介したフォトレジストの曝露とは対照的に、例えば電子ビーム又はその他の適切な照射ビームを用いて直接書込み法により形成する。パターニングしたフォトレジストをマスクとして使用し、パターンをその下の金属含有層にプラズマエッチングを用いて転写可能である。
【0005】
プラズマ処理は薄膜蒸着及びエッチングに用いられることが多く、プラズマチャンバ内で行われる。化学気相蒸着においては、適切な処理ガスに電圧を印加することで反応種を発生させ、続く化学反応により基板上に薄膜が形成される。プラズマエッチングにおいては、前もって蒸着させた膜を多くの場合は事前のリソグラフィー工程で形成したパターニングしたマスクを介してプラズマ内で反応種に曝露させる。反応種と蒸着させた薄膜との反応により、蒸着させた薄膜が除去、つまりエッチングされる。
【0006】
チャンバ部品又は処理キットをプラズマ環境に長時間曝露すると、プラズマ種との反応により劣化が起こる場合がある。例えば、プラズマチャンバの既存の処理キット又はコンポーネント部品はアルミナ(酸化アルミニウム)から成ることが多い。回路形成においては、ハロゲン含有ガス、例えばフッ素含有又は塩素含有ガスを多様な材料層のエッチングに用いる。アルミナはフッ素種による攻撃に弱く、コンポーネント部品表面上でのAlの形成につながる。こういったエッチング副生成物は処理中に粒子として脱落し、マスク基板の汚染と欠陥につながる。更に、おそらくは機械加工中に発生する機械的応力の結果、アルミナ部品の一部は破損し易くなると思われる。従って、プラズマ用途用のコンポーネント部品としての使用に適した代替セラミック材料、及びこういった材料を製造するための改良された処理が求められている。
【発明の概要】
【0007】
本発明はイットリア部品の製造方法を提供し、(a)イットリアサンプルを準備し、(b)イットリアサンプルを焼結し、(c)焼結させたイットリアサンプルを機械加工して部品を形成し、(d)部品をアニーリングすることを含む。
【0008】
本発明の別の実施形態は、プラズマ反応装置で使用するための少なくとも約99.5%のイットリアを含む部品を提供する。
【0009】
本発明の更に別の実施形態はプラズマ処理チャンバを提供し、チャンバ本体部と、チャンバ本体部内に配置されて、少なくとも約99.5%のイットリアから成る部品と、チャンバ本体部内に配置され、基板をその上に受けるように適合された支持台座と、チャンバ内でプラズマを形成するための電源とを含む。
【図面の簡単な説明】
【0010】
本発明の上述した構成が詳細に理解できるように、上記で要約された本発明のより具体的な説明が実施形態を参照して行なわれ、それらのいくつかは添付図面に示されている。しかしながら、添付図面は本発明の典型的な実施形態を図示するに過ぎず、本発明はその他の同等に効果的な実施形態も含み得るため、本発明の範囲を制限すると解釈されないことに留意すべきである。
【図1】本発明によるバルクイットリア部品の製造方法の概略図である。
【図2】本発明の方法により形成した少なくとも1つのバルクイットリア部品を有するプラズマエッチング反応装置の概略図である。
【図3A】〜
【図3B】カバーリングの上部及び断面の概略図である。
【図4A】〜
【図4B】捕捉リングの上部及び断面の概略図である。
【図5】ガス注入口(ノズル)の一実施形態の断面の概略図である。
【図6】図1の方法により形成した少なくとも1つのバルクイットリア部品を有するプラズマエッチング反応装置の概略図である。
【図7】ガス分布プレートの上面の概略図である。
【図8】チャンバ内部のコンポーネント部品の一部の断面の概略図である。
【図9A】〜
【図9B】イットリアリングの上部及び断面の概略図である。
【0011】
円滑な理解のために、可能な限り、図面間で共通する同一要素は同一の参照番号を用いて表した。一実施形態における要素と特徴は、特に記載することなく、別の実施形態にて有利に利用することができる。
【詳細な説明】
【0012】
本発明の特定の実施形態は、応力の軽減や向上した耐化学薬品性等の、改善された特徴を備えたバルク又は固形イットリアから成る部品を製造するための方法を提供する。その他の特定の実施形態には、改善された特徴を備えたバルク又は固形イットリアから成るチャンバコンポーネントと、これを利用した処理チャンバを含む。詳細には、機械加工後に部品を高温アニーリングに供した場合にこういった改善された特徴が得られることが判明している。更に、こういった特徴は、部品を酸素含有環境内で焼結又はアニーリングすると更に向上し得る。
【0013】
図1はこれらの改善されたイットリア部品を製造するために使用可能な方法100の一実施形態を示す。固形イットリアサンプルは、方法100のブロック102の処理開始時に用意される。固形イットリアサンプルは、当業者に既知の様々な技法を用いて形成し得る。例えば、イットリア(酸化イットリウム。Y)粉末を原料として用い、水、結合剤、及び製造工程を促進又は部品の特性を強化するために使用し得る適切な添加剤等その他の成分を添加することでスラリーを形成する。乾燥後、スラリーをブロック状にプレス成形し、固形イットリアサンプルを形成する。
【0014】
ブロック104で、固形イットリアサンプルを高温環境に曝露することで焼結させると、イットリア粒子は互いに融合する。特殊な応用ニーズによっては、イットリア固形サンプルを多様なガス雰囲気又は環境に曝露することで焼結を行う。一実施形態において、焼結は酸素含有雰囲気下、例えば酸素(O)と窒素(N)を含有する混合物下で行ってもよく、O部分圧は約0.001気圧(atm)から約1atmである。アニーリングは全圧約1atmで行ってもよいが、その他の圧力も使用し得る。別の実施形態において、焼結混合物のO濃度は少なくとも約2容量%である。別の実施形態において、焼結は不活性又は非酸化性雰囲気下、例えば、窒素(N)又はその他の不活性ガス下で行う。
【0015】
焼結後、ブロック106に示すようにイットリアサンプルを部品に機械加工する。通常、部品は異なる設備又は機械のコンポーネント部品であってもよく、様々な形状や寸法を有し得る。一実施形態において、機械加工部品はプラズマ処理チャンバのコンポーネントであり、その純度レベルは約99.9%より高い。別の実施形態において、イットリアの純度レベルが約99.5%を越えるサンプルもプラズマ処理チャンバにおける使用に適している。
【0016】
ブロック108において、機械加工部品を制御条件下での高温アニーリング処理に供する。1つ以上のアニーリング条件、例えばアニーリングガス、加熱又は冷却速度の選択は、イットリアサンプルを用意する際に使用する特定の焼結雰囲気に依存する。本発明の一実施形態においては、酸素含有雰囲気下で焼結又はアニーリングの少なくとも1つを行う。アニーリング中の加熱及び冷却速度の選択も、用いた焼結雰囲気に依存する。アニーリング後、必要に応じて、使用又は取り付けに向けて部品を更に処理してもよい。
【0017】
本発明の一実施形態により、ブロック108のアニーリング処理は3つの段階を含む。第1段階においては部品をアニーリングガスに曝露し、第1温度、例えば常温から既定の第2温度への漸次加熱に供する。第2段階においては、部品を第2温度(アニーリング温度)で、事前の機械操作により生じた又は誘発された可能性のある応力を実質的に解放し、かつ所望の耐化学薬品性を付与するに十分な時間にわたって維持する。第3段階にて、部品を第1温度へ漸次的に冷却して戻す。
【0018】
前述したように、焼結雰囲気は1つ以上のアニーリング条件の選択に影響を与える場合がある。例えば、ブロック104での焼結処理をN又はその他の不活性ガス等の不活性又は非酸化性雰囲気中で行う場合、アニーリング処理の少なくとも一部でイットリア部品を酸素含有ガスに曝露する。一実施形態において、アニーリングガスはO濃度が約10容量%、残りはN又はその他の不活性ガスの混合物である。
【0019】
一方、焼結を酸素含有雰囲気中で行う場合、アニーリングの最中に部品を酸素含有雰囲気に曝露する必要はない。
【0020】
加えて、不活性又は非酸化性雰囲気下で焼結させたイットリアサンプルの場合、アニーリング条件をより注意深く制御する必要のある場合があり、これはサンプルからの脱ガスによりサンプル周囲のガス環境が変化する可能性があるからである。従って、温度、圧力、ガス組成等の様々なパラメータを定期的にモニタしながら、アニーリングガスを循環させてイットリア部品をアニーリング雰囲気により均一に曝露してもよい。
【0021】
一実施形態においては、ブロック108のアニーリング処理を大気圧の空気の炉内で行う。空気をアニーリングガスとして用いることで、簡便性と比較的低コストという双方の利点が得られる。対象とするイットリア部品の一部、例えばイットリア純度レベルが少なくとも約99.5%のものに関しては、完成部品に所望の特性を付与するには空気中のアニーリングで十分であり、還元又は酸化雰囲気等の、より活性な成分を含むガス混合物を特に必要としない。その他の不活性又は非反応性雰囲気もイットリア部品のアニーリングに使用することができ、例えば窒素、アルゴンその他、又はその混合物、或いは空気とは異なる酸素濃度の比較的不活性なその他の混合物である。特定の用途に応じ、部品によっては形成ガス(例えば、窒素中、水素が4容量%又は10容量%未満の混合物)、又は水素濃度の異なるガス混合物、又は還元又は酸化ガスの使用が有益である。例えば、表面の改質、例えば化学的な改質やパッシベーションが必要な場合は、必要に応じて還元又は酸化環境内でアニーリングを行う。
【0022】
固形イットリアサンプルの焼結を非酸化性又は不活性雰囲気で行う別の実施形態においては、アニーリングガスは、例えば酸素濃度が少なくとも約10容量%の酸素含有雰囲気を含む。
【0023】
アニーリングは、静的又はガス流環境下で行うことが可能である。静的状態ではコストを低減できるという利点があるが、ガス流構成はアニーリングがサンプルとの化学反応を伴う場合に有益であり、新鮮なアニーリングガスの供給を維持可能となる。溝等の特定の幾何学形状又は特徴を備えた部品については、層流条件と対照的に乱流を用いることも有利である。
【0024】
アニーリング処理中の漸次的な加熱及び冷却の速度は不均一な熱膨張又は熱収縮から生じる応力を最小限に留めるのに十分なくらい緩慢、かつ処理のスループットを実用的なものとするに十分なだけ早くなるように制御される。従って、各漸次加熱及び漸次冷却段階は約8時間から約48時間かけて行われ、具体的な時間は部品により異なる。
【0025】
サイズ、形状、表面積:体積比、熱膨張又は熱容量係数等の部品の熱特性に加え、イットリアサンプルを形成するのに使用する焼結雰囲気もまたアニーリング中の加熱又は冷却速度の選択に影響する。従って、一実施形態においては、加熱及び冷却速度は、少なくとも、焼結中に使用する焼結雰囲気に基づいて選択する。焼結環境によりイットリアサンプルの表面特性に特定の変化が起こり、その結果、対応する調節をアニーリング条件に加えて適切なバルク特性移行を行う必要がでてくると考えられる。概して、局所的な応力又はひずみが高いサンプルでは、加熱及び冷却速度が緩慢である必要がある。従って、サンプルの形状及び厚み等のパラメータが、漸次加熱又は冷却速度を決定する際により重要となる傾向がある。
【0026】
一実施形態においては、安定した又は一定の加熱速度を用い、外部温度勾配が部品表面付近で1センチメートルあたり約1ケルビン(K/cm)を越えないように制御する。ここで、外部温度勾配とは、部品表面に近い位置、例えば部品とアニーリングガスとの界面に近い領域での温度勾配を指す。別の実施形態においては、部品の内部温度又は温度勾配が約10ジュール/キログラム・ケルビン(J/kg−K)を越えないように制御される。更に別の実施形態においては、第1期間の間、加熱速度を制御して外部及び内部温度勾配の双方をそれぞれの限度未満に維持する。
【0027】
酸素含有雰囲気中で焼結されたイットリアサンプルに関しては、不要な熱応力を回避するためには漸次加熱段階中に加熱速度を、例えば同等の幾何学形状及び厚さを備えているが不活性又は非酸化性雰囲気内で焼結させたその他のサンプルよりも約3から5倍、低下させる必要がある。従って、外部温度勾配が約0.2から0.3K/cm、内部温度勾配が約2から約3J/kg−Kとなるように加熱速度を制御してもよい。一実施形態においては、外部温度勾配が約0.3K/cmを越えないように加熱速度を制御する。或いは、内部温度勾配が約3J/kg−Kを越えないように加熱速度を制御する。
【0028】
第2段階で使用するアニーリング温度は特定のイットリア部品に依存し、部品に使用する添加物にも依存する場合がある。概して、アニーリング温度は材料組成の共融点より少なくとも約200ケルビン低くなくてはならない。目的のイットリア部品については、約200℃から約1000℃の範囲を使用可能であり、一方、一実施形態において、アニーリング温度は約800℃から約1000℃である。第2段階の時間は特定の部品、例えば寸法、形状又は組成に依存する。比較的大きい部品、又は機械的応力の影響を受けやすい形状のものは、通常、より長いアニーリング時間を必要とする。一部の実施形態では、ア
ニーリング時間は数日、例えば4日から約7日にもわたる場合がある。
【0029】
漸次冷却段階においては、同様の基準に従った制御速度で部品を冷却し、制御しないと過剰に高い冷却速度で生じる熱応力を最小限に留める。一実施形態においては、漸次加熱で用いたものとほぼ同じ安定又は一定の速度で部品を冷却する。
【0030】
アニーリング後、必要に応じて部品を更に処理し、使用又は取り付けに備えてもよい。
【0031】
この方法を用いて製造したバルクイットリア部品は、例えば応力の軽減や強化された耐化学薬品性を含む、特性の改善を示すことが判明した。比較研究を行うことで、本発明の一実施形態に沿ってアニーリングを通して処理した後のバルクイットリアサンプルの特性が改善されていることが実証された。特に、3バッチ分のイットリア試片又はサンプルからの表面粗さ、輝度、X線回折の結果を比較する。3つのサンプルを異なる製造工程を通して処理した。1)焼結したまま、2)機械加工、3)機械加工及びアニーリング。次に、サンプルをフッ素及び酸素含有プラズマに約12時間曝露した。表面粗さ測定は、サンプルNo3の表面粗さは焼結しただけのサンプル(サンプルNo1)の表面粗さよりも低いが、サンプルNo2の表面粗さとはほぼ同じであることを示す。
【0032】
X線回折の結果は、焼結しただけのサンプルNo1が微結晶構造を伴う2つの異なる相を含有することを示す。機械加工後、サンプルの表面は単相となり、二相サンプルよりもより望ましい。機械加工及びアニーリングしたサンプルは単相のままであるが、応力レベルはサンプルNo2と比較して軽減されている。
【0033】
最後に、プラズマ曝露後の耐侵食性も比較し、サンプルNo3の侵食が最も少なく、次
に焼結しただけのサンプルNo1が続き、機械加工のみのサンプルNo2の侵食が最も大きいことが判明した。
【0034】
これらの結果は、応力の軽減から、プラズマ環境での使用には機械加工及びアニーリングした部品(サンプルNo3)が最も適していることを示唆している。滑らかな仕上げも、処理中に堆積された材料から生じる粒子の発生を軽減する。
【0035】
通常、この方法は異なる寸法や形状の様々なイットリア部品を製造するために使用可能であるが、機械的応力の影響をより受けやすい特定の機械加工部品、例えば開放部又は角状部又は形状に特に有益である。
【0036】
本発明の実施形態は、様々な用途に向けたイットリア部品を製造するのに使用可能である。これらの改善された部品は、プラズマ処理中に遭遇するような腐食性の環境での使用にも適している。多様なプラズマ堆積及びエッチングチャンバが本願で開示の教示に有益であり、例えば、アドバントエッジ金属及びDPS金属チャンバ等の導体エッチングチャンバその他のみならず、センチュラ(商標名、Centura)システム等の半導体ウェハ処理システムの一部である、分離プラズマ源(DPS(商標名))II反応装置、テトラ(Tetra)I及びテトラIIフォトマスクエッチングシステム、イネーブラ(商標
名、Enabler)エッチングチャンバ等の誘電体エッチングシステム、イーマックス(eMax)エッチングチャンバ、プロデューサエッチングチャンバが挙げられ、全てカリフォルニア州サンタクララのアプライドマテリアル社から入手可能である。イネーブラ(商標名)チャンバの詳細は米国特許第6853141号「磁気プラズマ制御を備えた容量結合プラズマ反応装置」に開示されている。エッチング反応装置の別の実施形態の詳細は、米国特許出願第10/882084号(代理人整理番号9400)の「フォトマスクプラズマエッチングの方法及び装置」に開示されている。その他の製造業者によるものを含め、本発明はその他のプラズマ反応装置を適合させても有益である。
【0037】
図2は、バルクイットリアから成る特定のコンポーネント部品を備えたエッチング反応装置200の概略図である。ここで図示の反応装置200の実施形態は実例を示すことを目的としたものであり、本発明の範囲を限定するとされるべきではない。
【0038】
通常、反応装置200は導電性本体部(壁)204内に基板台座224を有する処理チャンバ202と、制御装置246とを含む。チャンバ202は実質的に平坦な天井部またはチャンバ蓋部208を有する。チャンバ202のその他の変形版は別のタイプの天井部、例えばドーム型天井部を有していてもよい。蓋部208上に配置されたアンテナ210は1つ以上の誘導コイル素子を含み、コイルはプラズマ電源212に連結された第1整合回路214を介して選択的に制御され得る(図2には2つの軸素子210aと210bが図示)。プラズマ電源212は、典型的には、約50kHzから約13.56MHzの範囲の調整可能な周波数で約3000Wにのぼる電力を発生可能である。
【0039】
基板台座(カソード)224は、第2整合回路242を介してバイアス電源240に連結されている。通常、バイアス電源240は周波数約13.56MHzで約500Wまでの電源であり、連続出力又はパルス出力のいずれかで電力発生可能である。或いは、電源240はDC又はパルスDC電源であってもよい。
【0040】
一実施形態において、基板支持台座224は典型的な基板、例えば矩形の基板のものと実質的に一致する形状と寸法を有する中央突出部を有する。カバーリング300と捕捉リング400は上記記載の方法100により共にバルクイットリアから成り、基板支持台座224上に配置されている。環状絶縁体290が基板支持台座224の外側部とカバーリング300との間に設けられている。
【0041】
図3A−Bはカバーリング300の上面及び断面の概略図である。カバーリング300は基板222と実質的に一致するような形状とサイズの中央開放部304を規定する内側周縁部302と、開放部304に隣接して配置された2つの上部突出部306、308とを有する。図3Aに図示されるように、突出部306は、内側周縁部302の一部と実質的に一致する切欠内側部を備えた環状リングの弓形形状である。もう一方の突出部308は実質的に矩形形状である。縁部310及び312は、それぞれ突出部306、308に隣接して設けられる。
【0042】
図4A−Bの上部及び断面図に概略的に図示の捕捉リング400はC形状を有し、例えば一部を除去した環状リングに似ている。捕捉リングには縁部404と406が設けられており、台座224との基板(例えば、フォトマスク又はレチクル)の搬出・搬入の際に基板を受け、支持するために用いられる。捕捉リング400はカバーリング300の内側周縁部302と突出部306、308と実質的に一致するようなサイズと形状の内側周縁部402を有する。捕捉リング400は昇降機構238(図2に図示)により2つの位置間を移動するように設計されており、各ガイドホール236を貫通して移動する複数の昇降ピン230(図では昇降ピンが一本図示)を含む。第1位置において、捕捉リング400は台座224の上面の下に下降し、台座224により支持された基板222を処理に委ねる。この第1位置において、捕捉リング400はカバーリング300の突出部306、308と原則的には連結して完全な環状リングを形成するため、捕捉リング400とカバーリング300の上面は実質的に同一水平面上にある。つまり、少なくとも捕捉リング400とカバーリング300の特定部位は相補的な形状である。基板処理を完了後、捕捉リング400をその第2位置に向かって上昇させ、チャンバ202からの搬出に向けて基板
222を支持し、別の処理対象基板を受け取る準備に入る。
【0043】
処理中、基板222の温度は基板台座224内に設けられた1つ以上の流路(図示せず)に冷却液を流して台座の温度を安定化させることで制御する。
【0044】
一実施形態においては、イオン・ラジカルシールド270を台座224上方のチャンバ202内に配置する。イオン・ラジカルシールド270はチャンバ壁部204と台座224から電気的に絶縁され、通常、台座224上方で複数の脚部276により支持された実質的に平坦なプレート272を含む。プレート272は1つ以上の開放部又は開口部274を規定し、この開口部によりプレート272の表面に所望の開放領域が集合的に設けられ、処理チャンバ202の上部処理容積278で発生したプラズマからイオン・ラジカルシールド270と基板222との間に位置される下部処理容積280に通過するイオン量が制御される。複数の脚部276は、通常、カバーリング300の外側周縁部周囲に位置されており、プレート272と同一の材料から形成してもよい。脚部276はプレート272とカバーリング300の外側周縁部の下に設けられたスクリーン292に様々な方法を用いて連結又は固定してもよい。脚部276、リング300、又はプレート272の少なくとも1つは上記記載の方法100を用いて形成してもよい。
【0045】
1つ以上の処理ガスを、基板台座224上方に位置する1つ以上の注入口216(例えば、開放部、注入器、ノズル等)を介してガスパネル220から処理チャンバ202に供給する。図2に図示の実施形態において、処理ガスはチャンバ蓋部208周囲に配置された環状ガス注入リング294に形成された環状ガス路218を通して注入口216に供給される。一実施形態において、チャンバ蓋部208は直径約20インチのブランク円形蓋部であり、ガス注入口216の最大縦方向及び横方向寸法はそれぞれ1インチ未満であり、これらは共に本発明の製造方法100により固形イットリアから成る。或いは、環状ガス注入リング294を単体コンポーネント、例えば一体型ガス注入蓋部としてチャンバ蓋部208に設けてもよい。
【0046】
図5はノズル500として図示したガス注入口の一実施形態の概略断面図である。ノズル500は、ノズル500の長手方向に沿って方向付けられた導管502を含む。導管502はガス路218に連結される第1端部504とそこを通って処理ガスがチャンバ202内に排出される第2端部506を有する。ノズル500は上記記載の方法100を用いて形成してもよい。ノズル500は、ガス注入リング294に連結するための第1円筒部508その他を更に有する。一実施形態において、円筒部508をネジ切りし、平坦部510を第2端部506付近に設けることで、円筒部508の対応するガス注入リング294の開口部への連結が容易になる。エッチング反応装置200のこの具体例における特定のコンポーネント部品のみがバルクイットリアで形成されているが、現在は陽極酸化アルミニウム又はイットリアをスプレーコーティングしたアルミニウムから成る脚部276、ガス注入リング294等その他のコンポーネント部品も方法100に沿ってバルクイットリア部品として形成し得る。加えて、その他のプラズマ処理チャンバで使用のコンポーネント部品(例えば、ガス分布プレート、シャワーヘッド、チャンバ裏装材、シャドーリングその他)も方法100に沿って形成してもよい。
【0047】
エッチング処理中、プラズマ電源212からの電力をアンテナ210に印加して処理ガスからプラズマを発生させる。チャンバ202内の圧力は絞り弁262と真空ポンプ264とを用いて制御する。壁部204の温度は、壁部204内を走る液体含有導管(図示せず)を用いて制御してもよい。典型的には、チャンバ壁部204は金属(例えば、アルミニウム、ステンレススチールその他)から成り、アース206に連結されている。処理チャンバ202は処理の制御、内部診断、終点検出その他のための慣用のシステムも備える。こういったシステムは、サポートシステム254として集合的に図示されている。
【0048】
制御装置246は中央演算処理ユニット(CPU)250、メモリ248、CPU250用のサポート回路252備え、処理チャンバ202のコンポーネント、これによりエッチング処理が、以下で更に詳細に説明するように制御される。制御装置246は様々なチャンバ及びサブプロセッサを制御する際に工業環境で使用可能ないずれの汎用コンピュータプロセッサであってもよい。CPU250のメモリ、又はコンピュータ可読性媒体はランダムアクセスメモリ(RAM)、読み出し専用メモリ(ROM)、フロッピーディスク、ハードディスク、またはその他のいずれの形式のローカルまたはリモートデジタルストレージ等の1つ以上の容易に入手可能なメモリであってもよい。サポート回路252は慣用のやり方でプロセッサを支持するためにCPUに連結されている。これらの回路はキャッシュ、電力供給源、クロック回路、入力/出力回路、サブシステム等を含む。本発明の方法は、通常、ソフトウェアルーチンとしてメモリ248内に保存されている。或いは、こういったソフトウェアルーチンをCPU250により制御されるハードウェアとは離れて位置する第2CPU(図示せず)で保存及び/又は実行してもよい。
【0049】
一実施形態においては、少なくともハロゲン含有ガス、例えばフッ素含有又は塩素含有ガスを1つ以上含む処理ガスをガス注入口216を介してチャンバ202に導入する。概して、フッ素含有ガス、例えばCHF、CFその他を用いて基板222上の石英及びMoSi層をエッチングするのに対し、塩素(Cl)等の塩素含有ガスはクロムをエッチングする際に使用する。プラズマは、RF電力をアンテナ210に例えば約350W、周波数約13.56MHzの電力レベルで印加することで発生させる。イオン・中性シールド270により開口部274を通過するイオンの量が制御される一方、プラズマにおける圧倒多数の中性種が下部処理容積280に進入可能となり、基板222をエッチングする。
【0050】
こういったエッチング処理は本発明に沿って製造したイットリア部品の使用が有益であり、これは部品の特性が改善されたことでメンテナンスと粒子による汚染が軽減されるからである。
【0051】
図6は本発明の実施形態が有益となる実例であるプラズマ処理チャンバ602の概略断面図である。ここで図示の反応装置の実施形態は実例を示すことを目的としたものであり、ここで記載の方法100を用いて形成した部品は、別の製造業者によるものを含め、その他の処理チャンバにおいても有益に利用し得ることから本発明を制限すると捉えられるべきではない。
【0052】
この実施形態においては、チャンバ602を用いて基板614のプラズマ処理、例えばエッチングを行う。処理の均一性はガス拡散装置632を用いて調整することができ、拡散装置は処理の非対称性、つまり基板の中心線で対称でない処理結果、を引き起こすコンダクタンス又はその他のチャンバ属性を補正可能とするよう設計されている。
【0053】
一実施形態において、チャンバ602は導電性チャンバ壁部630と底部608を有する真空チャンバ本体部610を含む。チャンバ壁部630はアース634に接続されている。蓋部670はチャンバ壁部630上に配置され、チャンバ本体部610内に規定された内部容積678を囲い込む。少なくとも1つのソレノイド線612がチャンバ壁部630外部に配置されている。ソレノイド線612に、少なくとも5Vの電力を発生可能なDC電源654により選択的に電力供給し、処理チャンバ602内に形成されたプラズマ処理用の制御つまみとしてもよい。
【0054】
セラミック裏装材631を内部容積678内に配置して、チャンバ602の洗浄を促進する。エッチング処理の副生成物及び残留物は所定の間隔で裏装材631から速やかに除去される。
【0055】
基板支持台座616はガス拡散装置632下方の処理チャンバ602の底部608上に配置される。処理領域680は基板支持台座616と拡散装置632との間の内部容積678内に規定されている。基板支持台座616は、処理中、ガス拡散装置632の下方で基板614を台座616の表面640上に保持するための静電チャック626を含んでいてもよい。静電チャック626は、DC電源620により制御される。
【0056】
支持台座616は整合回路624を介してRFバイアス電源622に連結してもよい。バイアス電源622は、通常、50kHzから13.56MHzの調節可能周波数と電力0から5000ワットを有するRF信号を発生可能である。任意で、バイアス電源622はDC又はパルスDC電源であってもよい。
【0057】
支持台座616は内側及び外側温度制御ゾーン674、676も含んでいてもよい。各ゾーン674、676に抵抗ヒータ又は冷却液を循環させるための導管等の少なくとも1つの温度制御装置を備えることで、台座上に配置した基板の半径方向温度勾配を制御してもよい。
【0058】
チャンバ602の内部は高真空容器であり、チャンバ壁部630及び/又はチャンバ底部608を貫通して形成された排気ポート635を介して真空ポンプ636に連結されている。排気ポート635内に取り付けられた絞り弁627を真空ポンプ636と共に用いて処理チャンバ602内の圧力を制御する。排気ポート635の位置と、チャンバ本体部610の内部容積678内のその他の流れ制御物は処理チャンバ602内のコンダクタンスとガス流分布に大きな影響を与える。
【0059】
ガス拡散装置632はそこを通して少なくとも1つの処理ガスを処理領域680に、その他のチャンバコンポーネントにより引き起こされる(つまり、排出ポートの位置、基板支持台座又はその他のチャンバコンポーネントの形状)上記記載のコンダクタンスやガス流分散を調節するために用い得る非対称法でもって導入する導管を構成し、これによりガス及び反応種の流れが基板に均一又は選択的に分散されて供給される。更に、ガス分散装置632を利用して基板614の中心線に合わせてプラズマを位置決めしてもよい(基板は台座616と同心で配置されている)。この結果、ガス拡散装置632の構成は処理均一性を改善、或いは処理結果に既定のズレを生じさせるように選択してもよい。例えば、ガス拡散装置632の構成は、基板支持台座616上方の処理領域680にチャンバのコンダクタンスを相殺するような形でガス流が指向されるよう選択してもよい。これは、処理中における、チャンバコンダクタンスがプラズマの位置及び/又はイオン及び/又は反応種の基板表面への供給に与える非対称効果を相殺する非対称性でもってガスを処理チャンバに供給するようガス拡散装置632を構成することで達成し得る。
【0060】
図6に図示の実施形態において、ガス拡散装置632は少なくとも2つのガス分散装置660、662と、取付プレート628と、ガス分散プレート664とを含む。
【0061】
ガス分散装置660、662は1つ以上のガスパネル638に処理チャンバ602の蓋部670を介して連結されており、かつ取付又はガス分散プレート628、664の少なくとも1つにも連結されている。ガス分散装置660、662を通したガス流は個別に制御してもよい。単一のガスパネル638に連結したガス分散装置660、662を図示しているが、ガス分散装置660、662を1つ以上の共有及び/又は分離ガス供給源に連結してもよい。ガスパネル638から供給されたガスはプレート628、664の間に規定された領域672に供給され、次にガス分散プレート664を貫通して形成された複数の開口部668から処理領域680に排出される。
【0062】
取付プレート628は支持台座616に対向した蓋部670に連結されている。取付プレート628はRF導電性材料から形成又は被覆されており、インピーダンス変換器619(例えば、1/4波長整合スタブ)を介してRF電源618に連結されている。電源618は、通常、調節可能周波数約262MHzと電力約0から2000ワットのRF信号を発生可能である。取付プレート628及び/又はガス分散プレート664をRF電源618により電力供給し、処理領域680内で処理ガスから形成したプラズマを維持する。
【0063】
図7は本発明の実施形態に沿って形成可能なガス分散プレート700の上面の概略図である。イットリアガス分散プレート700はチャンバ602内又はその他のプラズマチャンバ、例えばエッチングや堆積その他を用途とするチャンバ等で使用可能である。ガス分散プレート700は複数の開口部又つまりガス注入口702を備えているため、処理ガス及び/又はプラズマ種がチャンバの処理領域へと通過可能となる。開口部702はガス分散プレート700上に規則正しく配置しても、或いは異なるパターンに配置することで異なるガス分散ニーズに答えてもよい。ガス分散プレート700の厚さは約0.125インチから約0.750インチ、開口部702の直径は約0.01インチから約0.03インチであってもよい。
【0064】
一実施形態においては、少なくとも1つのハロゲン含有ガス、例えばフッ素含有又は塩素含有ガスを含む1つ以上の処理ガスをガス注入口702を介してチャンバ602に導入する。概して、フッ素含有ガス、例えばCHF、CFその他を用いて基板614上の誘電体材料をエッチングするのに対し、塩素(Cl)等の塩素含有ガスは金属等の材料をエッチングする際に使用する。こういったタイプのエッチング処理は本発明の実施形態に沿って製造したイットリア部品の使用が有益となり、これは部品の耐食性が改善されたことでメンテナンスと粒子による汚染が軽減されるからである。
【0065】
図8は処理チャンバ800の内部のコンポーネント部品の一部の断面の概略図であり、チャンバはプラズマチャンバ又は腐食性環境内での基板処理用に設計されたチャンバであってもよい。チャンバ800は基板850を支持するための台座802を含む。一実施形態において、台座802の外側周縁部804はリング806に取り囲まれており、基板、例えばウェハをその他のチャンバコンポーネントから隔離するために使用される。リング806は多様な適切な技法を用いて台座802に取付け又は搭載可能である。
【0066】
金属又は導体エッチングに用いるような特定のチャンバについては、リング806は本発明の実施形態によりイットリアから形成してもよい。誘電体エッチングに用いるようなその他のチャンバについては、本発明の実施形態により作成したイットリア裏装材810をリング806の外側周縁部808の周囲に設けてもよい。裏装材810は、チャンバ壁部を処理ガス又は不本意な堆積から遮断することでチャンバ壁部を保護する。誘電体エッチングチャンバの場合、リング806は典型的にはその他の材料から成る。
【0067】
図9Aは環状形状を有するリング806の一実施形態の上面の概略図であり、図9Bは線BB´に沿った断面図を示す。一実施形態において、リング806の厚みは約0.3cmであり、内径は約30cm、外径は約35cmである。このリングの幾何学形状及び厚みは過剰な機械的応力又はひずみに寄与しないため、アニーリング段階での漸次加熱及び漸次冷却はあまり厳格でない要件下、例えば、外部温度勾配が部品表面付近でセンチメートルあたり約1ケルビン(K/cm)を越えない、又は内部温度又は部品内部での温度勾配がキログラム・ケルビンあたり約10ジュールを越えない(J/kg−K)ような加熱又は冷却速度で実行可能である。
【0068】
上記は本発明の実施形態を対象としているが、本発明の基本的な範囲から逸脱することなく本発明のその他および更に別の実施形態を考案することができ、その範囲は特許請求の範囲に基づいて定められる。

【特許請求の範囲】
【請求項1】
少なくとも約99.5%のイットリアを含み、焼結後に機械加工してアニーリングし、単相の微小結晶構造を有する、プラズマ反応装置内で使用される部品。
【請求項2】
部品が、蓋部、リング、イオンシールドプレート、イオンシールド脚部、ノズル、ガス分散プレート、チャンバ裏装材の1つである請求項1記載の部品。
【請求項3】
部品が、バルクイットリアから作られる請求項1記載の部品。
【請求項4】
部品が、99.9%を超える純度レベルを有する請求項1記載の部品。
【請求項5】
(a)イットリアサンプルを提供する工程と、
(b)イットリアサンプルを焼結する工程と、
(c)焼結させたイットリアサンプルを機械加工して部品を形成する工程と、
(d)部品をアニーリングして単相の微細結晶構造を得る工程であって、アニーリングは、
(d1)部品をエンクロージャー内でアニーリングガスに曝露する工程と、
(d2)部品を第1期間にわたって第1温度から第2温度まで加熱する工程であって、部品内の温度勾配が10ジュール/キログラム・ケルビン(J/kg−K)を超えないように加熱速度を制御する工程と、
(d3)部品を第2温度で第2期間にわたって維持する工程と、
(d4)部品を第2温度から第1温度まで第3期間にわたって冷却する工程を更に含む工程を含むプロセスによって作られる請求項1記載の部品。
【請求項6】
アニーリングガスが、酸素含有混合物、空気、不活性ガス、形成ガス、還元ガス組成物、及び酸化ガス組成物から成る群から選択されたガス組成物を有する請求項5記載の部品。
【請求項7】
アニーリングガスが、酸素含有混合物、空気、窒素、アルゴン、及びそれらの混合物のうちの1つであり、静的又は流動状のいずれかで供給される請求項5記載の部品。
【請求項8】
チャンバ本体部と、
少なくとも約99.5%のイットリアを含み、焼結後に機械加工してアニーリングし、単相の微小結晶構造を有する部品と、
チャンバ本体部内に配置され、基板を上部で受けるように用いられる支持台座と、
チャンバ内にプラズマを形成するための電源とを含むプラズマ処理チャンバ。
【請求項9】
部品が、バルクイットリアから作られる請求項8記載のプラズマ処理チャンバ。
【請求項10】
部品が、99.9%を超える純度レベルを有する請求項8記載のプラズマ処理チャンバ。
【請求項11】
部品が、蓋部、リング、イオンシールドプレート、イオンシールド脚部、ノズル、ガス分散プレート、チャンバ裏装材の1つである請求項8記載のプラズマ処理チャンバ。
【請求項12】
部品が、
(a)イットリアサンプルを提供する工程と、
(b)イットリアサンプルを焼結する工程と、
(c)焼結させたイットリアサンプルを機械加工して部品を形成する工程と、
(d)部品をアニーリングして単相の微細結晶構造を得る工程であって、アニーリングは、
(d1)部品をエンクロージャー内でアニーリングガスに曝露する工程と、
(d2)部品を第1期間にわたって第1温度から第2温度まで加熱する工程であって、部品内の温度勾配が10ジュール/キログラム・ケルビン(J/kg−K)を超えないように加熱速度を制御する工程と、
(d3)部品を第2温度で第2期間にわたって維持する工程と、
(d4)部品を第2温度から第1温度まで第3期間にわたって冷却する工程を更に含む工程を含むプロセスによって作られる請求項1記載のプラズマ処理チャンバ。

【図1】
image rotate

【図2】
image rotate

【図3A】
image rotate

【図3B】
image rotate

【図4A】
image rotate

【図4B】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9A】
image rotate

【図9B】
image rotate


【公開番号】特開2012−199567(P2012−199567A)
【公開日】平成24年10月18日(2012.10.18)
【国際特許分類】
【出願番号】特願2012−117572(P2012−117572)
【出願日】平成24年5月23日(2012.5.23)
【分割の表示】特願2007−279943(P2007−279943)の分割
【原出願日】平成19年10月29日(2007.10.29)
【公序良俗違反の表示】
(特許庁注:以下のものは登録商標)
1.フロッピー
【出願人】(390040660)アプライド マテリアルズ インコーポレイテッド (1,346)
【氏名又は名称原語表記】APPLIED MATERIALS,INCORPORATED
【Fターム(参考)】