説明

マイクロ波プラズマ改質方法

【課題】 樹脂材料からなる基材の表面を粗面化することなく、当該表面にあるノジュールを微細化することができるマイクロ波プラズマ改質方法を提供する。
【解決手段】 樹脂材料からなる基材20の表面に、マイクロ波プラズマP2を照射することにより、基材20の表面にある樹脂成分由来のノジュールの粒子径を300nm以下にする。マイクロ波プラズマP2を照射するマイクロ波プラズマ照射手段4は、マイクロ波を伝送する矩形導波管41と、矩形導波管41の一面に配置され、該マイクロ波が通過するスロット420を有するスロットアンテナ42と、スロット420を覆うようにスロットアンテナ42に積層して配置され、スロット420を通過した該マイクロ波が入射する誘電体部43と、を備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、樹脂材料からなる基材の表面を改質するためのマイクロ波プラズマ改質方法に関する。
【背景技術】
【0002】
ユビキタス社会の到来に向け、携帯電話、PHS、スマートフォン、タブレット、モバイルノートパソコン等の携帯情報端末、小型ゲーム機器、電子ペーパー等のモバイル機器が普及拡大している。また、これらのモバイル機器に対して、軽薄化、フレキシブル化、落下、衝撃等による破損抑制等のニーズが高まっている。このため、現在表示部に多用されているガラスに代わり、機能性樹脂フィルムを用いたタッチパネル、有機EL(Electro Luminescence)素子等の需要が増加している(例えば、特許文献1、2参照)。さらに、太陽電池市場においても、機能性樹脂フィルムを用いたフレキシブルで軽薄な有機系薄膜太陽電池が脚光を浴びている。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2009−238474号公報
【特許文献2】特開2009−178956号公報
【特許文献3】特開2005−197371号公報
【特許文献4】特開平7−6998号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかし、機能性樹脂フィルムを用いた製品においては、従来のガラス基板品と比較して、寿命が短いという課題がある。この原因の一つとして、樹脂フィルム(基材)表面の樹脂成分に由来するノジュール(ブルームした粒状の塊)が考えられる。すなわち、樹脂フィルムへ機能性薄膜を形成する際、樹脂フィルム表面にノジュールがあると、ノジュールに沿って薄膜が凹凸に形成されてしまう。薄膜に凹凸があると、凸部に電界が集中し、素子が破損しやすくなる。
【0005】
一例として、フレキシブル有機ELデバイスについて説明する。図5に、有機ELデバイスの断面図を示す。図5に示すように、有機ELデバイス9は、前方から後方に向かって、ハードコート層90と、樹脂基材91と、前面ガスバリア膜92と、陽極93と、ホール輸送層94と、電子輸送性発光層95と、陰極96と、後面ガスバリア層97と、を備えている。
【0006】
有機ELデバイス9の発光原理について簡単に説明する。陽極93、陰極96に電圧を印加すると、陽極93からホール(正孔)が、陰極96から電子が、各々、発生する。ホールは、陽極93から、ホール輸送層94を通過し、電子輸送性発光層95に進入する。一方、電子は、陰極96から、電子輸送性発光層95に進入する。電子輸送性発光層95においてホールと電子とが結合することにより、発光する。ここで、電子輸送性発光層95の前方に配置されているハードコート層90、樹脂基材91、前面ガスバリア膜92、陽極93、ホール輸送層94は透明である。このため、当該発光は、有機ELデバイス9の前方から視認することができる。
【0007】
有機ELデバイス9において、ガスバリア膜92および陽極93は、スパッタやCVD(Chemical Vapor Deposition)等により、樹脂基材91の後面に成膜される。しかしながら、樹脂基材91の後面に粒子径の大きなノジュールが存在したまま、ガスバリア膜92および陽極93を成膜すると、当該ノジュールに沿って膜の凹凸が大きくなってしまう。そして、陽極93の凸部に電界が集中し、その影響で電子輸送性発光層95が劣化して、発光しなくなる。
【0008】
ノジュールの影響を小さくするためには、ノジュールの微細化が有効である。ノジュールを微細化するには、例えば、樹脂基材の表面(ガスバリア膜の成膜面)に、紫外線を照射する方法がある。しかし、ノジュールを微細化するという改質効果を得るためには、紫外線を長時間照射する必要がある。よって、この方法は、量産には適さない。また、紫外線の長時間照射により、樹脂基材が変形するおそれもある。また、樹脂基材の表面に、高周波(RF)プラズマを照射する方法がある。しかし、RFプラズマにおいては、バイアス(印加電位)により加速されたプラズマ中の荷電粒子が、樹脂基材の表面に衝突し、当該表面を粗面化してしまう。また、プラズマ密度が小さいため、ノジュールの微細化効果が小さい。
【0009】
本発明は、このような実情に鑑みてなされたものであり、樹脂材料からなる基材の表面を粗面化することなく、当該表面にあるノジュールを微細化することができるマイクロ波プラズマ改質方法を提供することを課題とする。
【課題を解決するための手段】
【0010】
(1)上記課題を解決するため、本発明のマイクロ波プラズマ改質方法は、樹脂材料からなる基材の表面に、マイクロ波プラズマを照射することにより、該基材の表面にある樹脂成分由来のノジュールの粒子径を300nm以下にすることを特徴とする。
【0011】
マイクロ波プラズマの場合、比較的低電位で、密度の大きなプラズマが生成される。このため、本発明のマイクロ波プラズマ改質方法によると、基材の表面が粗くなったり、基材が変形するおそれは小さい。つまり、基材の表面を粗面化することなく、改質することができる。また、RFプラズマの照射と比較して、ノジュールの微細化効果が大きい。また、紫外線の照射と比較して、短時間で改質することができる。このため、本発明のマイクロ波プラズマ改質方法は、量産に適している。
【0012】
本発明のマイクロ波プラズマ改質方法によると、基材の表面にあるノジュール(ブルームした粒状の塊)の粒子径を、300nm以下にすることができる。ノジュールの粒子径は、基材の表面を走査型プローブ顕微鏡(SPM)や走査型電子顕微鏡(SEM)で観察して測定すればよい。本明細書においては、ノジュールの最長部の長さを、粒子径として採用する。
【0013】
ノジュールが微細化されることにより、基材の表面に形成される薄膜の凹凸が、小さくなる。よって、例えば、有機ELデバイスの樹脂基材を、本発明のマイクロ波プラズマ改質方法で改質処理することにより、樹脂基材の表面に形成されるガスバリア膜や陽極の凹凸を小さくすることができる。その結果、陽極の凸部への電界集中を抑制し、電子輸送性発光層の劣化を抑制することができる。
【0014】
(2)好ましくは、上記(1)の構成において、前記マイクロ波プラズマは、マイクロ波プラズマ照射手段により照射され、該マイクロ波プラズマ照射手段は、マイクロ波を伝送する矩形導波管と、該矩形導波管の一面に配置され、該マイクロ波が通過するスロットを有するスロットアンテナと、該スロットを覆うように該スロットアンテナに積層して配置され、該スロットを通過した該マイクロ波が入射する誘電体部と、を備え、該スロットから該誘電体部へ入射する該マイクロ波の入射方向は、該マイクロ波プラズマが生成される該誘電体部の表面に平行である構成とする方がよい。
【0015】
本構成によると、低電位で、マイクロ波プラズマによる改質処理を行うことができる。したがって、基材が粗面化したり変形するおそれを、より小さくすることができる。
【0016】
まず、マイクロ波プラズマを生成可能なプラズマ生成部の一例の構成を説明する。図1に、プラズマ生成部の斜視図を示す。図1に示すように、プラズマ生成部30は、導波管31と、スロットアンテナ32と、誘電体部33と、を有している。スロットアンテナ32は、導波管31の下方開口部を塞ぐように配置されている。すなわち、スロットアンテナ32は、導波管31の下壁を形成している。スロットアンテナ32には、複数の長孔状のスロット320が形成されている。誘電体部33は、スロット320を覆うように、スロットアンテナ32の下面(真空容器側)に配置されている。導波管31の右端から伝送されたマイクロ波は、図中上下方向の白抜き矢印Y1で示すように、スロット320を通過して、誘電体部33に入射する。誘電体部33に入射したマイクロ波は、図中左右方向の白抜き矢印Y2で示すように、誘電体部33の下面330に沿って伝播する。これにより、マイクロ波プラズマP1が生成される。
【0017】
ここで、スロット320から誘電体部33へ入射するマイクロ波の入射方向(矢印Y1)と、誘電体部33の下面330と、は直交する。このため、誘電体部33に入射したマイクロ波は、生成したマイクロ波プラズマP1に遮られ、進行方向を90°変えて、誘電体部33の下面330を伝播する(矢印Y2)。このように、生成したマイクロ波プラズマP1に対して垂直にマイクロ波が入射するため、プラズマソースであるマイクロ波がマイクロ波プラズマP1に伝播しにくい。このため、生成されるマイクロ波プラズマP1のエネルギーは、小さくなる。また、5Pa以下の低圧下においては、プラズマ生成が難しい。
【0018】
これに対して、本構成のマイクロ波プラズマ照射手段によると、生成されるマイクロ波プラズマのエネルギーを大きくすることができる。図3に、本構成のマイクロ波プラズマ照射手段におけるプラズマ生成部の斜視図を示す。なお、図3は、プラズマ生成部の一実施形態を示す図である(後述する第一実施形態参照)。図3は、本発明におけるマイクロ波プラズマ照射手段を、何ら限定するものではない。
【0019】
図3に示すように、プラズマ生成部40は、導波管41と、スロットアンテナ42と、誘電体部43と、誘電体部固定板44と、を有している。導波管41の左端後方には、マイクロ波を伝送する管体部51が接続されている。スロットアンテナ42は、導波管41の上方開口部を塞ぐように配置されている。すなわち、スロットアンテナ42は、導波管41の上壁を形成している。スロットアンテナ42には、複数の長孔状のスロット420が形成されている。誘電体部43は、スロット420を覆うように、スロットアンテナ42の上面に配置されている。管体部51から伝送されたマイクロ波は、図中上下方向の白抜き矢印Y1で示すように、スロット420を通過して、誘電体部43に入射する。誘電体部43に入射したマイクロ波は、図中左右方向の白抜き矢印Y2で示すように、主に誘電体部43の前面430に沿って伝播する。これにより、マイクロ波プラズマP2が生成される。
【0020】
このように、生成したマイクロ波プラズマP2に沿ってマイクロ波を入射させるため、プラズマソースであるマイクロ波がマイクロ波プラズマP2に伝播しやすい。このため、生成されるマイクロ波プラズマP2のエネルギーは大きい。また、5Pa以下の低圧下においてもプラズマ生成が可能になる。したがって、本構成によると、低電位のまま、エネルギーの大きなプラズマを生成することができる。これにより、基材の粗面化や変形を抑制しながら、大きな改質効果を得ることができる。
【0021】
(3)好ましくは、上記(2)の構成において、前記マイクロ波プラズマ照射手段において、前記スロットアンテナは、前記誘電体部のマイクロ波プラズマ生成面に対して垂直に配置される構成とする方がよい。
【0022】
本構成によると、マイクロ波プラズマが生成する誘電体部のマイクロ波プラズマ生成面に対して、マイクロ波の入射方向を平行にすることができる。これにより、マイクロ波を、生成したマイクロ波プラズマに遮られることなく、マイクロ波プラズマに伝播させることができる。
【0023】
(4)好ましくは、上記(1)〜(3)のいずれかの構成において、前記マイクロ波プラズマの照射を、前記基材に負のバイアス電圧を印加しながら行う構成とする方がよい。
【0024】
基材に、負のバイアス電圧を周期的(例えば、矩形波状、サイン波状)に印加すると、プラズマ中の正荷電粒子が、基材に引き寄せられ、基材の表面に向かって加速される。したがって、より高エネルギーの正荷電粒子を、効率良く基材の表面に衝突させることができる。これにより、ノジュールの微細化効果を大きくすることができる。なお、バイアス電圧は、正荷電粒子を基材側に引き寄せることができる程度に印加すればよい。すなわち、バイアス電圧は、RFプラズマを照射する場合と比較して、小さくてよい。このため、基材の表面が荒れるおそれは小さい。好適なバイアス電圧は、−0.05〜−200V程度である。
【0025】
(5)好ましくは、上記(4)の構成において、前記ノジュールの粒子径を100nm以下にする構成とする方がよい。
【0026】
上述した通り、基材に負のバイアス電圧を印加しながら、マイクロ波プラズマを照射すると、ノジュールの微細化効果が大きくなる。ノジュールの粒子径が100nm以下の場合、基材の表面の凹凸は、より小さくなる。その結果、当該表面に形成する薄膜の凹凸を、より小さくすることができる。また、形成された薄膜と接する相手材への影響をも、小さくすることができる。
【0027】
(6)好ましくは、上記(2)の構成において、前記マイクロ波プラズマ照射手段は、さらに、前記誘電体部の裏面に配置され該誘電体部を支持する支持板と、該支持板の裏面に配置されプラズマ生成領域に磁場を形成する永久磁石と、を備え、該誘電体部から該磁場中に伝播する前記マイクロ波により電子サイクロトロン共鳴(ECR)を発生させながらプラズマを生成する構成とする方がよい。
【0028】
本構成のマイクロ波プラズマ照射手段においては、プラズマ生成領域側の面を「表面」とし、表面に背向する面を「裏面」と称する。本構成においては、生成するマイクロ波プラズマに沿ってマイクロ波を入射させる(上記(2)の構成)と共に、電子サイクロトロン共鳴(ECR)を発生させながらプラズマを生成する。以下に、本構成のマイクロ波プラズマ照射手段におけるプラズマ生成部の一例を説明する。図8に、本構成のマイクロ波プラズマ照射手段におけるプラズマ生成部の斜視図を示す。図8中、図3と対応する部材は、同じ符号で示す。なお、図8は、プラズマ生成部の一実施形態を示す図である(後述する第四、第五実施形態参照)。図8は、本発明におけるマイクロ波プラズマ照射手段を、何ら限定するものではない。
【0029】
図8に示すように、プラズマ生成部40は、導波管41と、スロットアンテナ42と、誘電体部43と、支持板45と、永久磁石46と、を有している。導波管41の左端後方には、マイクロ波を伝送する管体部51が接続されている。スロットアンテナ42は、導波管41の上方開口部を塞ぐように配置されている。すなわち、スロットアンテナ42は、導波管41の上壁を形成している。スロットアンテナ42には、複数の長孔状のスロット420が形成されている。誘電体部43は、スロット420を覆うように、スロットアンテナ42の上面に配置されている。
【0030】
管体部51から伝送されたマイクロ波は、図中上下方向の白抜き矢印Y1で示すように、スロット420を通過して、誘電体部43に入射する。誘電体部43に入射したマイクロ波は、図中左右方向の白抜き矢印Y2で示すように、主に誘電体部43の前面430に沿って伝播する。これにより、マイクロ波プラズマが生成される。ここで、スロット420から誘電体部43に入射するマイクロ波の入射方向は、誘電体部43の前面430(マイクロ波プラズマ生成面)に平行である。生成したマイクロ波プラズマに沿ってマイクロ波が入射するため、プラズマソースであるマイクロ波がマイクロ波プラズマに伝播しやすい。
【0031】
また、誘電体部43の後方には、支持板45を介して、永久磁石46が八つ配置されている。八つの永久磁石46は、いずれも前側がN極、後側がS極である。各々の永久磁石46から前方に向かって、磁力線Mが生じている。これにより、誘電体部43の前方(プラズマ生成領域)には、磁場が形成されている。
【0032】
生成したマイクロ波プラズマ中の電子は、サイクロトロン角周波数ωceに従って、磁力線M方向に対して右回りの旋回運動を行う。一方、マイクロ波プラズマ中を伝播するマイクロ波は、電子サイクロトロン波と呼ばれる右回りの円偏波を励起する。電子サイクロトロン波が前方に伝播し、その角周波数ωがサイクロトロン角周波数ωceに一致すると、電子サイクロトロン波が減衰し、波動エネルギーが電子に吸収される。すなわち、ECRが生じる。例えば、マイクロ波の周波数が2.45GHzの場合、磁束密度0.0875Tで、ECRが生じる。ECRによりエネルギーが増大した電子は、磁力線Mに拘束されながら、周辺の中性粒子と衝突する。これにより、中性粒子が次々に電離する。電離により生じた電子も、ECRにより加速され、さらに中性粒子を電離させる。このようにして、誘電体部43の前方に、ECRにより高密度化されたプラズマ(以下、ECRプラズマと称す)P3が生成される。ECRプラズマP3は、本発明のマイクロ波プラズマに含まれる。
【0033】
このように、生成するマイクロ波プラズマに沿ってマイクロ波を入射させると共に、ECRを利用することにより、密度の大きなプラズマを安定的に生成することができる。したがって、本構成のマイクロ波プラズマ照射手段によると、1Pa以下の低圧下、さらには0.1Pa以下の極低圧下においても、プラズマを生成することができる。これにより、処理圧力の違いから、従来は別々のチャンバー内で行っていた改質処理と成膜処理とを、一つの低圧チャンバー内で連続して行うことが可能になる。
【0034】
なお、上記特許文献4には、マイクロ波を用いたECRプラズマ生成装置が開示されている。特許文献4のECRプラズマ生成装置においては、空芯コイルにより磁場を形成している。しかしながら、空芯コイルを用いると、コイル径等に規制されるため、長尺状の広範囲にプラズマを生成することができない。この点、本構成のマイクロ波プラズマ照射手段によると、長尺状の矩形導波管を用いて、長手方向にスロットを配置することにより、長尺状のプラズマを生成することができる。したがって、基材が長尺状で大面積の場合でも、適用することができる。
【0035】
(6−1)好ましくは、上記(6)の構成において、前記支持板は、前記永久磁石の温度上昇を抑制するための冷却手段を有する構成とする方がよい。
【0036】
永久磁石は、支持板を介して誘電体部の裏面側に配置される。このため、プラズマを生成する際、永久磁石の温度が上昇しやすい。永久磁石の温度がキュリー温度以上になると、磁性が失われてしまう。本構成によると、支持板の冷却手段により、永久磁石の温度上昇が抑制される。このため、永久磁石の磁性が失われるおそれは小さい。したがって、本構成によると、安定した磁場を形成することができる。
【0037】
(7)好ましくは、上記(6)の構成において、前記マイクロ波プラズマの照射を、前記基材に負のバイアス電圧を印加しながら行う構成とする方がよい。
【0038】
上記(4)において述べた通り、基材に負のバイアス電圧を周期的に印加することにより、高エネルギーの正荷電粒子を、効率良く基材の表面に衝突させることができる。したがって、本構成によると、1Pa以下の低圧下でもプラズマ生成が可能であることに加えて、ノジュールの微細化効果を大きくすることができる。例えば、ノジュールの粒子径を、100nm以下にすることができる。本構成においても、好適なバイアス電圧は、−0.05〜−200V程度である。
【図面の簡単な説明】
【0039】
【図1】プラズマ生成部の一例の斜視図である。
【図2】本発明のマイクロ波プラズマ改質方法の第一実施形態において使用したマイクロ波プラズマ改質装置の前後方向断面図である。
【図3】同マイクロ波プラズマ改質装置を構成するマイクロ波プラズマ照射手段のプラズマ生成部の斜視図である。
【図4】本発明のマイクロ波プラズマ改質方法の第二実施形態において使用したマイクロ波プラズマ改質装置の左右方向断面図である。
【図5】有機ELデバイスの断面図である。
【図6】本発明のマイクロ波プラズマ改質方法の第三実施形態において使用したマイクロ波プラズマ改質装置の前後方向断面図である。
【図7】本発明のマイクロ波プラズマ改質方法の第四実施形態において使用したマイクロ波プラズマ改質装置の前後方向断面図である。
【図8】同マイクロ波プラズマ改質装置を構成するマイクロ波プラズマ照射手段のプラズマ生成部の斜視図である。
【図9】本発明のマイクロ波プラズマ改質方法の第五実施形態において使用したマイクロ波プラズマ改質装置の左右方向断面図である。
【発明を実施するための形態】
【0040】
以下、本発明のマイクロ波プラズマ改質方法の実施の形態について説明する。
【0041】
<第一実施形態>
[マイクロ波プラズマ改質装置]
まず、本実施形態において使用したマイクロ波プラズマ改質装置の構成について説明する。図2に、本実施形態のマイクロ波プラズマ改質装置の前後方向断面図を示す。また、前述したように、図3に、同マイクロ波プラズマ改質装置を構成するマイクロ波プラズマ照射手段におけるプラズマ生成部の斜視図を示す。
【0042】
図2、図3に示すように、マイクロ波プラズマ改質装置1は、真空容器8と、基材20と、基材保持板21と、マイクロ波プラズマ照射手段4と、を備えている。
【0043】
真空容器8は、アルミニウム製であって、直方体箱状を呈している。真空容器8の図示しない左壁には、第一ガス供給孔、第二ガス供給孔が、各々一つずつ穿設されている。第一ガス供給孔には、第一ガス供給管(図略)の下流端が接続されている。第二ガス供給孔には、第二ガス供給管(図略)の下流端が接続されている。真空容器8の下壁には、排気孔(図略)が穿設されている。排気孔には、真空容器8の内部のガスを排出するための真空排気装置(図略)が接続されている。
【0044】
基材保持板21は、ステンレス鋼製であって、長方形板状を呈している。基材保持板21の前面には、左右方向に一対の脚部210が配置されている。一対の脚部210は、各々、ステンレス鋼製であって、円柱状を呈している。基材保持板21は、一対の脚部210を介して、真空容器8の前壁に取り付けられている。
【0045】
基材20は、ポリエチレンナフタレート(PEN)フィルムであり、長方形状を呈している。基材20は、基材保持板21の後面に貼り付けられている。
【0046】
マイクロ波プラズマ照射手段4は、プラズマ生成部40と、マイクロ波伝送部50と、を備えている。マイクロ波伝送部50は、管体部51と、マイクロ波電源52と、マイクロ波発振器53と、アイソレータ54と、パワーモニタ55と、EH整合器56と、を有している。マイクロ波発振器53、アイソレータ54、パワーモニタ55、およびEH整合器56は、管体部51により連結されている。管体部51は、真空容器8の後壁に穿設された導波孔を通って、プラズマ生成部40の導波管41の後側に接続されている。
【0047】
プラズマ生成部40は、導波管41と、スロットアンテナ42と、誘電体部43と、誘電体部固定板44と、を有している。図3に示すように、導波管41は、アルミニウム製であって、上方に開口する直方体箱状を呈している。導波管41は、左右方向に延在している。導波管41は、本発明における矩形導波管に含まれる。スロットアンテナ42は、アルミニウム製であって、長方形板状を呈している。スロットアンテナ42は、導波管41の開口部を上方から塞いでいる。すなわち、スロットアンテナ42は、導波管41の上壁を形成している。スロットアンテナ42には、スロット420が四つ形成されている。スロット420は、左右方向に伸びる長孔状を呈している。スロット420は、電界が強い位置に配置されている。
【0048】
誘電体部43は、石英製であって、直方体状を呈している。誘電体部43は、スロットアンテナ42の上面前側に配置されている。誘電体部43は、スロット420を上方から覆っている。誘電体部43の前面430は、本発明におけるマイクロ波プラズマ生成面に含まれる。
【0049】
誘電体部固定板44は、ステンレス鋼製であって、平板状を呈している。誘電体部固定板44は、スロットアンテナ42の上面後側に配置されている。誘電体部固定板44は、誘電体部43を後方から支持している。
【0050】
[マイクロ波プラズマ改質方法]
次に、マイクロ波プラズマ改質装置1による改質方法について説明する。本実施形態の改質方法は、まず、真空排気装置(図略)を作動させて、真空容器8の内部のガスを排出し、真空容器8の内部を減圧状態にする。次に、第一ガス供給管から、第一ガスのアルゴンを真空容器8内へ供給する。この際、真空容器8内の圧力が、約10〜100Paになるように、アルゴンガスの流量を調整する。続いて、マイクロ波電源52をオンにする。マイクロ波電源52をオンにすると、マイクロ波発振器53がマイクロ波を発生する。発生したマイクロ波は、管体部51内を伝播する。ここで、アイソレータ54は、プラズマ生成部40から反射されたマイクロ波が、マイクロ波発振器53に戻るのを抑制する。パワーモニタ55は、発生したマイクロ波の出力と、反射したマイクロ波の出力と、をモニタリングする。EH整合器56は、マイクロ波の反射量を調整する。管体部51内を通過したマイクロ波は、導波管41の内部を伝播する。導波管41の内部を伝播するマイクロ波は、スロットアンテナ42のスロット420に進入する。そして、図3中白抜き矢印Y1で示すように、スロット420を通過して、誘電体部43に入射する。誘電体部43に入射したマイクロ波は、同図中白抜き矢印Y2で示すように、主に誘電体部43の前面430に沿って伝播する。このマイクロ波の強電界により、真空容器8内のアルゴンガスが電離して、誘電体部43の前方にマイクロ波プラズマP2が生成される。この後、マイクロ波プラズマP2の生成を維持したまま、真空容器8内の圧力が約7Paになるように、アルゴンガスの流量を調整する。そして、生成したマイクロ波プラズマP2により、基材20の後面を改質する。
【0051】
[作用効果]
次に、本実施形態のマイクロ波プラズマ改質方法の作用効果について説明する。本実施形態によると、マイクロ波プラズマ照射手段4において、スロットアンテナ42は、誘電体部43の前面430に対して垂直に配置されている。これにより、スロット420から誘電体部43へ入射するマイクロ波の入射方向が、誘電体部43の前面430に対して平行になる。生成したマイクロ波プラズマP2に沿ってマイクロ波を入射させるため、プラズマソースであるマイクロ波がマイクロ波プラズマP2に伝播しやすい。よって、マイクロ波プラズマ照射手段4によると、低電位のまま、エネルギーの大きなマイクロ波プラズマP2を生成することができる。
【0052】
また、導波管41は、左右方向に延びる長尺の箱状を呈している。スロット420は、左右方向に直列に配置されている。したがって、長尺状のマイクロ波プラズマP2を生成することができる。これにより、基材20が長尺状で大面積の場合でも、基材20の表面(後面)を万遍なく改質することができる。
【0053】
このように、マイクロ波プラズマ改質装置1によると、基材20の表面を粗面化することなく、改質することができる。つまり、基材20の表面にあるノジュールの粒子径を、300nm以下にすることができる。ノジュールが微細化されることにより、基材の表面に形成される薄膜の凹凸が、小さくなる。よって、改質処理された基材20を、有機ELデバイスの樹脂基材として用いた場合、基材20の表面に形成されるガスバリア膜や陽極の凹凸を小さくすることができる。その結果、陽極の凸部への電界集中を抑制し、電子輸送性発光層の劣化を抑制することができる。
【0054】
また、本実施形態のマイクロ波プラズマ改質方法によると、RFプラズマの照射と比較して、改質効果が高い。また、紫外線の照射と比較して、短時間で改質することができる。このため、本実施形態のマイクロ波プラズマ改質方法は、量産に適している。
【0055】
また、マイクロ波プラズマ改質装置1によると、5Pa以下の低圧下でも、マイクロ波プラズマP2を生成することができる。したがって、基材の改質処理の圧力と、後に続くスパッタ処理等の圧力と、を同じにすることができる。こうすることにより、一連の処理を連続して行うことができ、生産効率が向上する。また、真空容器8内を5Pa以下の高真空状態にすると、不純物の侵入が抑制される。これにより、クリーンな雰囲気で、改質処理を行うことができる。
【0056】
<第二実施形態>
本実施形態のマイクロ波プラズマ改質方法と、第一実施形態のマイクロ波プラズマ改質方法と、の相違点は、マイクロ波プラズマ改質装置におけるプラズマ生成部の構成の違いによるマイクロ波プラズマの照射形態である。したがって、ここでは相違点を中心に説明する。
【0057】
[マイクロ波プラズマ改質装置]
まず、本実施形態のマイクロ波プラズマ改質方法において使用したマイクロ波プラズマ改質装置の構成について説明する。図4に、本実施形態のマイクロ波プラズマ改質装置の左右方向断面図を示す。図4中、図2と対応する部位については、同じ符合で示す。また、図4におけるプラズマ生成部は、前出図1に示したプラズマ生成部に対応する。図1においては、真空容器を省略して示す。
【0058】
図4に示すように、本実施形態のマイクロ波プラズマ改質装置6は、真空容器8と、基材20と、基材保持板21と、マイクロ波伝送部50と、プラズマ生成部30と、を備えている。
【0059】
真空容器8は、アルミニウム製であって、直方体箱状を呈している。真空容器8は、第一ガス供給孔80と、第二ガス供給孔81と、排気孔82と、導波孔83と、段差部84と、を備えている。第一ガス供給孔80、第二ガス供給孔81は、真空容器8の右壁、左壁に、各々一つずつ穿設されている。第一ガス供給孔80には、第一ガス供給管(図略)の下流端が接続されている。第二ガス供給孔81には、第二ガス供給管(図略)の下流端が接続されている。排気孔82は、真空容器8の下壁に穿設されている。排気孔82には、真空容器8の内部のガスを排出するための真空排気装置(図略)が接続されている。導波孔83は、真空容器8の右壁に穿設されている。導波孔83には、後述する管体部51の下流端が挿通されている。段差部84は、導波孔83と第一ガス供給孔80との間に形成されている。段差部84は、真空容器8の側壁の内面を一周している。段差部84は、上方から下方に向かって内側に張り出す、段差状を呈している。
【0060】
基材保持板21は、ステンレス鋼製であって、長方形板状を呈している。基材保持板21の下面には、左右方向に一対の脚部210が配置されている。一対の脚部210は、各々、ステンレス鋼製であって、円柱状を呈している。基材保持板21は、一対の脚部210を介して、真空容器8の下壁に取り付けられている。
【0061】
基材20は、PENフィルムであり、長方形状を呈している。基材20は、基材保持板21の上面に貼り付けられている。
【0062】
マイクロ波伝送部50は、管体部51と、マイクロ波電源52と、マイクロ波発振器53と、アイソレータ54と、パワーモニタ55と、EH整合器56と、を有している。マイクロ波発振器53、アイソレータ54、パワーモニタ55、およびEH整合器56は、管体部51により連結されている。管体部51は、導波孔83を通って、プラズマ生成部30の導波管31右端に接続されている。
【0063】
図1および図4に示すように、プラズマ生成部30は、導波管31と、スロットアンテナ32と、誘電体部33と、を有している。導波管31は、左右方向に延在している。導波管31は、真空容器8と、スロットアンテナ32と、により形成されている。
【0064】
スロットアンテナ32は、アルミニウム製であって、長方形板状を呈している。スロットアンテナ32は、導波管31の下方開口部を塞ぐように配置されている。すなわち、スロットアンテナ32は、導波管31の下壁を形成している。スロットアンテナ32には、六つの長孔状のスロット320が形成されている。スロット320は、左右方向に伸びる長孔状を呈している。スロット320は、電界が強い位置に配置されている。
【0065】
誘電体部33は、石英製であって、直方体状を呈している。誘電体部33は、スロットアンテナ32の下面に配置されている。誘電体部33は、スロット320を下方から覆っている。誘電体部33は、真空容器8の段差部84に配置されている。誘電体部33は、非磁性であり、真空容器8内を真空に保つ役割を果たす。
【0066】
[マイクロ波プラズマ改質方法]
次に、マイクロ波プラズマ改質装置6による改質方法について説明する。本実施形態の改質方法は、まず、真空排気装置(図略)を作動させて、真空容器8の内部のガスを排出し、真空容器8の内部を減圧状態にする。次に、第一ガス供給管から、第一ガスのアルゴンを真空容器8内へ供給する。この際、真空容器8内の圧力が、約10〜100Paになるように、アルゴンガスの流量を調整する。続いて、マイクロ波電源52をオンにする。マイクロ波電源52をオンにすると、マイクロ波発振器53がマイクロ波を発生する。発生したマイクロ波は、管体部51内を伝播する。
【0067】
管体部51内を通過したマイクロ波は、導波管31の内部を伝播する。導波管31の内部を伝播するマイクロ波は、スロットアンテナ32のスロット320に進入する。そして、図1中白抜き矢印Y1で示すように、スロット320を通過して、誘電体部33に入射する。誘電体部33に入射したマイクロ波は、同図中白抜き矢印Y2で示すように、誘電体部33の下面330に沿って伝播する。この際、スロット320から誘電体部33へ入射するマイクロ波の入射方向(矢印Y1)と、誘電体部33の下面330と、は直交する。このため、誘電体部33に入射したマイクロ波は、進行方向を90°変えて、誘電体部33の下面330を伝播する(矢印Y2)。伝播するマイクロ波の強電界により、真空容器8内のアルゴンガスが電離して、誘電体部33の下方にマイクロ波プラズマP1が生成される。この後、マイクロ波プラズマP1の生成を維持したまま、真空容器8内の圧力が約7Paになるように、アルゴンガスの流量を調整する。そして、生成したマイクロ波プラズマP1により、基材20の後面を改質する。
【0068】
[作用効果]
次に、本実施形態のマイクロ波プラズマ改質方法の作用効果について説明する。本実施形態のマイクロ波プラズマ改質方法によると、基材20の表面を粗面化することなく、改質することができる。つまり、基材20の表面にあるノジュールの粒子径を、300nm以下にすることができる。ノジュールが微細化されることにより、基材の表面に形成される薄膜の凹凸が、小さくなる。よって、改質処理された基材20を、有機ELデバイスの樹脂基材として用いた場合、基材20の表面に形成されるガスバリア膜や陽極の凹凸を小さくすることができる。その結果、陽極の凸部への電界集中を抑制し、電子輸送性発光層の劣化を抑制することができる。また、本実施形態のマイクロ波プラズマ改質方法によると、RFプラズマを照射する場合と比較して、改質効果が高い。また、紫外線を照射する場合と比較して、短時間で改質することができる。このため、量産に適している。
【0069】
<第三実施形態>
本実施形態のマイクロ波プラズマ改質方法と、第一実施形態のマイクロ波プラズマ改質方法と、の相違点は、基材に負のバイアス電圧を印加した点である。したがって、ここでは相違点を中心に説明する。
【0070】
[マイクロ波プラズマ改質装置]
まず、本実施形態において使用したマイクロ波プラズマ改質装置の構成について説明する。図6に、本実施形態のマイクロ波プラズマ改質装置の前後方向断面図を示す。図6中、図2と対応する部材は、同じ符号で示す。
【0071】
図6に示すように、マイクロ波プラズマ改質装置10は、真空容器8と、基材20と、基材保持板21と、マイクロ波プラズマ照射手段4と、を備えている。これらの構成は、第一実施形態と同じである。よって、ここでは説明を割愛する。
【0072】
基材保持板21には、バイアス電圧印加部22が接続されている。バイアス電圧印加部22は、直流パルス電源(図略)を備えている。バイアス電圧印加部22は、基材保持板21に、周期的にオン、オフを繰り返す直流パルス電圧を印加可能である。直流パルス電圧は、本発明の「バイアス電圧」の概念に含まれる。
【0073】
[マイクロ波プラズマ改質方法]
次に、マイクロ波プラズマ改質装置10による改質方法について説明する。本実施形態の改質方法は、第一実施形態と同様に、まず、真空容器8の内部を減圧状態にする。次に、第一ガス供給管から、第一ガスのアルゴンを、真空容器8内へ供給し、真空容器8内の圧力を約10〜100Paにする。続いて、バイアス電圧印加部22を駆動し、基材保持板21に直流パルス電圧(−50V)を印加する。それから、マイクロ波電源52をオンにして、マイクロ波を導波管41の内部に供給する。導波管41の内部を伝播するマイクロ波は、スロットアンテナ42のスロット420を通過して、誘電体部43に入射する。誘電体部43に入射したマイクロ波は、主に誘電体部43の前面430に沿って伝播する。このマイクロ波の強電界により、真空容器8内のアルゴンガスが電離して、誘電体部43の前方にマイクロ波プラズマP2が生成される。そして、マイクロ波プラズマP2の生成を維持したまま、アルゴンガスの流量を調整し、真空容器8内の圧力を約7Paにする。
【0074】
マイクロ波プラズマP2中のアルゴンイオン(正荷電粒子)は、負のバイアス電圧が印加された基材保持板21に引き寄せられる。引き寄せられたアルゴンイオンは、基材20の後面に衝突する。このようにして、基材20の後面を改質する。
【0075】
[作用効果]
次に、本実施形態のマイクロ波プラズマ改質方法の作用効果について説明する。本実施形態のマイクロ波プラズマ改質方法は、構成が共通する部分に関しては、第一実施形態のマイクロ波プラズマ改質方法と同様の作用効果を奏する。また、本実施形態においては、高エネルギーのアルゴンイオンが、効率良く基材20の表面に衝突する。よって、ノジュールの微細化効果が大きい。具体的には、ノジュールの粒子径を100nm以下にすることができる。
【0076】
<第四実施形態>
本実施形態のマイクロ波プラズマ改質方法と、第一実施形態のマイクロ波プラズマ改質方法と、の相違点は、ECRを利用したマイクロ波プラズマを照射した点である。したがって、ここでは相違点を中心に説明する。
【0077】
[マイクロ波プラズマ改質装置]
まず、本実施形態において使用したマイクロ波プラズマ改質装置の構成について説明する。図7に、本実施形態のマイクロ波プラズマ改質装置の前後方向断面図を示す。図7中、図2と対応する部材は、同じ符号で示す。また、前述したように、図8に、同マイクロ波プラズマ改質装置を構成するマイクロ波プラズマ照射手段におけるプラズマ生成部の斜視図を示す。
【0078】
図7、図8に示すように、マイクロ波プラズマ改質装置11は、真空容器8と、基材20と、基材保持板21と、マイクロ波プラズマ照射手段4と、を備えている。マイクロ波プラズマ照射手段4のプラズマ生成部40以外の構成は、第一実施形態と同じである。よって、ここでは説明を割愛する。
【0079】
プラズマ生成部40は、導波管41と、スロットアンテナ42と、誘電体部43と、支持板45と、永久磁石46と、を有している。導波管41、スロットアンテナ42、および誘電体部43の構成は、第一実施形態と同じである。
【0080】
支持板45は、ステンレス鋼製であって、平板状を呈している。支持板45は、スロットアンテナ42の上面において、誘電体部43の後面(裏面)に接するように配置されている。支持板45の内部には、冷媒通路450が形成されている。冷媒通路450は、左右方向に延在するU字状を呈している。冷媒通路450の右端は、冷却管451に接続されている。冷媒通路450は、冷却管451を介して、真空容器8の外部において、熱交換器およびポンプ(共に図略)に接続されている。冷却液は、冷媒通路450→冷却管451→熱交換器→ポンプ→冷却管451→再び冷媒通路450という経路を循環している。冷却液の循環により、支持板45は冷却されている。冷媒通路450および冷却液は、永久磁石46の温度上昇を抑制するための冷却手段に含まれる。
【0081】
永久磁石46は、ネオジム磁石であり、直方体状を呈している。永久磁石46は、支持板45の後面(裏面)に八つ配置されている。八つの永久磁石46は、左右方向に直列に配置されている。八つの永久磁石46は、いずれも前側がN極、後側がS極である。各々の永久磁石46から前方に向かって、磁力線Mが生じている。これにより、誘電体部43の前方のプラズマ生成領域に、磁場が形成されている。
【0082】
[マイクロ波プラズマ改質方法]
次に、マイクロ波プラズマ改質装置11による改質方法について説明する。本実施形態の改質方法は、第一実施形態と同様に、まず、真空容器8の内部を減圧状態にする。次に、第一ガス供給管から、第一ガスのアルゴンを、真空容器8内へ供給し、真空容器8内の圧力を0.7Paにする。続いて、マイクロ波電源52をオンにする。マイクロ波電源52をオンにすると、マイクロ波発振器53が、周波数2.45GHzのマイクロ波を発生する。発生したマイクロ波は、管体部51内を通過して、導波管41の内部に供給される。導波管41の内部を伝播するマイクロ波は、スロットアンテナ42のスロット420を通過して、誘電体部43に入射する。誘電体部43に入射したマイクロ波は、主に誘電体部43の前面430に沿って伝播する。このマイクロ波の強電界により、真空容器8内のアルゴンガスが電離して、誘電体部43の前方にマイクロ波プラズマが生成される。
【0083】
生成したマイクロ波プラズマ中の電子は、サイクロトロン角周波数に従って、磁力線M方向に対して右回りの旋回運動を行う。一方、マイクロ波プラズマ中を伝播するマイクロ波は、電子サイクロトロン波を励起する。電子サイクロトロン波の角周波数は、磁束密度0.0875Tで、サイクロトロン角周波数に一致する。これにより、ECRが生じる。ECRによりエネルギーが増大した電子は、磁力線Mに拘束されながら、周辺の中性粒子と衝突する。これにより、中性粒子が次々に電離する。電離により生じた電子も、ECRにより加速され、さらに中性粒子を電離させる。このようにして、誘電体部43の前方に、高密度のECRプラズマP3が生成される。生成したECRプラズマP3により、基材20の後面を改質する。ECRプラズマP3は、本発明のマイクロ波プラズマに含まれる。
【0084】
[作用効果]
次に、本実施形態のマイクロ波プラズマ改質方法の作用効果について説明する。本実施形態のマイクロ波プラズマ改質方法は、構成が共通する部分に関しては、第一実施形態のマイクロ波プラズマ改質方法と同様の作用効果を奏する。また、本実施形態においては、生成するマイクロ波プラズマに沿ってマイクロ波を入射させると共に、ECRを利用することにより、密度の大きなプラズマを安定的に生成することができる。したがって、1Pa以下の低圧下、さらには0.1Pa以下の極低圧下においても、ECRプラズマP3を生成することができる。これにより、処理圧力の違いから、従来は別々のチャンバー内で行っていた改質処理と成膜処理とを、一つの低圧チャンバー内で連続して行うことが可能になる。また、真空容器8内の圧力を低くするほど、不純物が侵入しにくくなる。したがって、本実施形態によると、よりクリーンな雰囲気で、改質処理を行うことができる。また、1Pa程度の低圧下においても、ECRプラズマP3を安定に生成することができる。このため、第一〜第三実施形態のように、最初に10〜100Pa程度の圧力下でマイクロ波プラズマを発生させ、安定化させた後、圧力を所定の値まで低下させて、改質処理を行う必要がない。したがって、真空容器8内の圧力の操作が簡略化できる。
【0085】
また、八つの永久磁石46は、支持板45の後面に配置されている。支持板45の内部には、冷媒通路450が形成されている。冷却液が冷媒通路450を通って循環することにより、支持板45は冷却されている。このため、永久磁石46の温度が上昇しにくい。したがって、温度上昇により、永久磁石46の磁性が失われるおそれは小さい。よって、プラズマ生成時においても、安定した磁場が形成される。
【0086】
<第五実施形態>
本実施形態のマイクロ波プラズマ改質方法と、第四実施形態のマイクロ波プラズマ改質方法と、の相違点は、基材に負のバイアス電圧を印加した点である。したがって、ここでは相違点を中心に説明する。
【0087】
[マイクロ波プラズマ改質装置]
まず、本実施形態において使用したマイクロ波プラズマ改質装置の構成について説明する。図9に、本実施形態のマイクロ波プラズマ改質装置の前後方向断面図を示す。図9中、図7と対応する部材は、同じ符号で示す。
【0088】
図9に示すように、マイクロ波プラズマ改質装置12は、真空容器8と、基材20と、基材保持板21と、マイクロ波プラズマ照射手段4と、を備えている。これらの構成は、第四実施形態と同じである。よって、ここでは説明を割愛する。
【0089】
基材保持板21には、バイアス電圧印加部22が接続されている。バイアス電圧印加部22は、第三実施形態と同様に、直流パルス電源(図略)を備えている。バイアス電圧印加部22は、基材保持板21に、周期的にオン、オフを繰り返す直流パルス電圧を印加可能である。
【0090】
[マイクロ波プラズマ改質方法]
次に、マイクロ波プラズマ改質装置12による改質方法について説明する。本実施形態の改質方法は、第四実施形態と同様に、まず、真空容器8の内部を減圧状態にする。次に、第一ガス供給管から、第一ガスのアルゴンを、真空容器8内へ供給し、真空容器8内の圧力を0.7Paにする。続いて、バイアス電圧印加部22を駆動し、基材保持板21に直流パルス電圧(−50V)を印加する。それから、マイクロ波電源52をオンにして、マイクロ波(周波数2.45GHz)を導波管41の内部に供給する。導波管41の内部を伝播するマイクロ波は、スロットアンテナ42のスロット420を通過して、誘電体部43に入射する。誘電体部43に入射したマイクロ波は、主に誘電体部43の前面430に沿って伝播する。このマイクロ波の強電界により、真空容器8内のアルゴンガスが電離して、誘電体部43の前方にマイクロ波プラズマが生成される。
【0091】
生成したマイクロ波プラズマ中の電子は、サイクロトロン角周波数に従って、磁力線M方向に対して右回りの旋回運動を行う。一方、マイクロ波プラズマ中を伝播するマイクロ波は、電子サイクロトロン波を励起する。電子サイクロトロン波の角周波数は、磁束密度0.0875Tで、サイクロトロン角周波数に一致する。これにより、ECRが生じる。その結果、誘電体部43の前方に、高密度のECRプラズマP3が生成される。
【0092】
ECRプラズマP3中のアルゴンイオン(正荷電粒子)は、負のバイアス電圧が印加された基材保持板21に引き寄せられる。引き寄せられたアルゴンイオンは、基材20の後面に衝突する。このようにして、基材20の後面を改質する。
【0093】
[作用効果]
次に、本実施形態のマイクロ波プラズマ改質方法の作用効果について説明する。本実施形態のマイクロ波プラズマ改質方法は、構成が共通する部分に関しては、第四実施形態のマイクロ波プラズマ改質方法と同様の作用効果を奏する。また、本実施形態においては、高エネルギーのアルゴンイオンが、効率良く基材20の表面に衝突する。よって、ノジュールの微細化効果が大きい。具体的には、ノジュールの粒子径を100nm以下にすることができる。
【0094】
<その他>
以上、本発明のマイクロ波プラズマ改質方法の実施の形態について説明した。しかしながら、マイクロ波プラズマ改質方法の実施の形態は上記形態に限定されるものではない。当業者が行いうる種々の変形的形態、改良的形態で実施することも可能である。
【0095】
例えば、上記実施形態では、基材としてPENフィルムを使用した。しかし、基材の材質は、樹脂材料であれば特に限定されない。例えば、ポリエステル、ポリアーレンスルフィド、ポリアミド、ポリサルフォン、フッ素樹脂、オレフィン、エチレン−ビニルアルコール共重合体、ポリビニルアルコール、ポリイミド等が挙げられる。
【0096】
スロットアンテナの材質、スロットの数、形状、配置等は、特に限定されない。例えば、スロットアンテナの材質は、非磁性の金属であればよく、アルミニウムの他、ステンレス鋼や真鍮等でも構わない。また、スロットは、一列、二列の他、三列以上に配置されていてもよい。スロットの数は、奇数個でも偶数個でもよい。また、スロットの配置角度を変えて、ジグザグ状に配置してもよい。誘電体部の材質、形状についても、特に限定されない。誘電体部の材質としては、誘電率が低く、マイクロ波を吸収しにくい材料が望ましい。例えば、石英の他、酸化アルミニウム(アルミナ)等が好適である。マイクロ波の周波数も特に限定されない。8.35GHz、1.98GHz、915MHz等であってもよい。
【0097】
第三、第五実施形態において、バイアス電圧印加部から基材保持板に印加される負のバイアス電圧は、高周波電圧であってもよい。負のバイアス電圧の波形は、矩形波状でもサイン波状でもよい。
【0098】
第四、第五実施形態において、支持板の材質や形状は、特に限定されない。第四、第五実施形態では、支持板の冷却手段として、冷媒通路および冷却液を配置した。しかし、支持板の冷却手段の構成は、特に限定されない。また、支持板は、冷却手段を有していなくてもよい。また、誘電体の前方(プラズマ生成領域)に磁場を形成する永久磁石は、ECRを発生させることができれば、その形状、種類、個数、配置形態等は特に限定されない。例えば、永久磁石を一つだけ配置してもよく、複数個を二列以上に配置してもよい。
【0099】
真空容器や基材保持板状の材質や形状についても、特に限定されない。例えば、真空容器は金属製であればよく、なかでも導電性の高い材料を採用することが望ましい。
【0100】
上記実施形態では、一種類のガス雰囲気にて改質処理を行った。しかし、改質処理には、二種類以上のガスを用いてもよい。例えば、二種類のガスを用いる場合には、第一ガスに加えて、第二ガスを第二ガス供給孔から供給すればよい。使用するガス種としては、アルゴン(Ar)の他、ヘリウム(He)、ネオン(Ne)、クリプトン(Kr)、キセノン(Xe)等の希ガス、窒素(N)、酸素(O)等が挙げられる。また、改質処理は、3Pa以上100Pa以下の圧力下で行うことが望ましい。5Pa以上13Pa以下の圧力下で行うとより好適である。なお、第四、第五実施形態のように、ECRを利用したマイクロ波プラズマ照射手段を採用する場合には、1Pa以下の低圧下、さらには0.1Pa以下の極低圧下であっても、改質処理を行うことができる。
【実施例】
【0101】
次に、実施例を挙げて本発明をより具体的に説明する。
【0102】
<改質処理A>
[実施例1]
上記第一実施形態のマイクロ波プラズマ改質装置1により、PENフィルム(帝人(株)製「Q−65FA」)の改質処理を行った。以下の改質処理における部材の符号は、前出図2に対応している。まず、真空容器8の内部のガスを排気孔から排出し、真空容器8の内部圧力を1×10−2Paとした。次に、アルゴンガスを150sccmの流量で、真空容器8内へ供給し、真空容器8の内部圧力を25Paとした。続いて、マイクロ波電源52をオンにして、発振された出力1.0kWのマイクロ波により、マイクロ波プラズマP2を生成した。その後、さらに排気して、真空容器8の内部圧力を7Paとした。この状態で約20秒間マイクロ波プラズマP2を照射して、基材20(PENフィルム)の表面を改質処理した。得られたPENフィルムを、実施例1のフィルムとした。
【0103】
[実施例2]
マイクロ波プラズマP2を照射する際の真空容器8内の圧力を、2Paに変更した以外は、実施例1と同様に改質処理を行った。得られたPENフィルムを、実施例2のフィルムとした。
【0104】
[実施例3]
アルゴンガス(第一ガス)に加えて、酸素ガス(第二ガス)を供給した以外は、実施例1と同様に改質処理を行った(圧力7Pa)。酸素ガスの流量は、アルゴンガスの流量の10vol%(15sccm)とした。得られたPENフィルムを、実施例3のフィルムとした。
【0105】
[実施例4]
アルゴンガスに加えて、酸素ガスを供給した以外は、実施例2と同様に改質処理を行った(圧力2Pa)。酸素ガスの流量は、アルゴンガスの流量の10vol%(15sccm)とした。得られたPENフィルムを、実施例4のフィルムとした。
【0106】
<評価>
実施例の各フィルムの表面におけるノジュールの粒子径と表面粗さを、走査型プローブ顕微鏡((株)島津製作所製「SPM−9500J3」)にて測定した。実施例のフィルムにおいては、未処理のフィルムと比較して、表面の粒子(ノジュール)が小さくなっていた。すなわち、未処理のフィルムにおけるノジュールの粒子径は、600nm以上であったが、実施例のフィルムにおけるノジュールの粒子径は、いずれも150nm以下であった。また、実施例のフィルムにおいては、ノジュールの数も減少していた。また、表面粗さについては、未処理のフィルムは、Ra=1.8nm、Rmax=128nmであった。これに対して、実施例1のフィルムは、Ra=1.7nm、Rmax=77nm、実施例2のフィルムは、Ra=2.1nm、Rmax=114nm、実施例3のフィルムは、Ra=5.6nm、Rmax=170nm、実施例4のフィルムは、Ra=2.0nm、Rmax=31nm、であった。
【0107】
以上より、本発明のマイクロ波プラズマ改質方法によると、基材の表面を粗面化することなく、短時間でノジュールを微細化できることが確認された。
【0108】
<改質処理B>
[実施例5]
上記第三実施形態のマイクロ波プラズマ改質装置10により、PENフィルム(同上)の改質処理を行った。すなわち、マイクロ波プラズマP2を照射する際に、負のバイアス電圧を印加する以外は、上記実施例1と同様に改質処理を行った。以下の改質処理における部材の符号は、前出図6に対応している。
【0109】
まず、真空容器8の内部のガスを排気孔から排出し、真空容器8の内部圧力を1×10−2Paとした。次に、アルゴンガスを真空容器8内へ供給し、真空容器8の内部圧力を25Paとした。続いて、バイアス電圧印加部22を駆動し、基材保持板21に−26Vの直流パルス電圧を印加した(直流パルス電源の出力20W)。それから、マイクロ波電源52をオンにして、発振された出力1.0kWのマイクロ波により、マイクロ波プラズマP2を生成した。その後、さらに排気して、真空容器8の内部圧力を7Paとした。この状態で約20秒間マイクロ波プラズマP2を照射して、基材20(PENフィルム)の表面を改質処理した。得られたPENフィルムを、実施例5のフィルムとした。
【0110】
<評価>
実施例5のフィルムにおけるノジュールの粒子径と表面粗さを、走査型プローブ顕微鏡(同上)にて測定した。実施例5のフィルムのノジュールの粒子径は、30nm以下であった。また、上記実施例1〜4のフィルムと比較して、ノジュールの数が減少していた。また、実施例5のフィルムの表面粗さは、Ra=2.3nm、Rmax=50nmであった。
【0111】
以上より、負のバイアス電圧を印加しながらマイクロ波プラズマを照射すると、ノジュールの微細化効果が大きくなることが確認された。
【0112】
<改質処理C>
[実施例6]
上記第四実施形態のマイクロ波プラズマ改質装置11により、PENフィルム(同上)の改質処理を行った。以下の改質処理における部材の符号は、前出図7に対応している。まず、真空容器8の内部のガスを排気孔から排出し、真空容器8の内部圧力を1×10−2Paとした。次に、アルゴンガスを真空容器8内へ供給し、真空容器8の内部圧力を0.7Paとした。続いて、マイクロ波電源52をオンにして、発振された出力1.4kWのマイクロ波(周波数2.45GHz)により、ECRプラズマP3を生成した。ECRプラズマP3を約30秒間照射して、基材20(PENフィルム)の表面を改質処理した。得られたPENフィルムを、実施例6のフィルムとした。
【0113】
<評価>
実施例6のフィルムにおけるノジュールの粒子径と表面粗さを、走査型プローブ顕微鏡(同上)にて測定した。実施例6のフィルムにおいては、上述した未処理のフィルムと比較して、ノジュールが小さくなった。すなわち、実施例6のフィルムのノジュールの粒子径は、100nm以下であった。また、未処理のフィルムと比較して、ノジュールの数も減少していた。また、実施例6のフィルムの表面粗さは、Ra=1.8nm、Rmax=80nmであった。
【0114】
以上より、ECRを利用した本発明のマイクロ波プラズマ改質方法によると、基材の表面を粗面化することなく、0.7Paの低圧下かつ短時間で、ノジュールを微細化できることが確認された。
【0115】
<改質処理D>
[実施例7]
上記第五実施形態のマイクロ波プラズマ改質装置12により、PENフィルム(同上)の改質処理を行った。すなわち、ECRプラズマP3を照射する際に、負のバイアス電圧を印加する以外は、上記実施例6と同様に改質処理を行った。以下の改質処理における部材の符号は、前出図9に対応している。
【0116】
まず、真空容器8の内部のガスを排気孔から排出し、真空容器8の内部圧力を1×10−2Paとした。次に、アルゴンガスを真空容器8内へ供給し、真空容器8の内部圧力を0.7Paとした。続いて、バイアス電圧印加部22を駆動し、基材保持板21に−37Vの直流パルス電圧を印加した(直流パルス電源の出力50W)。それから、マイクロ波電源52をオンにして、発振された出力1.4kWのマイクロ波(周波数2.45GHz)により、ECRプラズマP3を生成した。ECRプラズマP3を約30秒間照射して、基材20(PENフィルム)の表面を改質処理した。得られたPENフィルムを、実施例7のフィルムとした。
【0117】
<評価>
実施例7のフィルムにおけるノジュールの粒子径と表面粗さを、走査型プローブ顕微鏡(同上)にて測定した。実施例7のフィルムのノジュールの粒子径は、10nm以下であった。また、上記実施例6のフィルムと比較して、ノジュールの数が減少していた。また、実施例7のフィルムの表面粗さは、Ra=1.9nm、Rmax=56nmであった。
【0118】
以上より、負のバイアス電圧を印加しながらECRマイクロ波プラズマを照射すると、ノジュールの微細化効果が大きくなることが確認された。
【符号の説明】
【0119】
1、10、11、12:マイクロ波プラズマ改質装置
20:基材 21:基材保持板 210:脚部 22:バイアス電圧印加部
30:プラズマ生成部 31:導波管 32:スロットアンテナ 33:誘電体部
320:スロット 330:下面
4:マイクロ波プラズマ照射手段 40:プラズマ生成部 41:導波管(矩形導波管)
42:スロットアンテナ 43:誘電体部 44:誘電体部固定板 45:支持板
46:永久磁石 420:スロット 430:前面(マイクロ波プラズマ生成面)
450:冷媒通路 451:冷却管
50:マイクロ波伝送部 51:管体部 52:マイクロ波電源
53:マイクロ波発振器 54:アイソレータ 55:パワーモニタ 56:EH整合器
6:マイクロ波プラズマ改質装置
8:真空容器 80:第一ガス供給孔 81:第二ガス供給孔 82:排気孔
83:導波孔 84:段差部
P1、P2:マイクロ波プラズマ P3:ECRプラズマ(マイクロ波プラズマ)

【特許請求の範囲】
【請求項1】
樹脂材料からなる基材の表面に、マイクロ波プラズマを照射することにより、該基材の表面にある樹脂成分由来のノジュールの粒子径を300nm以下にすることを特徴とするマイクロ波プラズマ改質方法。
【請求項2】
前記マイクロ波プラズマは、マイクロ波プラズマ照射手段により照射され、
該マイクロ波プラズマ照射手段は、マイクロ波を伝送する矩形導波管と、該矩形導波管の一面に配置され、該マイクロ波が通過するスロットを有するスロットアンテナと、該スロットを覆うように該スロットアンテナに積層して配置され、該スロットを通過した該マイクロ波が入射する誘電体部と、を備え、該スロットから該誘電体部へ入射する該マイクロ波の入射方向は、該マイクロ波プラズマが生成される該誘電体部の表面に平行である請求項1に記載のマイクロ波プラズマ改質方法。
【請求項3】
前記マイクロ波プラズマ照射手段において、前記スロットアンテナは、前記誘電体部のマイクロ波プラズマ生成面に対して垂直に配置される請求項2に記載のマイクロ波プラズマ改質方法。
【請求項4】
前記マイクロ波プラズマの照射を、前記基材に負のバイアス電圧を印加しながら行う請求項1ないし請求項3のいずれかに記載のマイクロ波プラズマ改質方法。
【請求項5】
前記ノジュールの粒子径を100nm以下にする請求項4に記載のマイクロ波プラズマ改質方法。
【請求項6】
前記マイクロ波プラズマ照射手段は、さらに、前記誘電体部の裏面に配置され該誘電体部を支持する支持板と、該支持板の裏面に配置されプラズマ生成領域に磁場を形成する永久磁石と、を備え、
該誘電体部から該磁場中に伝播する前記マイクロ波により電子サイクロトロン共鳴(ECR)を発生させながらプラズマを生成する請求項2に記載のマイクロ波プラズマ改質方法。
【請求項7】
前記マイクロ波プラズマの照射を、前記基材に負のバイアス電圧を印加しながら行う請求項6に記載のマイクロ波プラズマ改質方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2012−236968(P2012−236968A)
【公開日】平成24年12月6日(2012.12.6)
【国際特許分類】
【出願番号】特願2011−252437(P2011−252437)
【出願日】平成23年11月18日(2011.11.18)
【出願人】(000219602)東海ゴム工業株式会社 (1,983)
【Fターム(参考)】