説明

レールふく進計測用GNSS電波観測装置及びレールふく進計測システム

【課題】GNSS測位の利用により、鉄道のレールのふく進を無人で直接的かつ客観的に計測できる観測装置を提供する。
【解決手段】測定点観測装置21は、GPSアンテナ素子63と、アンテナケース61と、アンテナケーブル8と、増幅器71と、受信回路72と、を備える。GPSアンテナ素子63は、レール2に設けられ、レール2の伸縮とともに移動可能である。アンテナケース61は、GPSアンテナ素子63を収容する。アンテナケーブル8は、GPSアンテナ素子63に電気的に接続されるとともに、アンテナケース61から外部に引き出される。前記増幅器71は、前記GPSアンテナ素子から前記アンテナケーブルを介して入力された信号を増幅する。前記受信回路72は、前記増幅器で増幅された信号を処理することにより観測データを取得し、当該観測データを出力する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、鉄道レールのふく進を全地球測位システム(GNSS)の電波に基づいて測定する構成に関する。
【背景技術】
【0002】
鉄道レールは、温度による伸縮等の原因により長手方向に移動することがあり、これは一般に「ふく進」と呼ばれている。レールのふく進の状況は鉄道の安全輸送に密接に関連するので、鉄道会社等は保安のために、レールのふく進の状況の調査を必要に応じて適宜行っている。
【0003】
従来から、レールのふく進量を測定する方法としては、対象のレールに予め目印を付けるとともに、当該レールの両側の脇にも基準点の印を設置しておき、両側の基準点の間に渡した糸と、レールの目印と、の位置関係を目視で測定する方法が知られている。この方法は、例えば特許文献1において言及されている。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2005−3428号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、上記の方法はレールの上に糸を架け渡す必要があるため、測定が可能な時間帯は列車が運行を休止する夜間等に事実上限られる。従って、例えば継続的な観測により昼夜でのふく進量の変化を明らかにすることはできなかった。また、目視による計測のため多くの人手を要し、頻繁に計測することは困難であった。
【0006】
なお、上記特許文献1は、電子カメラにより目印及び基準点を撮影した画像から当該目印及び基準点を演算処理装置により自動認識し、その位置関係からふく進量を自動的に計算する構成を提案している。しかしながら、この方法においても作業員が電子カメラで撮影する作業が必要となり、作業の一層の省力化という観点から改善の余地が残されていた。
【0007】
なお、レールのふく進の状況を知るための別の方法としては、レールの温度をセンサにより計測して膨張率を理論式により計算し、これからふく進の量を推定する方法も知られている。しかし、この方法はレールのふく進自体を計測するものではないため、ふく進の量を正確に知りたいという要請に応えることが困難である。
【0008】
更に、レールに状態監視装置を取り付けて当該レールの歪み(軸力)と温度を計測し、理論式からレールの状態を推定することも行われている。しかしながら、この方法も間接的な計測にとどまり、軸力及び温度の値がレールのふく進の状況を完全に反映するものではないので、データの解釈が困難な点で改善の余地があった。
【0009】
更に、レール上を保線用車両で走行し、そのときの走行音及び振動に基づいてレールのふく進に基づく異常を経験的に判定する方法も行われている。しかしながら、この方法には熟練が必要であり、また、判定基準が判定者によって異なることが多く、客観的な説得性も十分とはいいがたい。
【0010】
本発明は以上の事情に鑑みてされたものであり、その目的は、レールのふく進を無人で直接的かつ客観的に計測できるレールふく進計測システムを提供することにある。
【課題を解決するための手段及び効果】
【0011】
本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段とその効果を説明する。
【0012】
本発明の第1の観点によれば、以下の構成のレールふく進計測用GNSS電波観測装置が提供される。即ち、このレールふく進計測用GNSS電波観測装置は、GNSSアンテナ素子と、アンテナハウジングと、アンテナケーブルと、増幅器と、受信回路と、を備える。前記GNSSアンテナ素子は、レールに設けられ、該レールの伸縮とともに移動可能である。前記アンテナハウジングは、前記GNSSアンテナ素子を収容する。前記アンテナケーブルは、前記GNSSアンテナ素子に電気的に接続されるとともに、前記アンテナハウジングから外部に引き出される。前記増幅器は、前記GNSSアンテナ素子から前記アンテナケーブルを介して入力された信号を増幅する。前記受信回路は、前記増幅器で増幅された信号を処理することにより観測データを取得し、当該観測データを出力する。
【0013】
これにより、GNSS測位を用いて、レールのふく進の状況に関する直接的かつ客観的なデータを継続して取得することができる。また、無人での計測が可能になるので、ふく進の計測作業の著しい省力化を達成することができる。更に、増幅器及び受信回路をレールから十分に離して配置できるので、夏場等にレールが高温になってもその影響を回避でき、観測装置の誤動作や故障を防止することができる。
【0014】
前記のレールふく進計測用GNSS電波観測装置においては、前記GNSSアンテナ素子は、樹脂ケースからなる前記アンテナハウジングと一体化されていることが好ましい。
【0015】
これにより、列車が通過する際の振動及び衝撃に耐え、安定した観測を実現することができる。
【0016】
前記のレールふく進計測用GNSS電波観測装置においては、以下の構成とすることが好ましい。即ち、このレールふく進計測用GNSS電波観測装置は、前記アンテナハウジングを前記レールの脇の位置で支持するための取付治具を備える。前記取付治具は、フラット形状となるように構成された前記アンテナハウジングが水平から傾斜した姿勢となるように当該アンテナハウジングを支持する。
【0017】
これにより、建築限界を容易に遵守でき、GNSS電波を良好に受信可能なGNSS電波観測装置を提供することができる。
【0018】
前記のレールふく進計測用GNSS電波観測装置においては、以下の構成とすることが好ましい。即ち、このレールふく進計測用GNSS電波観測装置は、前記レールに近い側が前記取付治具に片持ち支持される取付部材を備える。前記アンテナハウジングは、前記取付部材の上面に配置される。
【0019】
これにより、簡素な構成でGNSS電波を良好に受信できる。
【0020】
前記のレールふく進計測用GNSS電波観測装置においては、以下の構成とすることが好ましい。即ち、前記取付治具は、前記レールの下側に配置される基部と、この基部の一端から立ち上げられる支持部と、を有する断面略L字状に形成されている。前記取付治具は、固定具によって前記レールに固定される。前記取付部材は、前記支持部の上部に固定部材を介して固定される。
【0021】
これにより、レールの伸縮に応じてGNSSアンテナ素子を一体的に移動させることが可能な簡素な支持構造を実現できる。
【0022】
前記のレールふく進計測用GNSS電波観測装置においては、建築限界の外側に設置されることが好ましい。
【0023】
これにより、GNSS電波観測装置が列車の運行の妨げにならないので、レールへ継続的に設置でき、長期間の計測が可能になる。また、列車の通過の都度取り外す必要がなくなるので、長期間にわたる無人での自動計測が可能になり、著しい省力化を実現できる。
【0024】
本発明の第2の観点によれば、以下の構成のレールふく進計測システムが提供される。即ち、このレールふく進計測システムは、前記のレールふく進計測用GNSS電波観測装置を複数備える。また、レールふく進計測システムは、定められた基準点においてGNSS電波を観測するための基準点GNSS電波観測装置を備える。前記基準点は、前記GNSSアンテナ素子が設置される測定点の位置をGNSS干渉測位法で測定する基準とされる。
【0025】
これにより、干渉測位法を用いて複数の測定点の位置を基準点との関係で精度良く求め、レールのふく進の状況を正確に得ることができる。
【0026】
前記のレールふく進計測システムにおいては、前記基準点GNSS電波観測装置が備えるアンテナハウジングの構成は、前記レールふく進計測用GNSS電波観測装置の前記アンテナハウジングの構成と異なることが好ましい。
【0027】
これにより、レールの伸縮に伴って移動するレールふく進計測用GNSS電波観測装置のアンテナハウジングと、不動である基準点に取り付けられる基準点GNSS電波観測装置のアンテナハウジングと、を異ならせることで、状況に応じた好適な電波観測をそれぞれ実現し、測定精度を向上させることができる。
【0028】
前記のレールふく進計測システムにおいては、以下の構成とすることが好ましい。即ち、このレールふく進計測システムは、前記レールふく進計測用GNSS電波観測装置及び前記基準点GNSS電波観測装置が観測した観測データを解析する解析装置を備える。前記解析装置は、基線解析部と、残差計算部と、位相乱れ電波到来方向出力部と、を備える。前記基線解析部は、前記観測データから、GNSS干渉測位法の二重位相差の式に基づいて、前記測定点の位置と、整数値バイアスと、を最小二乗法により求める。前記残差計算部は、得られた前記測定点の位置及び整数値バイアスを前記二重位相差の式に代入して計算することにより得られる二重位相差と、前記観測データから前記二重位相差の式に基づいて得られる二重位相差と、の差である残差を、それぞれの測定点及びGNSS衛星について計算する。前記位相乱れ電波到来方向出力部は、前記残差が所定値以上となった測定点とGNSS衛星の組合せについて、当該測定点から見た当該GNSS衛星からの電波到来方向を計算して出力可能である。前記基線解析部は、前記観測データにおいて、測定点から見たGNSS衛星からの電波到来方向が予め設定された除外領域内にあるときは、当該GNSS衛星に係る観測データを解析対象から除外した上で、前記測定点の位置と、整数値バイアスと、を前記二重位相差の式に基づいて求めることが可能に構成されている。
【0029】
このように、測定点の位置を求めるときに特定の方向(除外領域に含まれる方向)から到来するGNSS電波を観測データから除外することで、レール付近に設置されることが多い障害物に基づくマルチパスの影響を良好に除去して、ふく進の状況を精度良く取得することができる。また、位相乱れ電波到来方向出力部の出力結果を利用することで前記除外領域を過不足なく適切に定めることができるので、マルチパスによる測定精度の低下を回避しつつ、有効なデータをより多く取得することができる。
【図面の簡単な説明】
【0030】
【図1】本発明の一実施形態に係るレールふく進計測システムの全体的な構成を示した概念図。
【図2】測定点観測装置の構成を示す一部断面図。
【図3】解析装置の機能ブロック図。
【図4】干渉測位で用いられる二重位相差を説明する図。
【図5】実験地点においてレールに基準点及び測定点を配置した様子を説明する平面図。
【図6】実験地点における第1測定点において、残差に乱れを生じた衛星の軌跡と、その乱れた部分をプロットしたグラフ。
【図7】実験での観測値から計算された基線長の変化と、実験地点での気温から理論式に基づいて推定した基線長の変化と、を比較して示すグラフ。
【発明を実施するための形態】
【0031】
次に、発明の実施の形態を説明する。図1は、本発明の一実施形態に係るレールふく進計測システム1の全体的な構成を示す模式図である。
【0032】
図1に示すレールふく進計測システム1は、鉄道において敷設されるレール2に沿って設置された複数の測定点観測装置(GNSS電波観測装置)21,21・・・と、所定の基準点に設置される基準点観測装置31と、を備えている。本実施形態において前記レール2は、複数本の標準的な長さのレール(定尺レール)を溶接により長手方向に連結して1本の長いレールとした、いわゆるロングレールとして構成されている。
【0033】
複数の測定点観測装置21は、レール2の長手方向に適当な間隔をあけて設定された測定点において、上空に飛来するGPS衛星(GNSS衛星)6から送信された電波をそれぞれ観測するように構成されている。それぞれの測定点観測装置21は、電波受信部7と、アンテナケーブル8と、制御ユニット9と、を備えている。
【0034】
それぞれの測定点観測装置21の電波受信部7は、レール2に設定された前記測定点に固定される。従って、例えば寒暖の影響でレール2が伸縮すると、測定点の移動に応じて電波受信部7も移動することになる。なお、それぞれの測定点観測装置21の詳細な構成については後述する。
【0035】
基準点観測装置31は、予め定められた基準点において、GPS衛星6から送信された電波を常時観測するように構成されている。この基準点観測装置31が備える電波受信部7xは、レール2の近傍にある適宜の位置(基準点)に固定される。この基準点としては、地質的に安定であり、GPS電波を良好に受信できる不動の場所が選択される。この基準点の位置は、例えば国土地理院が設置及び運営している電子基準点からのディファレンシャルGPS測位を行うことにより、予めその位置が正確に求められている。
【0036】
測定点観測装置21,21・・・は、ケーブル3によって接続されている。測定点観測装置21,21・・・には、図略の電源から当該ケーブル3を介して電力が供給される。同様に、基準点観測装置31にはケーブル3xが接続されており、このケーブル3xを介して基準点観測装置31に電力が供給される。
【0037】
この構成で、測定点観測装置21,21・・・及び基準点観測装置31は、地球の上空を周回する複数のGPS衛星6から送信されるGPS電波を、電波受信部7,7xにより受信する。そして、これらの観測装置21,31は、受信したGPS電波における搬送波の位相に関する値(位相差積算値)、当該データに係る電波の受信時刻、及び、GPS電波に乗せられている航法メッセージから得られたGPS衛星6の軌道情報等を観測データとして取得する。
【0038】
前記ケーブル3,3xには、測定点観測装置21及び基準点観測装置31から得られる観測データを集約して後述の解析装置51へ送信するための中継装置41が接続されている。測定点観測装置21,21・・・は、それぞれが取得した観測データを、ケーブル3を使用して中継装置41へ送信する。また、基準点観測装置31は、取得した観測データを、ケーブル3xを介して中継装置41へ送信する。
【0039】
中継装置41は、各観測装置21,31から受信した観測データを蓄積するとともに、所定時間ごとに解析装置51へ当該観測データを送信する。本実施形態では、中継装置41は携帯電話によるデータ通信を用いて解析装置51に観測データを送信するが、これに限定されるものではなく、例えばISDN等のデジタル回線網を用いることができる。
【0040】
解析装置51は、中継装置41との通信により得られた観測データを解析することにより、各測定点の移動量、移動方向及びその時間変化を取得し、ディスプレイやプリンタ等に出力することができる。
【0041】
次に、測定点観測装置21の構成について図2を参照して説明する。図2は、測定点観測装置21の構成を示す一部断面図である。
【0042】
ふく進の計測対象としてのレール2には、GPSアンテナ素子63を当該レール2に取り付けるためのベース体(取付治具)55が、ボルト(固定具)56によって固定されている。このベース体55は断面L字状に構成されており、レール2の下面に配置される基部57と、この基部57の一端(前記ボルト56と反対側の端部)から立ち上げられる支持部58と、を有している。
【0043】
基部57は、平底形状に構成されたレール2の底部の一端を上下方向に挟み込んだ状態で、ボルト56で締め付けて固定できるようになっている。また、前記支持部58の上部には、平板状の部材をほぼL字状に折り曲げて形成された取付部材59が、ボルト60(固定部材)を介して固定される。この取付部材59は、アンテナケース(アンテナハウジング)61を取り付けるための平坦な取付面62を有している。
【0044】
アンテナケース61は、適宜の合成樹脂(例えば、ポリカーボネート)により、扁平(フラット)な直方体状に形成されている。アンテナケース61の内部には、下面側が開放された収容空間が形成されており、この収容空間の内部にGPSアンテナ素子63が保持されている。GPSアンテナ素子63としては、適宜の樹脂で構成された基板の上面に導体のアンテナパターンを形成し、下面にアースパターンを形成した、フラットな形状のパッチアンテナが採用されている。
【0045】
GPSアンテナ素子63の周囲は、例えば金属から形成されたシールドケース64で覆われている。このシールドケース64とアンテナケース61との間にはコーキングが適宜施されており、これによりシールドケース64(GPSアンテナ素子63)とアンテナケース61とを一体化して、GPSアンテナ素子63の位置のブレを防止することができる。また、上記のようにGPSアンテナ素子63とアンテナケース61とが機械的に一体化されているので、列車(鉄道車両)11の通過時の振動及び衝撃からGPSアンテナ素子63を強固に保護し、安定した観測を実現することができる。
【0046】
アンテナケース61は、前記収容空間の開放側を閉鎖するように、前記取付部材59の取付面62に固定される。これにより、アンテナケース61及びGPSアンテナ素子63は、水平から若干傾斜した姿勢でレール2に対して支持される。このレイアウトにより、レール2の周囲に設定されている建築限界10を遵守しつつ、GPS電波を良好に受信することができる。
【0047】
アンテナケース61と取付部材59との間にはOリング等のシール部材が配置されており、アンテナケース61内に雨水等が侵入することを防止している。また、前記取付面62及びアンテナケース61は、レール2から離れるに従って下方となるように水平から若干傾斜して配置されており、雨水等の滞留による電波受信の障害を防止できるようになっている。本実施形態では、上記のGPSアンテナ素子63、アンテナケース61、ベース体55、取付部材59等により、測定点観測装置21の電波受信部7が構成されている。
【0048】
GPSアンテナ素子63には、前記アンテナケーブル8が電気的に接続されている。このアンテナケーブル8は同軸ケーブルとして構成されており、アンテナケース61の下面から引き出されている。アンテナケーブル8は、取付部材59に形成された図略の貫通孔を通じて取付部材59の下側に更に引き出され、後述の制御ユニット9に接続される。
【0049】
より詳細に説明すると、前記GPSアンテナ素子63は多点給電型のパッチアンテナとして構成されており、前記アンテナケース61には図略のカプラが内蔵されている。そして、前記アンテナケーブル8は、前記カプラから、制御ユニット9が備える増幅器71までを電気的に接続している。
【0050】
ここで、測定点観測装置21においては、制御ユニット9をレール2から一定程度離れた場所に配置する必要があるので、前記アンテナケーブル8を短くすることは困難である。加えて、アンテナケーブル8を流れるのは増幅される前の信号であるため、ノイズの影響を受け易い。そこで本実施形態では、外部皮膜を二重にした構成(二重編組型)の同軸ケーブルを前記アンテナケーブル8として採用し、ノイズを抑制できるように配慮している。
【0051】
制御ユニット9はボックス状の筐体を有しており、この内部に、増幅器71と、受信回路72と、が配置されている。受信回路72は、コード同期回路と、位相同期回路と、を備えている。制御ユニット9に入力された信号は、増幅器71により十分な信号レベルにまで増幅された後、受信回路72により、PNコード(公知の擬似雑音符号)に基づいて衛星ごとに分離される。更に、受信回路72は、コード位相の同期と、各GPS衛星6が搬送波に乗せた航法メッセージの読取りを行う。これにより、GPS衛星6の軌道、GPS衛星6に搭載される時計の誤差の補正値、電離層の影響を軽減するための補正係数等を取得することができる。
【0052】
また、GPS衛星6から送信された搬送波は、受信回路72において発生させた搬送波レプリカと比較され、これにより搬送波の位相差が求められる。
【0053】
上記の位相差のデータの取得は、予め設定された時間間隔(エポック)ごとに反復して行われる。受信回路72は、最初のエポックで位相差を求めた後は、搬送波を継続して観測し、位相差をカウントしていく。そして、エポックが到来するごとに、最初のエポックから現在のエポックまでの位相差の積算値(位相差積算値)が取得される。この位相差積算値は、電波の受信時刻、GPS衛星6の軌道の情報等とともに、前記中継装置41を介して解析装置51へデジタルデータとして送信される。
【0054】
本実施形態では上述したように、GPSアンテナ素子63で受信した信号を処理するための増幅器71及び受信回路72が、当該GPSアンテナ素子63を収容するアンテナケース61とは異なるハウジング(制御ユニット9の筐体)に配置されている。そして、アンテナケース61から外部に引き出されるアンテナケーブル8を介して取り出された信号が、制御ユニット9の増幅器71及び受信回路72によって処理される構成となっている。これにより、電子回路からなる増幅器71及び受信回路72をレール2から十分に離れた位置に配置できるので、例えば夏場にレール2が高温になっても増幅器71及び受信回路72の温度を上昇しにくくでき、測定点観測装置21の誤動作や故障を防止することができる。
【0055】
なお、基準点観測装置31の構成は図1に示すように、測定点観測装置21の構成とは若干異なっている。具体的には、基準点観測装置31が備える電波受信部7xは、レドーム内に、GPSアンテナ素子と、増幅器と、受信回路と、を配置した一体型の構成となっている。なお、基準点観測装置31の増幅器及び受信回路の機能は、前記測定点観測装置21と実質的に同様であるので、説明を省略する。基準点観測装置31で得られた位相差積算値は、電波の受信時刻、GPS衛星6の軌道の情報等とともに、前記中継装置41を介して解析装置51へデジタルデータとして送信される。
【0056】
次に、解析装置51の詳細な構成を説明する。図3は解析装置51のブロック図である。
【0057】
図1に示すように、本実施形態のレールふく進計測システム1を構成する解析装置51は、汎用のパーソナルコンピュータを利用して構成されている。この解析装置51は、演算部及び制御部としてのCPUと、記憶部としてのROM、RAM及びハードディスクと、を備えている。前記ハードディスクには、解析装置51によって干渉測位の基線解析等を行うためのプログラム等が、適宜の記憶媒体を用いてインストールされている。
【0058】
そして、上記ハードウェアとソフトウェアとの協働により、解析装置51においては図3のブロック図に示すように、観測データ入力部81と、基線解析部82と、残差計算部83と、位相乱れ電波到来方向出力部84と、マスク領域記憶部85と、電波到来方向判定部86と、結果出力部87と、を含む各部が構築されている。
【0059】
観測データ入力部81は、測定点観測装置21及び基準点観測装置31が得た観測データを前記中継装置41との通信により取得し、前記ハードディスク等にファイル形式で保存するように構成されている。
【0060】
基線解析部82は、入力された前記観測データに基づいて、GPS電波の位相差に関する計算処理(具体的には、干渉測位法の基線解析)を行うことで、それぞれの測定点の位置を求める。なお、この基線解析(第1基線解析)においては、後述の第2基線解析とは異なり、全ての観測データが基線解析の対象とされる。また、上記の干渉測位法の詳細については後述する。
【0061】
残差計算部83は、基線解析部82で求められた測定点の位置に測定点観測装置21があった場合に観測されるべき理論的な位相差と、実際に測定点観測装置21で観測されたデータに基づく位相差と、の差である残差を、それぞれの測定点及びGPS衛星について計算する。
【0062】
位相乱れ電波到来方向出力部84は、残差計算部83で計算された残差が所定値以上であった場合に、当該測定点から見たときの当該GPS衛星からの電波の到来方向を求め、これをディスプレイやプリンタ等の適宜の出力部に出力する。
【0063】
マスク領域記憶部85は、解析装置51のオペレータが指示したマスク領域(除外領域)を記憶する。このマスク領域の指示は、前記位相乱れ電波到来方向出力部84の出力結果を参考にして、オペレータがマウスやキーボードを操作することにより行うことができる。マスク領域が指定されると、前記基線解析部82は、当該マスク領域を考慮して改めて基線解析を行う(第2基線解析)。
【0064】
電波到来方向判定部86は、それぞれの測定点の観測データについて、当該測定点から見たときの各GPS衛星からの電波の到来方向を計算し、この到来方向が前記マスク領域内であるか否かを判定する。基線解析部82は、前記第2基線解析を行うときに、電波の到来方向が前記マスク領域内にある衛星については、当該GPS衛星に係る観測データを解析の対象から除外する。
【0065】
結果出力部87は、マスク領域を考慮した基線解析(第2基線解析)の結果を、ディスプレイやプリンタ等の適宜の出力部に出力する。
【0066】
次に、上記の構成の解析装置51によって解析を行う基本的な考え方である干渉測位について説明する。図4は、干渉測位で用いられる二重位相差を説明する図である。
【0067】
即ち、本実施形態では、GPS相対測位の一種である干渉測位法を用いて測定点の測位を行っている。図4において、レール2に設定された測定点u0(測定点観測装置21)で計測されるGPS衛星kからの電波(前記搬送波)の位相φu0kは、測定点u0と衛星kとの間との距離ru0kを用いて、式(1)のように表される。
【数1】

【0068】
また、位置が既知である基準点ub(基準点観測装置31)において計測されるGPS衛星kからの搬送波の位相φubkは、具体的な式は省略するが、基準点ubと衛星kとの距離rubkを用いて、式(1)と同様に表される。
【0069】
そして、GPS衛星kに対して基準点ubと測定点u0においてそれぞれ得られる位相の差はφu0k−φubkと表すことができ、異なるGPS衛星lに対して基準点ubと測定点u0においてそれぞれ得られる位相の差はφu0l−φublと表すことができる。以上により、両位相差の差は式(2)のように表される。
【数2】

【0070】
そして、式(1)等を式(2)に代入すると、次の式(3)を得る。
【数3】

【0071】
この式(3)は二重位相差と呼ばれ、干渉測位の基礎式として知られている。この二重位相差を計算することにより、観測装置21,31とGPS衛星6のそれぞれの時計誤差を消去できるとともに、電離層遅延、大気圏遅延等の大きな誤差についても原則として消去することができる。従って、誤差の要因としては、その他の誤差εφのみが残る。
【0072】
式(3)の左辺(φu0-ubk-l)には、測定点観測装置21及び基準点観測装置31において観測された位相が代入される。一方、式(3)の右辺においては、距離ru0k及びru0lに含まれる測定点u0の座標と、整数部Nu0-ubk-lが未知数となる。干渉測位における基線解析では、長時間の観測期間中に測定点u0及び基準点ubで測定して式(2)で得られる位相と、式(3)の右辺の計算値と、を用いて、両者の差の二乗和が最小となる上記の未知数(測定点u0の座標と整数部Nu0-ubk-l)の値を求める。この方法は、観測期間中に衛星の位置が変化することを利用して測定点u0の座標と整数部(整数値バイアス)を決定するものであり、一般にスタティック測位と呼ばれている。
【0073】
以上により、測定点観測装置21のGPSアンテナ素子63の位置(即ち、レール2のふく進の状況)と、整数値バイアスとを、観測装置21,31及びGPS衛星6の時計誤差等の様々な要因で生じる誤差を除去しつつ取得することができる。以上が、前記基線解析部82によって行われる第1基線解析である。
【0074】
しかしながら、上記の干渉測位の基礎式では除去することができない誤差要因も幾つか存在し、その代表的なものの1つがマルチパスである。即ち、鉄道のレール2の近傍には側壁、防音壁、金網等の多様な構造物が設置されることが多く、そのレイアウトによっては図4に示すように、GPS衛星6から送信された電波が直接ではなく他の構造物90に反射してGPSアンテナ素子63に到達することがある(反射波、マルチパス)。この反射波の経路はGPSアンテナ素子63に直接届く場合(直接波)よりも長くなるため、観測装置21側では誤差が位相の遅れとして生じ、測定精度の低下を招く。
【0075】
そこで、本実施形態の解析装置51では、観測装置21,31から得られたデータを基に、マルチパスを排除するために無視すべきGPS衛星6の方向(測定点観測装置21のGPSアンテナ素子63から見た方向)を、所定の領域であるマスク領域(除外領域)を設定することで指定できるようになっている。そして、基線解析部82が改めて基線解析を行う場合は、測定点からみたGPS衛星6の方向(電波の到来方向)がマスク領域に含まれているときに当該GPS衛星6からの電波を考慮しないようにする。以上が第2基線解析であり、再計算された測定点u0の座標及び整数値バイアスは精度が高くなることが期待される。本実施形態の解析装置51では、この第2基線解析の結果を、ふく進に関するデータとして結果出力部87により出力できるようになっている。
【0076】
そして、本実施形態の解析装置51では、上記のマスク領域を設定するときの手掛かりとするために、以下に説明する残差を計算する。残差とは、上記の干渉測位で求められた観測地点(測定点u0)の位置において本来得られるべきGPS電波の位相差(計算値)と、実際の計測に基づく位相差と、の差を意味する。この残差は、GPS衛星6から送信される電波において、搬送波の位相の乱れの大きさを表す指標となり得るものである。
【0077】
以下、残差の計算の手順を説明する。即ち、先ず、上述した干渉測位の基礎式によって、測定点u0の座標と整数部Nu0-ubk-lの値を求める。そして、この測定点u0の座標と整数部Nu0-ubk-lの値を、式(3)の右辺第1項及び第2項に代入するとともに、測定点観測装置21において測定された位相を当該式(3)の左辺に代入する。
【0078】
すると、得られた測定点u0の位置からすれば受信機において測定されるべきである理論的な位相差と、実際に測定点観測装置21において測定された位相差と、の差を計算することができる。本明細書では、この2つの位相差の差を「残差」と定義する。この残差は、式(2)及び式(3)を用いて、以下の式(4)のように表すことができる。
【数4】

【0079】
この残差は、測定点観測装置21において測定されるべき理想的な位相差と、実際の測定に基づく位相差と、の乖離度を意味する。従って、測定点観測装置21において位相が正確に測定されている場合は残差の値はゼロに近づくが、マルチパスが生じている場合は、位相遅れの影響で上記の残差の値は大きくなると考えられる。従って、上記の残差が所定値以上であった場合は、当該衛星の方向が、マルチパスが生じ易い方向であると推定することができる。
【0080】
なお、上記の残差を実際に計算するには、当該残差を求めたい衛星のほかに、基準となる衛星のデータが必要になる。基準となる衛星の選択方法は種々考えられるが、本実施形態では、計測期間中において最も高度(水平面からの高さ)が高い衛星を、基準の衛星として定めている。これは、衛星の仰角が大きいほど、当該衛星からの信号がマルチパスを生じにくくなるためである。
【0081】
次に、解析装置51におけるマスク領域の設定と測定点の位置の再計算(第2基線解析)について、本実施形態のレールふく進計測システム1を適用した実験の結果を具体的に紹介しながら説明する。この実験では、レールが敷設されたある実験地点において、7つの測定点及び1つの基準点を図5のように定めた。この実験地点には、南東−北西方向に延びる約750メートルのレール(ロングレール)が敷設されており、第1〜第7測定点は、当該レールに沿って適当な間隔をあけて設定された。また、基準点は、第2測定点の近傍にある適当な位置に設定された。
【0082】
本実験では、それぞれの測定点に測定点観測装置21の電波受信部7を設置し、基準点には基準点観測装置31の電波受信部7xを設置した。そして、7つの測定点それぞれについて、上記の干渉測位法により測位(第1基線解析)を行うとともに、GPS衛星6について前記の残差を計算した。
【0083】
図6は、ある測定期間において図5の第1測定点の上空に飛来した衛星の軌跡のうち、前記残差が所定値以上となった部分を含む衛星の軌跡を示している。なお、図6においては、衛星の軌跡(電波の到来方向の軌跡)のうち、所定値以上の残差を生じた部分が黒塗りの四角形で強調してプロットされている。
【0084】
図6において、残差が大きくなっている部分は測定点(測定点観測装置21の電波受信部7)から見て北東の方向に集中している。そこで調査したところ、前記第1測定点の北東側には側壁が設置されていることが判明した。従って、残差の大きい部分(GPS電波の搬送波位相が乱れている部分)は、この側壁によるマルチパスの影響によるものと考えられる。
【0085】
解析装置51には、マルチパスが生じ易い電波の到来方向を診断して表示し、後述のマスク領域をオペレータに指定させるためのプログラムが予めインストールされている。これにより、解析装置51の位相乱れ電波到来方向出力部84は、位相に乱れが生じた観測データに係る衛星の軌跡と、そのうち前記残差が大きい部分とを、例えば図6のようなグラフの形でディスプレイに視覚的に表示することができる。そして、解析装置51のオペレータは、当該グラフ上で前記残差が大きいプロット群をほぼ囲むような図形の輪郭をマウス等で指定することにより、基線解析の対象から除外したい領域であるマスク領域(除外領域)を、例えば図6の破線のハッチングで示すように指定することができる。図6には、第1測定点の北東側にはレール2に沿って細長い側壁が設置されていることを考慮し、細長い領域がマスク領域として指定された例が示されている。このマスク領域の指定は、それぞれの測定点について個別に行うことができる。
【0086】
解析装置51のマスク領域記憶部85(図3)は、オペレータが上記のように指定したマスク領域を記憶する。そして、電波到来方向判定部86は、それぞれの測定点及びエポックにおいて、当該測定点から見たときのGPS衛星からの電波の到来方向を観測データから計算する。そして、基線解析部82は、GPS衛星6が送信した電波の到来方向が当該マスク領域内にあるときは、その到来方向に係る観測データを解析対象から除外しつつ、測定点の位置を計算により求める(第2基線解析)。これにより、測定点において電波到来方向がマスク領域内にあるときは、当該電波を受信しなかったものと実質的にみなして基線解析を行うことができる。
【0087】
このマスク処理(対象除外処理)により、測定点の測位精度を一層向上させることができる。具体的には、前記実験により得られた観測データをマスク処理して計算した場合に得られた測位結果の標準偏差は、マスク処理をしない場合と比べて、前記エポックを30秒に設定して1時間のスタティック測位を行った場合で約1/2のレベルまで減少させることができた。
【0088】
図7(a)は、上記マスク領域を考慮した解析結果(第2基線解析の結果)の例であり、第1測定点の基線長(基準点から第1測定点までの距離)の相対変化をほぼ10日間にわたってプロットしたものである。なお、図7(b)には、当該実験地点における気温のデータに基づいてレールのふく進を計算し、これから推測した第1測定点の基線長の相対変化が示されている。
【0089】
図7(a)から判るように、日中に気温が良く上昇した日においては、観測データから得られた第1測定点の基線長が明りょうな極値を示している。また、観測データによる第1測定点の基線長が極小値を示すタイミングは、気温データから理論式により計算した基線長(図7(b))の極小値と良く一致している。このことからも、本実施形態のシステムがレール2のふく進を好適に計測できることが判る。
【0090】
また、本実施形態では、レール2の脇の位置にコンパクトなアンテナケース61を配置する構成であり、建築限界10の外側に納まるレイアウトとなっている。従って、測定点観測装置21が列車11の運行の妨げにならないので、レール2への継続的な設置が可能になる。この結果、例えば図7(a)に示すような長期間の計測を行い、昼夜の気温差に起因するふく進の挙動を明らかにすることも容易である。更には、いったん設置すれば無人での自動計測が可能になるので、その省力化の効果は顕著である。
【0091】
なお、マルチパスが生じ易い電波の到来方向は、測定点の周囲における障害物(構造物90)の位置等が変更されない限り、殆ど変化しないと考えられる。従って、1回の第1基線解析でマスク領域を適切に設定してマスク領域記憶部85に記憶しておけば、その後は第2基線解析だけで、レール2のふく進を良好な精度で継続的に計測することができる。
【0092】
以上に示すように、本実施形態のレールふく進計測システム1が備える測定点観測装置21は、GPSアンテナ素子63と、アンテナケース61と、アンテナケーブル8と、増幅器71と、受信回路72と、を備える。GPSアンテナ素子63は、レール2に設けられ、該レール2の伸縮とともに移動可能である。アンテナケース61は、GPSアンテナ素子63を収容する。アンテナケーブル8は、GPSアンテナ素子63に電気的に接続されるとともに、アンテナケース61から外部に引き出される。増幅器71は、GPSアンテナ素子63からアンテナケーブル8を介して入力された信号を増幅する。受信回路72は、増幅器71で増幅された信号を処理することにより観測データを取得し、当該観測データを出力する。
【0093】
これにより、GPS測位を用いて、レール2のふく進の状況に関する直接的かつ客観的なデータを継続して取得することができる。また、無人での計測が可能になるので、ふく進の計測作業の著しい省力化を達成することができる。更に、増幅器71及び受信回路72をレール2から十分に離して配置できるので、夏場等にレール2が高温になってもその影響を回避でき、測定点観測装置21の誤動作や故障を防止することができる。
【0094】
また、本実施形態の測定点観測装置21において、GPSアンテナ素子63は、合成樹脂からなるアンテナケース61と一体化されている。
【0095】
これにより、列車11が通過する際の振動及び衝撃に耐え、安定した観測を実現することができる。
【0096】
また、本実施形態の測定点観測装置21は、アンテナケース61をレール2の脇の位置で支持するためのベース体55を備える。このベース体55は、フラット形状となるように構成されたアンテナケース61が水平から傾斜した姿勢となるように当該アンテナケース61を支持する。
【0097】
これにより、建築限界10を容易に遵守でき、GPS電波を良好に受信可能な測定点観測装置21を提供することができる。
【0098】
また、本実施形態の測定点観測装置21は、レール2に近い側がベース体55に片持ち支持される取付部材59を備える。そして、アンテナケース61は、取付部材59の上面(取付面62)に配置される。
【0099】
これにより、簡素な構成でGPS電波を良好に受信できる。
【0100】
また、本実施形態の測定点観測装置21において、ベース体55は、レール2の下側に配置される基部57と、この基部57の一端から立ち上げられる支持部58と、を有する断面略L字状に形成されている。ベース体55は、ボルト56によってレール2に固定される。そして、取付部材59は、支持部58の上部にボルト60を介して固定される。
【0101】
これにより、レール2の伸縮に応じてGPSアンテナ素子63を一体的に移動させることが可能な簡素な支持構造を実現できる。
【0102】
また、本実施形態の測定点観測装置21は、建築限界の外側に設置されている。
【0103】
これにより、測定点観測装置21が列車11の運行の妨げにならないので、レール2へ継続的に設置でき、長期間の計測が可能になる。また、列車11の通過の都度取り外す必要がなくなるので、長期間にわたる無人での自動計測が可能になり、著しい省力化を実現できる。
【0104】
また、本実施形態のレールふく進計測システム1は、前記測定点観測装置21を複数備える。また、レールふく進計測システム1は、定められた基準点においてGPS電波を観測するための基準点観測装置31を備える。この基準点は、GPSアンテナ素子63が設置されるそれぞれの測定点の位置をGPS干渉測位法で測定する基準とされる。
【0105】
これにより、干渉測位法を用いて複数の測定点の位置を精度良く求め、レール2のふく進の状況を正確に得ることができる。
【0106】
また、本実施形態において、基準点観測装置31のGPSアンテナ素子63は増幅器及び受信回路とともにレドーム型のアンテナハウジングに収容されており、測定点観測装置21におけるアンテナハウジングとしてのアンテナケース61とは構成が異なっている。
【0107】
これにより、レール2の伸縮に伴って移動する測定点観測装置21のアンテナケース61と、不動である基準点に取り付けられる基準点観測装置31のアンテナハウジングと、で構成を異ならせることで、状況に応じた好適な電波観測をそれぞれ実現し、測定精度を向上させることができる。
【0108】
また、本実施形態のレールふく進計測システム1は、測定点観測装置21及び基準点観測装置31が観測した観測データを解析する解析装置51を備える。解析装置51は、基線解析部82と、残差計算部83と、位相乱れ電波到来方向出力部84と、を備える。基線解析部82は、前記観測データから、GPS干渉測位法の二重位相差の式に基づいて、測定点の位置と、整数値バイアスと、を最小二乗法により求める。残差計算部83は、得られた測定点の位置及び整数値バイアスを前記二重位相差の式に代入して計算することにより得られる二重位相差と、観測データから前記二重位相差の式に基づいて得られる二重位相差と、の差である残差を、それぞれの測定点及びGPS衛星について計算する。位相乱れ電波到来方向出力部84は、前記残差が所定値以上となった測定点とGPS衛星6の組合せについて、当該測定点から見た当該GPS衛星6からの電波到来方向を計算して出力可能である。基線解析部は、前記観測データにおいて、測定点から見たGPS衛星6からの電波到来方向が予め設定されたマスク領域内にあるときは、当該GPS衛星6に係る観測データを解析対象から除外した上で、測定点の位置と、整数値バイアスと、を二重位相差の式に基づいて求めることが可能に構成されている。
【0109】
このように、測定点の位置を求めるときに特定の方向(マスク領域に含まれる方向)から到来するGPS電波を解析対象から除外することができるので、レール2の付近に設置されることが多い障害物に基づくマルチパスの影響を良好に除去して、ふく進の状況を精度良く取得することができる。また、位相乱れ電波到来方向出力部84の出力結果を利用することでマスク領域を過不足なく適切に定めることができるので、マルチパスによる測定精度の低下を回避しつつ、有効なデータをより多く取得することができる。
【0110】
以上に本発明の好適な実施の形態を説明したが、上記の構成は例えば以下のように変更することができる。
【0111】
上記実施形態では、測定点観測装置21のGPSアンテナ素子63は、合成樹脂からなるアンテナケース61に収容され、コーキングにより一体化されている。しかしながらこれに代えて、GPSアンテナ素子63の周囲を覆うように合成樹脂を一体的に成形し、これによりアンテナハウジングを構成しても良い。
【0112】
上記実施形態では基準点観測装置31の構成が測定点観測装置21と異なっていたが、測定点観測装置21と同様の構成の基準点観測装置31を採用することもできる。この場合、部品の共通化によりコストを削減することができる。
【0113】
解析装置51において、マスク領域はオペレータがディスプレイ上で手作業で設定する構成としているが、適切なマスク領域を解析装置51側で自動的に計算して自動設定するように構成することもできる。
【0114】
中継装置41を省略し、観測装置21,31で取得される観測データが解析装置51に直接入力される構成に変更することができる。
【0115】
上記実施形態では、GPS衛星からの信号に基づいてレール2のふく進を計測する構成であるが、GPS以外の全地球測位システム(GNSS)を利用して測位を行う構成に変更することもできる。
【0116】
上記実施形態のシステムの計測対象は鉄道のレールに限定されるものではなく、例えば橋、道路等の構造体の計測についても適用することができる。
【符号の説明】
【0117】
1 レールふく進計測システム
2 レール
8 アンテナケーブル
21 測定点観測装置(レールふく進計測用GNSS電波観測装置)
31 基準点観測装置(基準点GNSS電波観測装置)
51 解析装置
55 ベース体(取付治具)
61 アンテナケース(アンテナハウジング)
63 GPSアンテナ素子(GNSSアンテナ素子)
71 増幅器
72 受信回路

【特許請求の範囲】
【請求項1】
レールに設けられ該レールの伸縮とともに移動可能なGNSSアンテナ素子と、
前記GNSSアンテナ素子を収容するアンテナハウジングと、
前記GNSSアンテナ素子に電気的に接続されるとともに前記アンテナハウジングから外部に引き出されるアンテナケーブルと、
前記GNSSアンテナ素子から前記アンテナケーブルを介して入力された信号を増幅する増幅器と、
前記増幅器で増幅された信号を処理することにより観測データを取得し、当該観測データを出力する受信回路と、
を備えることを特徴とするレールふく進計測用GNSS電波観測装置。
【請求項2】
請求項1に記載のレールふく進計測用GNSS電波観測装置であって、
前記GNSSアンテナ素子は、樹脂ケースからなる前記アンテナハウジングと一体化されていることを特徴とするレールふく進計測用GNSS電波観測装置。
【請求項3】
請求項1又は2に記載のレールふく進計測用GNSS電波観測装置であって、
前記アンテナハウジングを前記レールの脇の位置で支持するための取付治具を備え、
前記取付治具は、フラット形状となるように構成された前記アンテナハウジングが水平から傾斜した姿勢となるように当該アンテナハウジングを支持することを特徴とするレールふく進計測用GNSS電波観測装置。
【請求項4】
請求項3に記載のレールふく進計測用GNSS電波観測装置であって、
前記レールに近い側が前記取付治具に片持ち支持される取付部材を備え、
前記アンテナハウジングは、前記取付部材の上面に配置されることを特徴とするレールふく進計測用GNSS電波観測装置。
【請求項5】
請求項4に記載のレールふく進計測用GNSS電波観測装置であって、
前記取付治具は、前記レールの下側に配置される基部と、この基部の一端から立ち上げられる支持部と、を有する断面略L字状に形成されており、
前記取付治具は、固定具によって前記レールに固定され、
前記取付部材は、前記支持部の上部に固定部材を介して固定されることを特徴とするレールふく進計測用GNSS電波観測装置。
【請求項6】
請求項1から5までの何れか一項に記載のレールふく進計測用GNSS電波観測装置であって、建築限界の外側に設置されることを特徴とするレールふく進計測用GNSS電波観測装置。
【請求項7】
請求項1から6までの何れか一項に記載のレールふく進計測用GNSS電波観測装置を複数備えるとともに、前記GNSSアンテナ素子が設置される測定点の位置をGNSS干渉測位法で測定する基準とするために定められた基準点においてGNSS電波を観測するための基準点GNSS電波観測装置を備えることを特徴とするレールふく進計測システム。
【請求項8】
請求項7に記載のレールふく進計測システムであって、前記基準点GNSS電波観測装置が備えるアンテナハウジングの構成は、前記レールふく進計測用GNSS電波観測装置の前記アンテナハウジングの構成と異なることを特徴とするレールふく進計測システム。
【請求項9】
請求項7又は8に記載のレールふく進計測システムであって、
前記レールふく進計測用GNSS電波観測装置及び前記基準点GNSS電波観測装置が観測した観測データを解析する解析装置を備え、
前記解析装置は、
前記観測データから、GNSS干渉測位法の二重位相差の式に基づいて、前記測定点の位置と、整数値バイアスと、を最小二乗法により求める基線解析部と、
得られた前記測定点の位置及び整数値バイアスを前記二重位相差の式に代入して計算することにより得られる二重位相差と、前記観測データから前記二重位相差の式に基づいて得られる二重位相差と、の差である残差を、それぞれの測定点及びGNSS衛星について計算する残差計算部と、
前記残差が所定値以上となった測定点とGNSS衛星の組合せについて、当該測定点から見た当該GNSS衛星からの電波到来方向を計算して出力可能な位相乱れ電波到来方向出力部と、
を備え、
前記基線解析部は、前記観測データにおいて、測定点から見たGNSS衛星からの電波到来方向が予め設定された除外領域内にあるときは、当該GNSS衛星に係る観測データを解析対象から除外した上で、前記測定点の位置と、整数値バイアスと、を前記二重位相差の式に基づいて求めることが可能に構成されていることを特徴とするレールふく進計測システム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2010−261867(P2010−261867A)
【公開日】平成22年11月18日(2010.11.18)
【国際特許分類】
【出願番号】特願2009−113935(P2009−113935)
【出願日】平成21年5月8日(2009.5.8)
【出願人】(000166247)古野電気株式会社 (441)
【出願人】(390023249)国際航業株式会社 (55)
【出願人】(000221616)東日本旅客鉄道株式会社 (833)
【出願人】(592047973)株式会社日本線路技術 (1)
【Fターム(参考)】