説明

二峰性単層単一成分媒体を有する成形単一成分単層レスピレーター

成形レスピレーターは、混じり合った連続的な単一成分ポリマーマイクロファイバーと同じポリマー組成の寸法の大きい方の繊維との二峰性質量分率/繊維寸法混合物を含む単一成分単層不織布ウェブから作製される。前記レスピレーターは、カップ形状多孔質単一成分端単層マトリックスであり、そのマトリックス繊維は、繊維交点の少なくともいくつかの点で相互に結合される。前記マトリックスは、1Nを超えるキングこわさを有する。前記レスピレーターは、濾過媒体層中の強化層、2成分繊維、又はその他の補強物を必要とすることなく形成することができる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、個人用成形(例えば、カップ形状)レスピレーターに関する。
【背景技術】
【0002】
個人用成形レスピレーターに関する特許としては、米国特許第4,536,440号(バーグ(Berg))、同第4,547,420号(クルーガー(Krueger)ら)、同第5,374,458号(ブルジオ(Burgio))及び同第6,827,764 B2号(スプリンゲット(Springett)ら)が挙げられる。呼吸マスク用ファブリックに関する特許としては、米国特許第5,817,584号(シンガー(Singer)ら)、同第6,723,669号(クラーク(Clark)ら)及び同第6,998,164 B2号(ニーリー(Neely)ら)が挙げられる。不織布ウェブ又はその作製に関するその他の特許又は出願としては、米国特許第3,981,650号(ページ(Page))、同第4,100,324号(アンダーソン(Anderson))、同第4,118,531号(ハウザー(Hauser))、同第4,818,464号(ロー(Lau))、同第4,931,355号(ラドワンスキー(Radwanski)ら)、同第4,988,560号(メイヤー(Meyer)ら)、同第5,227,107号(ディケンソン(Dickenson)ら)、同第5,382,400号(ピケ(Pike)ら、‘400)、同第5,679,042号(バローナ(Varona))、同第5,679,379号(ファブリカンテ(Fabbricante)ら)、同第5,695,376号(ダッタ(Datta)ら)、同第5,707,468号(アーノルド(Arnold)ら)、同第5,721,180号(ピケ(Pike)ら、‘180)、同第5,877,098号(田中(Tanaka)ら)、同第5,902,540号(クウォク(Kwok))、同第5,904,298号(クウォク(Kwok)ら)、同第5,993,543号(ボダギ(Bodaghi)ら)、同第6,176,955 B1号(ヘインズ(Haynes)ら)、同第6,183,670 B1号(トロビン(Torobin)ら)、同第6,230,901 B1号(緒方(Ogata)ら)、同第6,319,865 B1号(ミカミ(Mikami))、同第6,607,624 B2号(バーリガン(Berrigan)ら、‘624)、同第6,667,254 B1号(トンプソン(Thompson)ら)、同第6,858,297 B1号(シャー(Shah)ら)、及び同第6,916,752 B2号(バーリガン(Berrigan)ら、‘752)、欧州特許第0 322 136 B1号(ミネソタマイニングアンドマニュファクチュアリング社(Minnesota Mining and Manufacturing Co.))、日本国公開特許出願第2001−049560号(日産自動車株式会社(Nissan Motor Co. Ltd.))、同第2002−180331号(チッソ株式会社(Chisso Corp.)、‘331)、及び同第2002−348737号(チッソ株式会社(Chisso Corp.)、‘737)、並びに、米国特許出願公開番号第2004/0097155 A1号(オルソン(Olson)ら)が挙げられる。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】欧州特許第0 322 136 B1号
【特許文献2】日本特許公開番号第2001−049560号
【特許文献3】日本特許公開番号第2002−180331号
【特許文献4】日本特許公開番号第2002−348737号
【特許文献5】米国特許公開番号第2003/0134515 A1号
【特許文献6】米国特許公開番号第2004/0097155 A1号
【特許文献7】米国特許第3,981,650号
【特許文献8】米国特許第4,100,324号
【特許文献9】米国特許第4,118,531号
【特許文献10】米国特許第4,536,440号
【特許文献11】米国特許第4,547,420号
【特許文献12】米国特許第4,588,537号
【特許文献13】米国特許第4,818,464号
【特許文献14】米国特許第4,931,355号
【特許文献15】米国特許第4,988,560号
【特許文献16】米国特許第5,227,107号
【特許文献17】米国特許第5,374,458号
【特許文献18】米国特許第5,382,400号
【特許文献19】米国特許第5,496,507号
【特許文献20】米国特許第5,679,042号
【特許文献21】米国特許第5,679,379号
【特許文献22】米国特許第5,695,376号
【特許文献23】米国特許第5,707,468号
【特許文献24】米国特許第5,721,180号
【特許文献25】米国特許第5,817,584号
【特許文献26】米国特許第5,877,098号
【特許文献27】米国特許第5,902,540号
【特許文献28】米国特許第5,904,298号
【特許文献29】米国特許第5,908,598号
【特許文献30】米国特許第5,993,543号
【特許文献31】米国特許第5,993,943号
【特許文献32】米国特許第6,041,782号
【特許文献33】米国特許第6,176,955 B1号
【特許文献34】米国特許第6,183,670 B1号
【特許文献35】米国特許第6,230,901 B1号
【特許文献36】米国特許第6,319,865 B1号
【特許文献37】米国特許第6,397,458 B1号
【特許文献38】米国特許第6,398,847 B1号
【特許文献39】米国特許第6,409,806 B1号
【特許文献40】米国特許第6,562,112 B2号
【特許文献41】米国特許第6,607,624 B2号
【特許文献42】米国特許第6,660,210号
【特許文献43】米国特許第6,667,254 B1号
【特許文献44】米国特許第6,723,669号
【特許文献45】米国特許第6,743,273 B2号
【特許文献46】米国特許第6,800,226 B1号
【特許文献47】米国特許第6,827,764 B2号
【特許文献48】米国特許第6,858,297 B1号
【特許文献49】米国特許第6,916,752 B2号
【特許文献50】米国特許第6,923,182 B2号
【特許文献51】米国特許第6,998,164 B2号
【発明の概要】
【発明が解決しようとする課題】
【0004】
成形レスピレーターを作製するための既存の方法は一般に、ウェブ又はレスピレーター特性に関する何らかの妥協を伴う。濾過又は強化目的ではなく快適性又は審美上の目的で用いられるいずれかの内側又は外側カバー層については当面は考慮に入れないものとすると、レスピレーターの残りの層(単一又は複数)は、様々な構造を有してよい。例えば、成形レスピレーターは、メルトブロー繊維濾過層を、メルトスパン層又は短繊維のような固いシェル材にラミネートすることよって作製した2層ウェブから形成させてよい。単独で用いる場合、前記濾過層は通常、十分に強固なカップ形状成形レスピレーターの完成品の形成を可能にするのに十分な剛性を有しない。補強シェル材は、望ましくない坪量及び嵩を加えるうえに、ウェブラミネートの未使用部分を再利用できる程度をも制限する。成形レスピレーターは、2成分繊維から作製した単層ウェブから形成させてもよく、この2成分繊維では、濾過機能をもたらす目的で1つの繊維成分を帯電させることもでき、補強機能をもたらす目的でもう一方の繊維成分をその繊維自体に結合することもできる。補強シェル材と同様に、結合繊維成分は、望ましくない坪量及び嵩を加えるうえに、2成分繊維ウェブの未使用部分を再利用できる程度を制限する。結合繊維成分は、2成分繊維ウェブに電荷を持たせる程度も制限する。成形レスピレーターは、異質の結合材(例えば、接着剤)を濾過ウェブに加えることによって形成させてもよく、その結果として、加えられた結合材の化学的又は物理的性質、例えば、加えられたウェブ坪量、並びに再利用性の喪失によって制限が課される。
【0005】
単一成分単層ウェブから成形レスピレーターを形成させるための従来の試みは、典型的には成功してこなかった。成形性、成形後の十分なこわさ、適度に低い圧力低下及び十分な粒子捕捉効率の適切な組合せを得るのは非常に困難であることが明らかになっている。我々は、有用な個人用カップ形状レスピレーターをもたらすように成形できる単一成分単層ウェブを発見した。
【課題を解決するための手段】
【0006】
本発明は、1つの態様では、成形レスピレーターを作製するプロセスを提供するものであり、このプロセスは、
a)混じり合った連続的な単一成分ポリマーマイクロファイバーと、同じポリマー組成の、寸法の大きい方の繊維との二峰性質量分率/繊維寸法混合物を含む単一成分単層不織布ウェブ形成させる工程と、
b)前記ウェブを帯電させる工程と、
c)前記帯電ウェブを成形して、カップ形状多孔質単一成分単層マトリックスを形成させる工程であって、前記マトリックス繊維が、繊維交点の少なくともいくつかの点で相互に結合され、前記マトリックスが、1Nを超えるキングこわさを有する、工程と、を含む。
【0007】
本発明は、別の態様では、混じり合った連続的な単一成分ポリマーマイクロファイバーと、同じポリマー組成の、寸法の大きい方の繊維との帯電二峰性質量分率/繊維寸法混合物を含むカップ形状多孔質単一成分単層マトリックスを含む成形レスピレーターであって、前記繊維が、繊維交点の少なくともいくつかの点で相互に結合され、前記マトリックスが、1Nを超えるキングこわさを有する、成形レスピレーターを提供する。
【0008】
開示されるカップ形状マトリックスは、有益且つ独特の特性を多数有する。例えば、成形レスピレーターの完成品は、単層のみからなるが、マイクロファイバーと寸法の大きい方の繊維との混合物を含むように作製してよい。このマイクロファイバー及び寸法の大きい方の繊維のいずれも、高電荷でよい。寸法の大きい方の繊維は、成形性の向上及びこわさの向上を成形マトリックスにもたらすことができる。マイクロファイバーは、濾過性能の向上といった有益な効果とともに、繊維表面積の増大をウェブにもたらすことができる。寸法の異なるマイクロファイバー及び寸法の大きい方の繊維を用いることによって、濾過及び成形特性を特定の用途に合わせて調整できる。更に、マイクロファイバーウェブの特徴である場合の多い、高い圧力低下(ひいては高い呼吸抵抗)とは対照的に、開示される不織布ウェブの圧力低下は、低く保たれる。それは大きい方の繊維が、マイクロファイバーを物理的に分離及び隔置するためである。マイクロファイバー及び寸法の大きい方の繊維は、相互に連携して、より高い粒子深部捕集能をもたらすと見られる。ラミネートプロセス及びラミネート用装置を排除することによって、及び中間材の数を減らすことによって、製品の複雑性及び無駄が軽減される。本質的に直接的な1つの作業において繊維形成ポリマー材をウェブに転化させる直接ウェブ形成用製造装置を用いることによって、開示されるウェブ及びマトリックスを極めて経済的に作製することができる。また、マトリックス繊維が全て同じポリマー組成を有し、異質の結合材を用いない場合には、マトリックスを完全に再利用できる。
【0009】
本発明のこれら及び他の態様は、以下の「発明を実施するための形態」から明らかになるであろう。しかし、上記要約は、請求された主題に関する限定として決して解釈されるべきでなく、主題は、添付の特許請求の範囲によってのみ規定され、実行の間補正されてもよい。
【図面の簡単な説明】
【0010】
【図1】内側カバー層と外側カバー層との間に配置された変形耐性カップ形状多孔質単層マトリックスを有する使い捨て個人用レスピレーターの一部断面が見える状態の透視図。
【図2】メルトスピニング及び同じポリマー組成の、別々に作製される寸法の小さい方の繊維を用いて、単一成分単層ウェブを作製するための代表的なプロセスの、一部断面が見える状態の概略的側面図。
【図3】メルトスピニング及び同じポリマー組成の、別々に作製される寸法の小さい方の繊維を用いて、単一成分単層ウェブを作製するための代表的なプロセスの、一部断面が見える状態の概略的側面図。
【図4】メルトスピニング及び同じポリマー組成の、別々に作製される寸法の小さい方の繊維を用いて、単一成分単層ウェブを作製するための代表的なプロセスの、一部断面が見える状態の概略的側面図。
【図5】メルトスピニング及び同じポリマー組成の、別々に作製される寸法の小さい方の繊維を用いて、単一成分単層ウェブを作製するための代表的なプロセスの、一部断面が見える状態の概略的透視図。
【図6】寸法の大きい方の繊維及び同じポリマー組成の、別々に作製される寸法の小さい方の繊維のメルトブローイングを用いて、単一成分単層ウェブを作製するための代表的なプロセスの概略的側面図。
【図7】大きい方のオリフィス及び小さい方のオリフィスを複数有する代表的なメルトスピニングダイスピナレットの出口端面図。
【図8】大きい方のオリフィス及び小さい方のオリフィスを複数有する代表的なメルトブローイングダイの出口端面透視図。
【図9】異なる速度で流入するか又は異なる粘度を有する、同じポリマー組成のポリマーが供給されるオリフィスを複数有する代表的なメルトスピニングダイの分解概略図。
【図10】異なる速度で流入するか又は異なる粘度を有する、同じポリマー組成のポリマーが供給されるオリフィスを複数有する代表的なメルトブローイングダイの断面図。
【図11】異なる速度で流入するか又は異なる粘度を有する、同じポリマー組成のポリマーが供給されるオリフィスを複数有する代表的なメルトブローイングダイの出口端面図。
【図12】実行番号2−1M及び2−4Mの成形マトリックスのNaCl貫通率(%)及び圧力低下を示すグラフ。
【図13】実行番号6−8Fの平らなウェブの顕微鏡写真。
【図14】実行番号6−8Mの成形マトリックスの顕微鏡写真。
【図15】実行番号6−8Fの平らなウェブの繊維計数(度数)対繊維寸法(μm)のヒストグラム。
【図16】実行番号6−8Mの成形マトリックスの繊維計数(度数)対繊維寸法(μm)のヒストグラム。
【図17】実行番号7−1Mの成形マトリックスのNaCl貫通率(%)及び圧力の低下を示すグラフ。
【図18】実施例10の一連のウェブの質量分率対繊維寸法(μm)のヒストグラム。
【図19】実施例10の一連のウェブの質量分率対繊維寸法(μm)のヒストグラム。
【図20】実施例10の一連のウェブの繊維計数(度数)対繊維寸法(μm)のヒストグラム。
【図21】実施例10の一連のウェブの質量分率対繊維寸法(μm)のヒストグラム。
【図22】実施例10の一連のウェブの繊維計数(度数)対繊維寸法(μm)のヒストグラム。
【図23】実施例10のいくつかのウェブの変形抵抗DRの値対坪量のプロット。
【図24】実行番号13−1Mの成形レスピレーターのNaCl貫通率(%)及び圧力低下を示すグラフ。
【図25】多層濾過媒体から作製された市販のN95レスピレーターのNaCl貫通率(%)及び圧力低下を示すグラフ。
【図26】実行番号13−1Mの成形マトリックスの顕微鏡写真。
【図27】実行番号13−1Mの成形マトリックスの繊維係数(度数)対繊維寸法(μm)のヒストグラム。
【0011】
図面の様々な図における同様の参照記号は、同様の要素を指し示す。図中の要素は原寸に比例していない。
【発明を実施するための形態】
【0012】
「成形レスピレーター」という用語は、ヒトの少なくとも鼻及び口にフィットする形状に成形されているとともに、ヒトが装着したときに、1つ以上の空中浮遊汚染物質を取り除く用具を意味する。
【0013】
「カップ形状」という用語は、レスピレーターのマスク本体に関して使用するとき、着用したときにマスク本体が着用者の顔から隔置されるようにする形態を有することを意味する。
【0014】
「多孔質」という用語は、透気性を意味する。
【0015】
「単一成分」という用語は、繊維又は繊維群に関して使用するとき、断面にわたって本質的に同じ組成を有する繊維を意味し、単一成分には、ブレンド(即ちポリマー合金)又は添加物含有材が含まれ、その中では、繊維の断面及び長さ全体にわたって、均一組成の連続相が広がっている。
【0016】
「同じポリマー組成の」という用語は、本質的に同じ反復型分子ユニットを有するが、分子量、メルトインデックス、製造方法、市販形態等の点で異なる場合のあるポリマーを意味する。
【0017】
「寸法」という用語は、繊維に関して使用するとき、円形断面を有する繊維の繊維直径、又は非円形断面を有する繊維を横切るように構築されると思われる最長断面弦の長さを意味する。
【0018】
「連続的」という用語は、繊維又は繊維群に関して使用するとき、本質的に無限のアスペクト比(即ち、例えば、少なくとも10,000以上の長さ対寸法比)を有する繊維を意味する。
【0019】
「有効繊維直径」という用語は、繊維群に関して使用するとき、円形又は非円形であるいずれかの断面形状を持つ繊維のウェブに関して、デービーズ,C.N.(Davies, C. N.)著「空中に浮遊する埃及び粒子の分離(The Separation of Airborne Dust and Particles)」(ロンドンの英国機械工学学会(Institution of Mechanical Engineers,London)、会報1B、1952年)に記載の方法に従って求めた値を意味する。
【0020】
「モード」という用語は、質量分率対繊維寸法(μm)のヒストグラム、又は繊維計数(度数)対繊維寸法(μm)のヒストグラムに関して使用するとき、その局所ピークよりも1及び2μm小さい繊維寸法、並びにその局所ピークよりも1及び2μm大きい繊維寸法の高さよりも高さが大きい局所ピークを意味する。
【0021】
「二峰性質量分率/繊維寸法混合物」という用語は、質量分率対繊維寸法(μm)のヒストグラムであって、少なくとも2つのモードを示すヒストグラムを有する繊維の一群を意味する。二峰性質量分率/繊維寸法混合物は、2つ以上のモードを有してよく、例えば、3つのモード又は3つ以上のモードを持つ質量分率/繊維寸法混合物でもよい。
【0022】
「二峰性繊維計数/繊維寸法混合物」という用語は、少なくとも2つのモードを示す繊維計数(度数)対繊維寸法(μm)のヒストグラムを有する繊維の一群を意味し、前記モードに対応する繊維寸法は、それよりも小さい繊維寸法の少なくとも50%の差がある。二峰性繊維計数/繊維寸法混合物は、2つ以上のモードを有してよく、例えば、3つのモード又は3つ以上のモードを持つ繊維計数/繊維寸法混合物でもよい。
【0023】
「結合」という用語は、繊維又は繊維群に関して使用するとき、しっかりと合わせてくっつけることを意味し、ウェブが通常の取り扱いを経るときも、結合された繊維は一般に分離しない。
【0024】
「不織布ウェブ」という用語は、繊維のもつれ又は点結合を特徴とする繊維ウェブを意味する。
【0025】
「単層マトリックス」という用語は、繊維の二峰性質量分率/繊維寸法混合物を含む不織布ウェブに関して使用するとき、(繊維寸法に関する場合を除き)ウェブの断面全体にわたって類似の繊維の概ね一様な分布を有するとともに、(繊維寸法に関する場合)ウェブの断面全体にわたって存在するそれぞれのモード母集団を示す繊維を有することを意味する。このような単層マトリックスは、ウェブの断面全体にわたって、繊維寸法の概ね一様な分布を有してよく、或いは、例えば、寸法の大きい方の繊維の圧倒的多数がウェブの主要面の1つに隣接し、寸法の小さい方の繊維の圧倒的多数がウェブの他方の主要面に隣接するなどのように、繊維寸法の深度勾配を有してよい。
【0026】
「フィラメントを細化して繊維にする」という用語は、フィラメントのセグメントを、より長く、より小さな寸法のセグメントに変化させることを意味する。
【0027】
「メルトスパン」という用語は、不織布ウェブに関して使用するとき、低粘度融解物を複数のオリフィスから押し出してフィラメントを形成させ、そのフィラメントを空気又は他の流体で急冷して、フィラメントの少なくとも表面を固化させ、少なくとも部分的に固化したフィラメントを空気又は他の流体と接触させてフィラメントを細化して繊維にし、細化した繊維の層を収集することによって形成されるウェブを意味する。
【0028】
「メルトスパン繊維」という用語は、ダイから出て加工ステーションを通った繊維を意味し、この加工ステーションでは、繊維を恒久的に延伸させて、その繊維内のポリマー分子を、繊維の長手方向軸と揃うように恒久的に配向させる。このような繊維は、本質的に連続的であり、このような繊維の塊から1本の完全なメルトスパン繊維を取り出すことが通常は不可能であるほど十分に絡まっている。
【0029】
「配向された」という用語は、ポリマー繊維又はそのような繊維の一群に関して使用するとき、細化チャンバ又は機械的延伸マシンのような装置を繊維が通った結果、繊維のポリマー分子の少なくとも一部が、繊維の縦方向に揃っていることを意味する。繊維内の配向の存在は、複屈折測定及び広角X線回折を含む様々な手段によって検出できる。
【0030】
「公称融点」という用語は、最高振幅の融解ピークが発生する温度として、ポリマーの融解領域に最高値が1つしかない場合に、又1つ以上の融点を示す1つ以上の最高値がある場合(例えば、2つの異なる結晶相の存在が原因)には、その領域における第2の昇温時の総熱流束型示差走査熱量測定(DSC)プロットのピーク最大値を意味する。
【0031】
「メルトブロー」という用語は、不織布ウェブに関して使用するとき、繊維形成材を複数のオリフィスから押し出してフィラメントを形成させる一方で、そのフィラメントを空気又は他の細化流体に接触させてフィラメントを細化して繊維にし、その後に、細化した繊維の層を収集することによって形成されるウェブを意味する。
【0032】
「メルトブロー繊維」という用語は、融解状態の繊維形成材をダイのオリフィスから高速気流の中に押し出すことによって作製される繊維を意味し、その押し出された材料は、まず細化されてから、繊維の塊として固化される。メルトブロー繊維は、非連続的であると報告されたことも時折あったが、この繊維は一般に、このような繊維の塊から1本の完全なメルトブロー繊維を取り出すか、又は1本のメルトブロー繊維を始めから終わりまでトレースすることが通常は不可能であるほど十分に長く、且つ絡まっている。
【0033】
「マイクロファイバー」という用語は、10μm以下の中位径(顕微鏡を用いて求めたもの)を有する繊維を意味し、「超極細マイクロファイバー」は、2μm以下の中位径を有するマイクロファイバーを意味し、「サブミクロンマイクロファイバー」は、1μm以下の中位径を有するマイクロファイバーを意味する。本明細書において、特定の種類のマイクロファイバーの束、群、アレイ等、例えば「サブミクロンマイクロファイバーのアレイ」について言及するとき、それは、そのアレイ内のマイクロファイバーの母集団全体、又は、マイクロファイバーの単一の束の母集団全体を意味し、アレイ又は束の、サブミクロンの寸法を持つ部分のみを意味するわけではない。
【0034】
「別々に作製される寸法の小さい方の繊維」という用語は、繊維形成装置(例えばダイ)から生成された、寸法の小さい方の繊維のストリームを意味し、前記繊維形成装置は、前記ストリームが、最初は、寸法の大きい方の繊維のストリームから空間的に(例えば約25mm(1インチ)以上の距離で)分離しているが、飛翔中に、寸法の大きい方の繊維のストリームに結合して、その中に分散することになるように、配置される。
【0035】
「帯電した」という用語は、繊維群に関して使用するとき、7cm/秒の面速度におけるフタル酸ジオクチル貫通率(%DOP)について評価した際、1mmのベリリウムフィルターの付いた、吸収線量20グレイ、80KVpのX線への暴露後に、品質係数QF(下で説明する)の少なくとも50%減を示す繊維を意味する。
【0036】
「自立した」という用語は、単層マトリックスに関して使用するとき、当該マトリックスを含む成形レスピレーターが、適度に滑らかな暴露面をもたらすために内側又は外側カバーウェブを含んでよいか、又はレスピレーターの特定の部分を増強するために溶接線、折り目、又はその他の境界線を備えてよくても、マトリックスが、ワイヤー、プラスチックメッシュ、又はその他の強化材の隣接補強層を備えないことを意味する。
【0037】
「キングこわさ」という用語は、ノースカロライナ州グリーンスボロ(Greensboro)のJ.A.キング&カンパニー(J. A. King & Co.,)製のキングこわさ試験器を用いたとき、55mmの半径及び310cmの体積を有する半球形成形型の、噛み合う雄型半分と雌型半分との間で、試験用カップ形状マトリックスを形成させることによって作製したカップ形状成形レスピレーターに、直径2.54cm、長さ8.1mの平面プローブを押し付けるのに要する力を意味する。この成形マトリックスは、最初に冷却させた後に、評価のために、試験器プローブの下に配置される。
【0038】
図1を参照すると、一部断面が見える状態で、カップ形状の個人用使い捨てレスピレーター1が示されている。レスピレーター1は、内側カバーウェブ2、単一成分濾過層3、及び外側カバー層4を備える。溶接縁部5は、これらの層をつなぎ合わせ、面シール領域をもたらして、レスピレーター1の縁部を通り抜ける漏出物を減少させる。例えばアルミニウムのような金属製、又はポリプロピレンのようなプラスチック製のしなやかな極軟ノーズバンド6によって、漏出物を更に減少させてよい。また、レスピレーター1は、タブ8を用いて締められる調節可能なヘッド及びネックストラップ7、並びに呼気バルブ9も備える。単一成分濾過層2を除き、レスピレーター1の構造に関する更なる詳細は、当業者にとっては馴染みが深いであろう。
【0039】
開示される単一成分単層ウェブは、マイクロファイバーと寸法の大きい方の繊維との二峰性質量分布/繊維寸法混合物を含む。前記マイクロファイバーは、例えば、約0.1〜約10μm、約0.1〜約5μm、又は約0.1〜約1μmの寸法範囲を有してよい。前記の寸法の大きい方の繊維は、例えば、約10〜約70μm、約10〜約50μm、又は約15〜約50μmの寸法範囲を有してよい。質量分率対繊維寸法(μm)のヒストグラムは、例えば、約0.1〜約10μm、約0.5〜約8μm、若しくは約1〜約5μmのマイクロファイバーのモード、並びに10μm超、約10〜約50μm、約10〜約40μm、若しくは約12〜約30μmの寸法の大きい方の繊維のモードを有してよい。開示されるウェブは、二峰性繊維計数/繊維寸法混合物も有してよく、その繊維計数(度数)対繊維寸法(μm)のヒストグラムは、少なくとも2つのモードを示し、それらのモードに対応する繊維寸法は、寸法の小さい方の繊維の少なくとも50%、少なくとも100%、又は少なくとも200%の差がある。マイクロファイバーは、例えば、ウェブの繊維表面積の少なくとも20%、少なくとも40%、又は少なくとも60%をもたらしてもよい。ウェブは、様々な有効繊維直径(EFD)値、例えば約5〜約40μm、又は約6〜約35μmのEFDを有してよい。ウェブは、様々な坪量、例えば、約60〜約300g/m、又は約80〜約250g/mの坪量も有してよい。平ら(即ち未成形)であるとき、ウェブは、様々なガーレーこわさ値、例えば、少なくとも約500mg、少なくとも約1000mg、又は少なくとも約2000mgのガーレーこわさを有してよい。13.8cm/秒の面速度でNaClの試験粒子を用いて評価したとき、平らなウェブは、好ましくは少なくとも約0.4mm−1O、より好ましくは少なくとも約0.5mm−1Oの初期濾過品質係数QFを有する。
【0040】
成形マトリックスは、1N超、より好ましくは少なくとも2N超のキングこわさを有する。大まかな推定としては、半球形の成形マトリックスサンプルを冷まし、カップ側を下にして剛体面の上に配置して、人差し指を用いて垂直に押し下げ(即ち、くぼませ)てから、圧力を解放させた場合、十分なキングこわさを有さないマトリックスは、くぼんだままになる傾向があり、十分なキングこわさを有するマトリックスは、元々の半球形の形態にスプリングバックする傾向がある。下の実施例で示す成形マトリックスのいくつかは、直径25.4mmのポリカーボネートテストプローブが装備されているモデルTA−XT2i/5テキスチャーアナライザー(テクスチャーテクノロジーズ社(Texture Technologies Corp.)製)を用いて変形抵抗(DR)を測定することによって評価又は代わりに評価した。成形マトリックスは、顔面側を下にして、テキスチャーアナライザーの試料台の上に配置する。変形抵抗DRは、25mmの距離で、試験用成形マトリックスの中心に対してポリカーボネートプローブを10mm/秒で下向きに進めることによって測定する。5つの試験用成形マトリックスサンプルを用いて、最大(ピーク)力を記録し、その値を平均して変形抵抗DRを定める。変形抵抗DRは、好ましくは少なくとも約75g、より好ましくは少なくとも約200gである。我々は、キングこわさ値を変形抵抗値に変換するための式を認識していないが、低こわさの成形マトリックスを評価するときには、キングこわさ試験が変形抵抗試験よりも多少感度が良いことを確認できる。
【0041】
85リットル/分で流れる0.075μmの塩化ナトリウムエアゾールに暴露されると、開示される成形レスピレーターは、好ましくは196Pa(20mm HO)未満、より好ましくは98Pa(10mm HO)未満の圧力低下を有する。更に上記のように評価すると、成形レスピレーターは、好ましくは約5%未満、より好ましくは約1%未満のNaCl貫通率を有する。
【0042】
図2〜図9は、好ましい単一成分単層ウェブを作製する目的で用いてよい様々なプロセス及び装置を示す。図2〜図5に示すプロセスでは、メルトスピニングダイから出る寸法の大きい方のメルトスパン繊維と、メルトブローイングダイから出る寸法の小さい方のメルトブロー繊維とを混合させる。図6に示すプロセスでは、2つのメルトブローイングダイから出る寸法の大きい方のメルトブロー繊維と寸法の小さい方のメルトブロー繊維とを混合させる。図7に示すダイは、単一の押出成形機から液化繊維形成材が供給されるであろう単一のメルトスピニングダイから、寸法の大きい及び寸法の小さいメルトスパン繊維を生成させる。図8に示すダイは、単一の押出成形機から液化繊維形成材が供給されるであろう単一のメルトブローイングダイから、寸法の大きい及び寸法の小さいメルトブロー繊維を生成させる。図9に示すダイは、2つの押出成形機から液化繊維形成材が供給されるであろう単一のメルトスピニングダイから、寸法の大きい及び寸法の小さいメルトスパン繊維を生成させる。図10及び図11に示すダイは、2つの押出成形機から液化繊維形成材が供給されるであろう単一のメルトブローイングダイから、寸法の大きい及び寸法の小さいメルトブロー繊維を生成させる。
【0043】
図2を参照すると、寸法の大きい方の繊維を形成させるためにメルトスピニングを利用し、同じポリマー組成の、別々に作製される寸法の小さい方の繊維(例えばマイクロファイバー)を形成させるためにメルトブローイングを利用する、成形可能な単一成分単層二峰性質量分率/繊維寸法ウェブを作製するためのプロセスが、概略的側面図で示されている。このプロセス及びこのプロセスで作られる不織布ウェブに関する更なる詳細は、本発明と同じ日に出願された、「結合されたメルトスパン繊維中に分散したマイクロファイバーを含む繊維ウェブ(FIBROUS WEB COMPRISING MICROFIBERS DISPERSED AMONG BONDED MELTSPUN FIBERS)」という表題の米国特許出願番号(代理人整理番号第6092US002号)に示されており、この特許の開示全体は、参照により本明細書に組み込まれる。図2に示されている装置では、繊維形成材がメルトスピニング押出ヘッド10に運ばれる(図示されているこの装置では、ポリマー繊維形成材をホッパー11の中に取り込み、その材料を押出成形機12の中で融解させ、ポンプ13を通じてその融解材を押出ヘッド10の中に送り込むことによって、運ばれる)。ペレット状又はその他の粒子形状の固体ポリマー材が最もよく使われており、液体のポンプ注入可能な状態に融解される。
【0044】
押出ヘッド10は、従来のスピナレット又はスピンパックでよく、一般に、規則的なパターン、例えば、直列に配列された複数のオリフィスを備える。繊維形成液からなるフィラメント15は、押出ヘッド10から押し出され、加工チャンバ、即ち細化装置16に運ばれる。この細化装置は、例えば、米国特許第6,607,624 B2号(バーリガン(Berrigan)ら)に示されているような可動壁付きの細化装置でよく、その壁は、矢印50の方向での自由且つ容易な動作のために実装されている。押し出されたフィラメント15が細化装置16に達するまでに進む距離17は、フィラメント15が暴露される条件と同様に、変化する可能性がある。押し出されたフィラメント15の温度を低下させるために、押し出されたフィラメントには、空気又は他の気体18の急冷ストリームを提供してよい。或いは、繊維の延伸を容易にするために、前記の空気又は他の気体のストリームを加熱してもよい。空気又は他の流体の1つ以上のストリームが存在してもよく、例えば、フィラメントストリームを横切って吹く第1の空気ストリーム18aは、押出の間に放出される望ましくない気体材料又は煙霧を除去することができ、第2の急冷空気ストリーム18bは、所望される主要な温度低下を達成する。更なる急冷ストリームを用いてよく、例えば、所望のレベルの急冷を実現させるために、ストリーム18bそれ自体が、1つ以上のストリームを含むことができる。用いられるプロセス又は望まれる最終製品の形状に応じて、急冷空気は、押し出されたフィラメント15が細化装置16に達する前に、押し出されたフィラメント15を固化させるのに十分であるようにしてよい。別のケースでは、押し出されたフィラメントは、細化装置に入るとき、依然として軟化又は融解状態にある。或いは、押出ヘッド10と細化装置16の間の周囲空気又は他の流体が、細化装置に入る前の押出フィラメントの変化のための媒体であり得るような場合には、急冷ストリームは使用されない。
【0045】
連続的なメルトスパンフィラメント15は、細化装置16内で配向され、寸法の大きい方の繊維(即ち、ウェブに加えられることになる、寸法の小さいメルトスパン繊維と比べて大きい繊維のことであり、細化ストリーム501内の繊維は、寸法の点では、押出ヘッド10から押し出されたフィラメントよりも小さい)のストリーム501としてコレクター19に誘導される。細化装置16とコレクター19との間の経路では、寸法の大きい方の繊維の細化ストリーム501は、メルトブローイングダイ504から発せられる寸法の小さいメルトブロー繊維のストリーム502によって捕らえられ、寸法の大きい方の繊維及び寸法の小さい方の繊維からなる、結合した2モデル質量分率/繊維寸法ストリーム503が形成される。結合したストリームは、配向された連続的な寸法の大きい方の繊維であって、その中に分散している寸法の小さい方のメルトブロー繊維を有する繊維を含む自立したウェブ20として、コレクター19の上に堆積されることになる。コレクター19は一般に多孔質であり、コレクター上への繊維の堆積を助けるために、コレクターの下方に脱気装置114を配置することができる。細化装置の出口とコレクターとの間の距離21は、異なる効果を得るために変えてよい。また、収集の前に、押し出されたフィラメント又は繊維は、図2に示されていない多数の追加の加工工程(例えば、更なる延伸、噴霧等)を経てもよい。収集後、収集された塊20を、下に更に詳細に記載されているように加熱及び急冷し、カレンダー、エンボス加工ステーション、ラミネーター、カッター等のような別の装置に運んでよく、或いは、更なる処理なしに単に巻き取るか、又は保管用ロール23に変換してよい。
【0046】
開示されるプロセスで用いられる、寸法の小さい方のメルトブロー繊維(例えば、マイクロファイバー)を生成させるために、メルトブローイングダイ504を既知の構造のものにできるとともに、既知の方法で作動させることができる。基本的なメルトブローイング方法及び装置の初期の記載は、インダストリアルエンジニアリングケミストリー(Industrial Engineering Chemistry)48巻、1342頁以下(1956年)のウェンテ、ヴァン・A.(Wente, Van A.)著「超微細熱可塑性繊維(Superfine Thermoplastic Fibers)」、又は1954年5月25日発行の、ウェンテ、ヴァン・A.(Wente, Van A.)、ブーン、C.D.(Boone, C.D.)、及びフラハーティ、E.L.(Fluharty, E.L.)による「超微細有機繊維の製造(Manufacture of Superfine Organic Fibers)」と題された海軍研究試験所(Naval Research Laboratories)の報告書番号4364(Report No. 4364)に見られる。典型的なメルトブローイング装置は、ホッパー506及び液化繊維形成材をダイ504に供給する押出成形機508を備える。図3を参照すると、ダイ504は、入口512及びダイキャビティ514(これらを通じて、液化繊維形成材が、ダイの前方末端部にわたって一列に配列されたダイオリフィス516に送られるとともに、これらを通じて、液化繊維形成材が押し出される)、並びに気体、典型的には熱風を超高速で強制通風する共働気体オリフィス518を備える。高速の気体ストリームを引き出し、押し出された繊維形成材を細化し、その結果、繊維形成材が(様々な程度の固さまで)固化して、寸法の小さい方のメルトブロー繊維のストリーム502を、寸法の大きい方のメルトスパン繊維のストリーム501との結合点へ移動中に形成させる。
【0047】
サブミクロン寸法を含め、非常に小さい寸法の繊維をメルトブローイングする方法は既知であり、例えば、米国特許第5,993,943号(ボダギ(Bodaghi)ら)の、例えば、8段目11行目〜9段落目25行目を参照されたい。例えば、米国特許第6,743,273 B2号(チャン(Chung)ら)及び同第6,800,226 B1号(ガーキング(Gerking))に記載されているように、寸法の小さい方の繊維を形成させるその他の技法を用いることもできる。
【0048】
メルトブローイングダイ514は、好ましくは、寸法の大きい方のメルトスパン繊維による寸法の小さい方のメルトブロー繊維の捕捉を最も良い状態で実現させるために、寸法の大きい方のメルトスパン繊維のストリーム501の近くに配置され、メルトブローイングダイをメルトスパンストリームの近くに配置することは、サブミクロンマイクロファイバーの捕捉にとって特に重要である。例えば、図3に示されているように、ダイ504の出口からメルトスパンストリーム501の中心線までの距離520は、好ましくは約5〜25cm(2〜12インチ)、より好ましくは約15若しくは25cm(6若しくは8インチ)、又は、非常に小さいマイクロファイバーの場合にはそれ未満である。また、メルトスパン繊維のストリーム501を、図3に示されているように垂直に配置するとき、寸法の小さい方のメルトブロー繊維のストリーム502は好ましくは、水平線に対して鋭角θで配置して、メルトブローストリーム502のベクトルをメルトスパンストリーム501と方向的に揃えるようにする。好ましくは、θは約0〜約45度、より好ましくは約10〜約30度である。メルトブローストリームとメルトスパンストリームとの結合点からコレクター19までの距離522は典型的には、少なくとも約10cm(4インチ)であるが、絡み過ぎを回避するために、及びウェブの均一性を保つために、約40cm(16インチ)未満である。メルトスパンストリーム501の運動量を低下させて、それによって、メルトブローストリーム502がメルトスパンストリーム501と更にしっかり結合するようにするには、距離524は一般に、少なくとも15cm(6インチ)で十分である。メルトブロー繊維及びメルトスパン繊維のストリームが結合すると、メルトブロー繊維はメルトスパン繊維中に分散することになる。かなり均一な混合物は、距離520、角度θ、並びに結合ストリームの質量及び速度の調節のような特定のプロセス工程によってz次元内の分布を制御することによって、特にx−y(面内ウェブ)の次元内で、得られる。結合ストリーム503は、コレクター19まで進み、コレクター19で、ウェブ状の塊20として収集される。
【0049】
メルトスパン繊維及びメルトブロー繊維の状態に応じて、収集中に、これらの繊維間で何らかの結合が生じてよい。しかし、所望の程度の密着性及びこわさを有するマトリックスをもたらして、ウェブを更に取り扱いやすく、且つマトリックス内のメルトブロー繊維を更にしっかりと保持できるものにするために、収集されたウェブ内のメルトスパン繊維間の更なる結合が必要になるであろう。しかし、ウェブの成形マトリックスへの形成を容易にするためには、過度な結合は回避しなければならない。
【0050】
点結合プロセスで加えられる熱及び圧力を用いるか、又は平滑なカレンダーロールによる従来の結合技法を用いることができるが、このようなプロセスは、繊維の望ましくない変形又はウェブの圧縮を引き起こす場合がある。メルトスパン繊維を結合させるための更に好ましい技法は、本発明と同じ日に出願された、「軟化可能な配向半結晶質ポリマー繊維を含む結合不織繊維ウェブ、並びに前記ウェブを作製するための装置及び方法(BONDED NONWOVEN FIBROUS WEBS COMPRISING SOFTENABLE ORIENTED SEMICRYSTALLINE POLYMERIC FIBERS AND APPARATUS AND METHODS FOR PREPARING SUCH WEBS)」という表題の米国特許出願番号(代理人整理番号第60632US002号)に教示されており、この特許の開示全体は、参照により本明細書に組み込まれる。要約すると、本発明に適用する場合、この好ましい技法は、配向半結晶質メルトスパン繊維であって、非晶質を特徴とする相を含むとともに、同じポリマー組成のメルトブロー繊維と混合されたメルトスパン繊維の収集されたウェブに対して、制御加熱及び急冷作業を行うことを伴い、この作業は、a)メルトスパン繊維の全てを融解させないほどの短い時間の間(即ち、当該繊維の個別の繊維性質を喪失させ、好ましくは、加熱時間は、繊維断面の著しい変形をもたらさないほどの短い時間である)、メルトスパン繊維の、非晶質を特徴とする相を軟化させるのに十分に高い温度(一般的には、当該繊維の材料の融解開始温度よりも高い温度)まで加熱した流体を、ウェブに強制的に通すこと、及びb)軟化した繊維を固化させる(即ち、熱処理中に軟化した繊維の、非晶質を特徴とする相を固化させる)のに十分な熱容量を有する流体を、ウェブに強制的に通すことによって、ウェブを超急冷することを含む。好ましくは、ウェブを通る流体は気体ストリームであり、好ましくは、前記流体は空気である。この文脈においては、流体又は気体ストリームをウェブに「強制的に」通すとは、標準室内圧力のほかに、力を流体に加えて、ウェブを通り抜けるように流体を進ませることを意味する。好ましい実施形態では、開示される急冷工程は、我々が急冷流ヒーター又は更に単純には急冷ヒーターと呼ぶ装置に、コンベヤー上のウェブを通すことを含む。本明細書に図解されているように、このような急冷流ヒーターは、加圧下でヒーターから出て、ウェブの片側と交わる集束型又はナイフ状の加熱気体(典型的には空気)ストリームをもたらすとともに、ウェブの反対側の脱気装置が、加熱気体をウェブに引き込むのを助け、一般に、加熱気体は、ウェブの幅全体にわたって広がる。この加熱ストリームは、従来の「空中通過式結合器」又は「ホットエアナイフ」からの加熱ストリームによく似ているが、この加熱ストリームには、流れを調節する特殊な制御を施して、加熱気体が均一、且つ制御された割合で、ウェブの幅全体に分配され、メルトスパン繊維を有効に高い温度まで徹底的且つ均一に素早く加熱及び軟化させるようにする。加熱後、直ちに強制的な急冷を行い、精製された形態的形状で繊維を急激に凍結させる(「直ちに」とは、同じ作業の一部であること、即ち、次の加工工程の前に、ウェブをロールに巻きつけるときに生じるような、保管による中断時間がないことを意味する)。好ましい実施形態では、脱気装置は、加熱直後に冷却気体又はその他の流体、例えば周囲空気をウェブに送り込んで、それによって繊維を超急冷させるように、加熱気体ストリームからウェブの下方に配置される。加熱の長さを、例えば、ウェブの移動経路沿いの加熱領域の長さによって、及びウェブが加熱領域を通って冷却領域まで移動する速度によって制御して、メルトスパン繊維全体を融解させることなく、非晶質を特徴とする相を意図した通りに融解/軟化させる。
【0051】
図2、図4及び図5を参照すると、急冷流加熱技法を実行するための1つの代表的な方法では、収集されたメルトスパン繊維及びメルトブロー繊維の塊20を、可動コレクター19によって、コレクター19の上方に取り付けられた制御加熱装置200の下に運ぶ。代表的な加熱装置200は、上部プレナム202及び下部プレナム203に分けられたハウジング201を備える。上部及び下部プレナムは、一連のホール205によって穴が開けられたプレート204で隔てられており、ホール205は典型的には、寸法及び間隔の点で均一である。気体、典型的には空気が、導管207から開口部206を通じて上部プレナム202に供給され、プレート204は、気流分配手段として機能して、上部プレナムに供給された空気が、プレートを通って下部プレナム203に到達するときに、非常に均一に分配されるようにする。その他の有用な気流分配手段としては、フィン、バッフル、マニホルド、エアダム、スクリーン、又は焼結プレート、即ち、空気分配を均一にする装置が挙げられる。
【0052】
図示した加熱装置200では、下部プレナム203の底壁208が、細長いスロット209と一体となって形成されており、スロット209を通じて、下部プレナムからの熱風の細長い又はナイフ状のストリーム210が、加熱装置200の下方のコレクター19の上を進む塊20の上に吹き出される(塊20及びコレクター19は、図5では、部分的に切断された状態で示されている)。脱気装置114は好ましくは、加熱装置200のスロット209の下に横たわるほど十分に延びている(即ち、以下で論じられるように、ウェブの下方で、加熱ストリーム210を超えて、及び220が付された区域全体にわたって距離218まで延びている)。従って、プレナム内の熱風は、プレナム203の中では内圧下にあり、スロット209では更に、脱気装置114の排気真空下にある。排気力を更に制御するために、コレクター19の下に穿孔プレート211を配置して、収集された塊20の幅又は加熱区域にわたって熱風のストリーム210が所望の程度まで広まって、収集された塊の考え得る低密度部分から流れ込むのを抑制するようにする一種の逆圧又は気流制限手段をもたらしてよい。その他の有用な気流制限手段としては、スクリーン又は焼結プレートが挙げられる。所望の制御を実現させるために、プレート211内の開口部の数、寸法及び密度は、区域によって変えてよい。大量の空気が繊維形成装置の中を通るとともに、繊維が領域215内でコレクターに到達したら、その大量の空気を排除しなければならない。十分な空気は、領域216でウェブ及びコレクターの中を通って、ウェブを加工空気の様々なストリームの下の適切な位置に保持する。空気を処理してウェブに通すようにするには、十分な開口部が、加熱領域217の下のプレート内に必要になる一方で、空気が均一に分配されるようにするには、十分な抵抗がもたらされる。前記塊の加熱区域全体にわたって、温度−時間条件を制御しなければならない。処理される塊の幅にわたって、ウェブを通る熱風のストリーム210の温度が5℃の範囲内、好ましくは2又は更には1℃以内にあるとき(熱風の温度は、作業の利便的な制御のために、ハウジング201への熱風の入口点で測定する場合が多いが、熱電対によって、収集されたウェブの近くで測定することもできる)、我々は最高の結果を得た。これに加えて、加熱装置は、例えば、ヒーターのオン、オフを素早く反復させて過剰加熱又は加熱不足を回避することによって、時間が経過してもストリーム内で安定した温度を維持するように動作させる。加熱を更に制御するために、熱風のストリーム210を適用した直後に、塊20に急冷処置を施す。このような急冷処置は一般に、制御された熱風ストリーム210から塊20が離れた直後に、周囲空気を塊20の上及び中に引き込むことによって、実現できる。図4の番号220は、ウェブが熱風ストリームを通った後に脱気装置114によって周囲空気がウェブを通るように引き込まれる区域を示す。実際には、このような空気を、ハウジング201の基部の下、例えば、図4に記載されている区域220aに引き込んで、ウェブが熱風ストリーム210から離れたほぼ直後に、その空気が、ウェブに達するようにできる。更に、塊20全体の徹底的な冷却及び急冷を確実に行うために、脱気装置114は、コレクター19に沿って、距離218の分だけ加熱装置200を超えて延びていてよい。簡潔にする目的で、加熱急冷複合装置を冷却流ヒーターと呼ぶ。
【0053】
塊20に通す熱風の量及び温度は、寸法の大きい方の繊維の形態の適切な修正につながるように選択する。詳細には、寸法の大きい方の繊維を加熱して、a)繊維の断面内のかなりの分子部分、例えば、繊維の非晶質を特徴とする相の融解/軟化を引き起こすが、b)別の重要な相、例えば、結晶を特徴とする相の完全な融解を引き起こさないように、前記の量及び温度を選択する。我々が「融解/軟化」という用語を使うのは、非晶質ポリマー材が典型的に、融解というよりは軟化する一方で、非晶質を特徴とする相の中にある程度存在するであろう結晶質材は典型的には融解するためである。これは、相に関係なく、単に、繊維内の低次微結晶の融解をもたらす加熱として記載することもできる。寸法の大きい方の繊維は総じて、未融解のままであり、例えば、この繊維は一般に、処置前に有していたものと同じ繊維形状及び寸法を保持する。結晶を特徴とする相のかなりの部分は、加熱処理後も以前の結晶構造を保持すると理解される。識別可能な、非晶質を特徴とする相及び結晶を特徴とする相を生成させるために、結晶構造を既存の結晶構造に加えた可能性があり、或いは高次繊維のケースでは、結晶構造を除去した可能性がある。
【0054】
急冷の1つの目的は、ウェブ内に含まれる寸法の小さい方の繊維中で、望ましくない変化が発生する前に、熱を除去することである。急冷の別の目的は、ウェブ及び寸法の大きい方の繊維から熱を素早く除去し、それによって、寸法の大きい方の繊維中で後に発生することになる結晶化又は分子配向の程度及び性質を制限することである。融解/軟化状態から固化状態に超急冷することによって、非晶質を特徴とする相は凍結して、更に純化した結晶形状になるとともに、寸法の大きい方の繊維の軟化、又は反復可能な軟化に干渉する可能性がある低次分子材が減ると理解される。このような目的のために、望ましくは、寸法の大きい方の繊維の公称融点よりも少なくとも50℃低い温度の気体によって塊20を冷却し、また、急冷気体を望ましくは、少なくとも約1秒間適用する。いずれにしても、急冷気体又はその他の流体は、繊維を急速に固化させるのに十分な熱容量を有する。
【0055】
開示される急冷流ヒーターの利点は、開示されるウェブ内に保持される、寸法の小さい方のメルトブロー繊維が、全て寸法の小さい方の繊維からなる(例えば、全てがマイクロファイバーからなる)層の中に存在する場合よりも、圧縮から保護される点である。配向されたメルトスパン繊維は一般に、寸法の小さい方のメルトブロー繊維よりも大きいうえに、こわさ及び強度も高く、メルトブロー繊維と圧力を加える物体との間にメルトスパン繊維が存在することによって、寸法の小さい方のメルトブロー繊維に圧潰力が加わるのを制限する。特に、非常に脆弱である可能性があるサブミクロン繊維の場合には、寸法の大きい方の繊維によってもたらされる圧縮又は圧潰に対する耐性の増大は、重大な利益を与える。例えば、巨大な保管用ロールに巻き取ることによって、又は2次加工において、開示されるウェブに圧力がかかったときでさえも、ウェブは、圧縮に対する優れた耐性を発揮し、この耐性がなければ、このようなウェブから作製されるフィルターの圧力低下の増大、及び低い捕集性能を招く可能性がある。寸法の大きい方のメルトスパン繊維の存在は、ウェブの強度、こわさ及び取り扱い特性のような他の特性も加える。
【0056】
寸法の小さい方のメルトブロー繊維は、結合作業中に、実質的に融解したり、繊維構造を喪失したりしないが、元来の繊維寸法を有する、寸法の小さい方の別個の繊維のままであることが分かっている。メルトブロー繊維は、メルトスパン繊維よりも低い異なる結晶性形態を有し、我々は、結合及び急冷作業中にウェブに加えられる限定的な熱は、メルトブロー繊維の融解が生じる前に、メルトブロー繊維内において結晶成長を行っているときに消耗されると理論付ける。この理論が正しいか否かにかかわらず、寸法の小さい方のメルトブロー繊維の実質的な融解又は変形なしに、メルトスパン繊維が結合することは、実際に発生するとともに、二峰性質量分率/繊維寸法ウェブの完成品の特性にとって有益である。
【0057】
図6を参照すると、メルトブローイングを利用して、寸法の大きい方の繊維、及び同じポリマー組成の、別々に作製される寸法の小さい方の繊維の双方を形成させて、成形可能な単一成分単層二峰性質量分率/繊維寸法ウェブを作製するための別のプロセスが、概略的側面図で示されている。図6の装置では、2つのメルトブローイングダイ600及び602を用いる。ダイ600には、ホッパー604、押出成形機606及び導管608から送り込まれる液化繊維形成材が供給される。ダイ602にも、任意の導管610を介して押出成形機606から送り込まれる液化繊維形成材を供給してもよい。或いは、ダイ602には、任意のホッパー612、押出成形機614及び導管616から送り込まれる、同じポリマー組成の液化繊維形成材を別に供給してもよい。ダイ600から出る寸法の大きい方の繊維のストリーム618、及びダイ602から出る寸法の小さい方の繊維のストリーム620は、飛翔中に結合して、混じり合った寸法の大きい方の繊維と寸法の小さい方の繊維とのストリーム622をもたらし、ストリーム622は、回転しているコレクタードラム624の上に着地して、前記繊維からなる二峰性質量分率/繊維寸法混合物を含む自立した不織布ウェブ626をもたらすことができる。図6に示す装置は、いくつかのモードで動作させて、一方のダイから出る寸法の大きい方の繊維、及び他方のダイから出る寸法の小さい方の繊維からなるストリームをもたらしてよい。例えば、単一の押出成形機からダイ600及びダイ602に同じポリマーを供給してよく、この場合、ダイ600で寸法の大きい方の繊維を、ダイ602で寸法の小さい方の繊維を生成できるように、寸法の大きい方のオリフィスをダイ600に提供し、寸法の小さい方のオリフィスをダイ602に提供する。同一のポリマーを、押出成形機606からダイ600に、更に押出成形機614からダイ602に供給してよく、この場合、より高い流速又はより低い粘度で前記ポリマーをダイ602に供給して、ダイ600で寸法の大きい方の繊維を、ダイ602で寸法の小さい方の繊維を生成できるように、押出成形機614は、押出成形機606よりも大きい直径又は押出成形機606よりも高い動作温度を有する。ダイ600及びダイ602に同様の寸法のオリフィスを提供してもよく、この場合、ダイ600で寸法の大きい方の繊維を、ダイ602で寸法の小さい方の繊維を生成させるために、ダイ600を低温で動作させ、ダイ602を高温で動作させる。ダイ600で寸法の大きい方の繊維を、ダイ602で寸法の小さい方の繊維を生成させるために、同じポリマー組成を持つがメルトインデックスの異なるポリマーを押出成形機606からダイ600に、更に押出成形機614からダイ602に供給してよい(例えば、押出成形機606ではメルトインデックスの低いタイプのポリマーを、押出成形機614ではメルトインデックスの高いタイプの同じポリマーを用いる)。その他の技法(例えば、ダイ602に流れ込む液化繊維形成材のストリームに溶媒を含めるもの、又はダイ600では短い流路を有するダイキャビティを、ダイ602では長い流路を有するダイキャビティを用いるもの)及びこのような技法と、上で論じた様々な動作モードとの組合せも用いてよいことは、当業者であれば理解するであろう。メルトブローイングダイ600及び602は好ましくは、寸法の大きい方の繊維のストリーム618及び寸法の小さい方の繊維のストリーム620が十分混じり合うように配置する。例えば、寸法の大きい方の繊維用のダイ600の出口から、結合した繊維のストリーム622の中心線までの距離628は、好ましくは約5〜約25cm(約2〜約12インチ)、より好ましくは約15〜約20cm(約6〜約8インチ)である。寸法の小さい方の繊維用のダイ602の出口から、結合した繊維のストリーム622の中心線までの距離630は、好ましくは約5〜約25cm(約2〜約12インチ)、より好ましくは約15〜約20cm(約6〜約8インチ)、又は、非常に小さいマイクロファイバーの場合にはそれ未満である。距離628及び630は同じである必要はない。また、寸法の大きい方の繊維のストリーム618は好ましくは、寸法の小さい方の繊維のストリーム620に対して鋭角θ’で配置する。好ましくは、θ’は、約0〜約45度、より好ましくは約10〜約30度である。寸法の大きい方の繊維と寸法の小さい方の繊維との結合近位点から、コレクタードラム624までの距離632は、典型的には少なくとも約13cm(5インチ)であるが、絡み過ぎを回避するために及びウェブの均一性を保つために、約38cm(15インチ)未満である。
【0058】
図7を参照すると、更に別のプロセスによって、成形可能な単一成分単層2モデル質量分率/繊維寸法ウェブを作製するときに用いるメルトスピニングダイスピナレット700が、出口端面図で示されている。スピナレット700は、ボルト704で適切な位置に保持される本体部材702を備える。大きい方のオリフィス706及び小さい方のオリフィス708のアレイは、複数の流路を画定し、この流路を通じて、液化繊維形成材がスピナレット700から出てフィラメントを形成させる。図7に示す実施形態では、大きい方のオリフィス706及び小さい方のオリフィス708は、2:1の寸法比を有し、大きい方のオリフィス706、1つにつき9個の小さい方のオリフィス708が存在する。大きい方のオリフィスの寸法:小さい方のオリフィスの寸法のその他の比率、例えば、1:1以上、1.5:1以上、2:1以上、2.5:1以上、3:1以上、又は3.5:1以上を用いてもよい。大きい方のオリフィス1つあたりの小さい方のオリフィスの数のその他の比率、例えば、5:1以上、6:1以上、10:1以上、12:1以上、15:1以上、20:1以上、又は30:1以上を用いてもよい。典型的には、大きい方のオリフィス1つあたりの小さい方のオリフィスの数と、収集されたウェブ内の寸法の大きい方の繊維1本あたりの寸法の小さい方の繊維(例えば、適切な動作条件下のマイクロファイバー)の数の間には直接的な合致性が存在する。当業者には明らかであるように、小さい方のオリフィスによって形成された配向フィラメントから、寸法の小さい方の繊維が生成され、大きい方のオリフィスによって形成された配向フィラメントから、寸法の大きい方の繊維が生成され、完成したウェブが所望の特性を有するように、適切なポリマー流速、ダイ動作温度及び配向条件を選択する必要がある。関連するメルトスピニング装置の残りの部分は、当業者にとっては馴染みが深いであろう。
【0059】
図8を参照すると、更に別のプロセスによって成形可能な単一成分単層二峰性質量分率/繊維寸法ウェブを作製するときに用いるメルトブローイングダイ800が、第2の細化気体ディフレクタープレートを取り外した状態で、概略的出口端面透視図で示されている。ダイ800は、大きい方のオリフィス806及び小さい方のオリフィス808からなる列804を有する突出チップ部分802を備え、これらのオリフィスは複数の流路を画定し、この流路を通って、液化繊維形成材がダイ800から出てフィラメントを形成させる。ホール810は、貫通ボルト(図8には示されていない)を受容し、その貫通ボルトは、ダイの様々な部分をつなぎ合わせる。図8に示す実施形態では、大きい方のオリフィス806及び小さい方のオリフィス808は、2:1の寸法比を有し、大きい方のオリフィス806、1つにつき小さい方のオリフィス808が9個存在する。大きい方のオリフィスの寸法:小さい方のオリフィスの寸法のその他の比率、例えば、1.5:1以上、2:1以上、2.5:1以上、3:1以上、又は3.5:1以上の比率を用いてもよい。大きい方のオリフィス1つあたりの小さい方のオリフィスの数のその他の比率、例えば、5:1以上、6:1以上、10:1以上、12:1以上、15:1以上、20:1以上、又は30:1以上の比率を用いてもよい。典型的には、大きい方のオリフィス1つあたりの小さい方のオリフィスの数と、収集されたウェブ内の寸法の大きい方の繊維1本あたりの寸法の小さい方の繊維(例えば、適切な動作条件下のマイクロファイバー)の数の間には直接的な合致性が存在する。当業者には明らかであるように、小さい方のオリフィスによって形成された細化フィラメントから、寸法の小さい方の繊維が生成され、大きい方のオリフィスによって形成された細化フィラメントから、寸法の大きい方の繊維が生成され、完成したウェブが所望の特性を有するように、適切なポリマー流速、ダイ動作温度及び細化気流速度を選択する必要がある。関連するプロセス及びそのプロセスで作られる不織布ウェブに関する更なる詳細は、本発明と同じ日に出願された、「単一成分単層メルトブローウェブ、及びメルトブローイング装置(MONOCOMPONENT MONOLAYER MELTBLOWN WEB AND MELTBLOWING APPARATUS)」という表題の米国特許出願番号(代理人整理番号第61726US003号)に示されており、この特許の開示全体は、参照により本明細書に組み込まれる。
【0060】
図9を参照すると、更に別のプロセスによって、成形可能な単一成分単層2モデル質量分率/繊維寸法ウェブを作製するときに用いるメルトスピニングダイ900が、分解概略図で示されている。ダイ900は、「プレートダイ」、「シムダイ」又は「スタックダイ」と呼んでもよく、入口プレート902を備え、入口プレート902の流体入口904及び906はそれぞれ、液化繊維形成材のストリームを受容する。これらのストリームは、同じポリマー組成を有するが、異なる流速又は異なる融解速度を有する。これらのポリマーストリームは、一連の中間プレート908a、908b等を貫流し、一連の中間プレートの経路910a、910b等は、前記ストリームを繰り返し分割させる。このように連続的に分割されたストリームは、出口プレート916内の複数の(例えば、256個、512個又はその他の多様な数の流体入口)の流体出口オリフィス914を貫流する。ホール918を通るボルト又はその他の締結具(図9には示されていない)によって、様々なプレートを合わせて締結してよい。それぞれの流体出口オリフィス914は、特有の流路を介して、流体入口904又は906のいずれか1つと連通することになる。関連するメルトスピニング装置の残りの部分は、当業者にとっては馴染みが深いと思われ、液化繊維形成材を加工して、混じり合った寸法の大きい方の繊維と、同じポリマー組成の、寸法の小さい方の繊維との2モデル質量分率/繊維寸法混合物を有するメルトスパンフィラメントからなる不織布ウェブにする目的で用いてよい。
【0061】
図10及び図11を参照すると、更に別のプロセスによって、成形可能な単一成分単層二峰性質量分率/繊維寸法ウェブを作製するときに用いるメルトブローイングダイ1000が、断面図及び出口端面図で示されている。ダイ1000には、第1の流速又は第1の粘度でホッパー1004、押出成形機1006及び導管1008から送り込まれる液化繊維形成材が供給される。ダイ1000には、第2の異なる流速又は粘度でホッパー1012、押出成形機1014及び導管1016から送り込まれる、同じポリマー組成の液化繊維形成材が別に供給される。導管1008は、第1のほぼ対称的な部分1022に位置する第1のダイキャビティ1018と、導管1016は、第2のほぼ対称的な部分1024に位置する第2のダイキャビティ1020とそれぞれ流体連通しており、ほぼ対称的な部分1022及び1024は、ダイキャビティ1018及び1020の外壁を形成する。第1及び第2のほぼ対称的な部分1026及び1028は、ダイキャビティ1018及び1020の内壁を形成し、シーム1030で交わる。部分1026及び1028は、その長さの大半に沿って、絶縁体1032で隔てられていてよい。また、図11に示すように、ダイキャビティ1018は経路1034及び1038を介して、ダイキャビティ1020は経路1036及び1038を介して、オリフィス1042及び1044の列1040と流体連通している。ダイキャビティ1018及び1020への流速に応じて、寸法の大きい方及び寸法の小さい方のフィラメントを、オリフィス1042及び1042を通じて押し出して、それによって、混じり合った寸法の大きい方の繊維と、同じポリマー組成の、寸法の小さい方の繊維との二峰性質量分率/繊維寸法混合物を含む不織布ウェブの形成を可能にしてよい。関連するメルトブローイング装置の残りの部分は、当業者にとっては馴染みが深いと思われ、液化繊維形成材を加工して、混じり合った寸法の大きい方の繊維と、同じポリマー組成の、寸法の小さい方の繊維との2モデル質量分率/繊維寸法混合物を有するメルトブローフィラメントからなる不織布ウェブにする目的で用いてよい。
【0062】
図11に示す実施形態では、オリフィス1042及び1044は、交互に配列されており、オリフィス1042はダイキャビティ1018と、オリフィス1044はダイキャビティ1020とそれぞれ流体連通している。当業者には明らかなように、変更された繊維寸法分布を有する不織布ウェブを作製するために、オリフィスの他の配列及び他の流体連通比率を用いてよい。他の動作モード及び技法(例えば、図6の装置との関連で上で論じたようなもの)、並びにそのような技法と動作モードとの組合せを用いてもよいことは、当業者であれば理解するであろう。
【0063】
開示される不織布ウェブは、不規則な繊維配列及び概ね等方性の面内物理的特性(例えば、引張り強度)を有してよく、或いは所望に応じて、整列された繊維構造(例えば、上記のシャー(Shah)らによる米国特許第6,858,297号に記載されているように、繊維が機械方向に整列されている構造)及び異方性の面内物理的特性を有してもよい。
【0064】
開示されるプロセスでは、様々なポリマー繊維形成材を用いてよい。このポリマーは本質的には、満足のいくエレクトレット特性又は電荷分離を保持する帯電不織布ウェブを作製することのできるいずれかの熱可塑性繊維形成材でよい。好ましいポリマー繊維成形材は、室温(22℃)において1014オーム−センチメートル以上の体積抵抗を有する非導電性樹脂である。好ましくは、この体積抵抗は、約1016オーム−センチメートル以上である。ポリマー繊維成形材の抵抗値は、標準試験ASTM D 257−93に従って測定できる。ポリマー繊維成形材は好ましくは、導電率を著しく増大させるか又は繊維が静電荷を受け取って保持する力に別の方法で干渉する可能性がある帯電防止剤のような構成成分を実質的に含まない。帯電性ウェブ中で用いてよいポリマーのいくつかの例としては、ポリエチレン、ポリプロピレン、ポリブチレン、ポリ(4−メチル−1−ペンテン)及び環状オレフィンコポリマーのようなポリオレフィンを含む熱可塑性ポリマー、並びにこのようなポリマーの混合物が挙げられる。用いることができるが、帯電しにくいか又は電荷を急速に失うであろうその他のポリマーとしては、ポリカーボネート、ブロックコポリマー(例えば、スチレン−ブタジエン−スチレン及びスチレン−イソプレン−スチレンブロックコポリマー)、ポリエステル(例えば、ポリエチレンテレフタレート)、ポリアミド、ポリウレタン、並びに当業者にとって馴染み深いと思われるその他のポリマーが挙げられる。繊維は好ましくは、ポリ(4−メチル−1−ペンテン)又はポリプロピレンから作製される。最も好ましくは、とりわけ湿潤環境において電荷を保持できるという理由から、ポリプロピレンホモポリマーから繊維が作製される。
【0065】
電荷は、開示される不織布ウェブに、様々な方法で付与することができる。この付与は、例えば、アンガドジバンド(Angadjivand)らに対する米国特許第5,496,507号に開示されているようにウェブを水と接触させること、クラース(Klasse)らに対する米国特許第4,588,537号に開示されているようにコロナ処理すること、例えば、ルソー(Rousseau)らに対する米国特許第5,908,598号に開示されているようにハイドロ帯電させること、ジョーンズ(Jones)らに対する米国特許第6,562,112 B2号及びデビッド(David)らに対する米国特許出願公開番号第2003/0134515 A1号に開示されているようにプラズマ処理すること、並びにこれらの組合せによって行うことができる。
【0066】
ウェブの濾過性能、エレクトレット帯電力、機械的特性、劣化特性、着色性、表面特性又はその他の重要な特徴を高めるために、ポリマーに添加剤を加えてもよい。代表的な添加剤としては、充填剤、核剤(例えば、ミリケンケミカル(Milliken Chemical)から市販されているミラッド(MILLAD)(商標)3988、ジベンジリデンソルビトール)、エレクトレット帯電増強剤(例えば、トリステアリルメラミン、及び様々な光安定剤(チバスペシャルティーケミカルズ(Ciba Specialty Chemicals)製のチマソーブ(CHIMASSORB)(商標)119及びチマソーブ(CHIMASSORB)944等))、硬化開始剤、強化剤(例えば、ポリ(4−メチル−1−ペンテン))、界面活性剤、並びに表面処理(例えば、ジョーンズ(Jones)らに対する米国特許第6,398,847 B1号、同第6,397,458 B1号、及び同第6,409,806 B1号に記載されているように、油霧環境における濾過性能を向上させるためのフッ素原子処理)が挙げられる。このような添加剤の種類及び量は、当業者には馴染み深いであろう。例えば、エレクトレット帯電増強剤は、一般には約5重量%未満、より典型的には約2重量%未満の量で存在する。
【0067】
開示される不織布ウェブは、当業者にとって馴染み深いと思われる方法及び構成成分を用いて、カップ形状成形レスピレーターに形成させてよい。開示される成形レスピレーターは、所望に応じて、開示される単層マトリックス以外に、1つ以上の追加の層を備えてよい。例えば、快適性又は審美上の目的で、濾過又は強化目的ではなく、内側又は外側カバー層を用いてよい。また、対象の蒸気を捕捉する目的で、吸着粒子を含む1つ以上の多孔質層(2006年5月8日に出願された、「粒子を含む繊維ウェブ(PARTICLE-CONTAINING FIBROUS WEB)」という表題の米国特許出願番号第11/431,152号に記載されている多孔質層等)を用いてよく、前記特許の開示全体は、参照により本明細書に組み込まれる。上記の変形抵抗DR値を有する成形レスピレーターをもたらすために必ずしも必要でなくても、所望に応じて、その他の層(強化層又は強化要素等)も含めてよい。
【0068】
平らなウェブの特性(坪量、ウェブ厚、剛性、EFD、ガーレーこわさ、テーバーこわさ、圧力低下、初期NaCl貫通率(%)、DOP貫通率(%)又は品質係数QF等)をモニタリングするとともに、成形マトリックスの特性(キングこわさ、変形抵抗DR又は圧力低下等)をモニタリングするのが望ましい場合もある。成形マトリックスの特性は、55mmの半径及び310cmの体積を有する半球形成形型の、噛み合う雄型半分と雌型半分との間で、試験用のカップ形状マトリックスを形成させることによって評価できる。
【0069】
EFDは、(別段の定めがない限り)32L/分の気流速度(5.3cm/秒の面速度に相当する)を採用して、デービーズ,C.N.(Davies, C. N.)著「空中に浮遊する埃及び粒子の分離(The Separation of Airborne Dust and Particles)」(ロンドンの英国機械工学学会(Institution of Mechanical Engineers)、会報1B、1952年)に記載されている方法を用いて求めてよい。
【0070】
ガーレーこわさは、ガーレープレシジョンインストゥルメンツ(Gurley Precision Instruments)製のモデル4171E ガーレー(GURLEY)(商標)剛軟度試験機を用いて求めてよい。サンプルの長い方の側面をウェブの横断(ウェブ横)方向に揃えた状態で、ウェブから3.8cm×5.1cmの長方形をダイカットする。サンプルの長い方の側面がウェブ保持クランプの中に入る状態で、サンプルを剛軟度試験機の中に充填する。両方向に、即ち、試験アームを第1の主要サンプル面に押し付けてから、第2の主要サンプル面に押し付けて、サンプルを収縮させ、2つの測定値の平均をこわさとしてミリグラム単位で記録する。この試験は、破壊試験として扱い、更なる測定値が必要な場合には、新たなサンプルを用いる。
【0071】
テーバーこわさは、モデル150−B テーバー(TABER)(商標)こわさ試験機(テーバーインダストリーズ(Taber Industries)から市販されている)を用いて求めてよい。繊維の融合を回避するために、鋭いかみそりの刃を用いてウェブから3.8cm×3.8cmの正方形断面を慎重に切断し、3〜4個のサンプル及び15°のサンプル偏向を用いて、その断面の機械及び横断方向のこわさを求めるために、評価を行った。
【0072】
貫通率、圧力低下及び濾過品質係数QFは、NaCl又はDOP粒子を含むエアゾール試験物質を用いて求めてよく、この試験物質を85リットル/分の流速で放出させ(別段の指示がない場合)、TSI(商標)モデル8130、高速自動フィルター試験機(TSI社(TSI Inc.)から市販されている)を用いて評価できる。NaCl試験の場合には、2%NaCl溶液から粒子を生成させて、約0.075μmの直径を有する粒子を約16〜23mg/mの大気中濃度で含むエアゾールをもたらしてよく、ヒーター及び粒子中和装置の双方をオンにした状態で、前記自動フィルター試験機を動作させてよい。DOP試験では、エアゾールは、直径約0.185μmの粒子を約100mg/mの大気中濃度で含んでよく、自動フィルター試験機は、ヒーター及び粒子中和装置の双方をオフにした状態で動作させてよい。試験を止めるまでに、NaCl又はDOP粒子貫通率が最大になるまで、平らなウェブサンプルの場合には13.8cm/秒の面速度で、又は成形マトリックスの場合には85リットル/分の流速で、サンプルを充填してよい。フィルターの入口及び出口で、較正された測光器を用いて、フィルターを通った粒子濃度及び粒子貫通率を測定できる。MKS圧力変換器(MKSインストゥルメンス(MKS Instruments)から市販されている)を用いて、フィルターによる圧力低下(ΔP、mm HO)を測定できる。以下の式
【0073】
【数1】

【0074】
を用いてQFを算出してよい。選択したエアゾール試験物質に関して測定又は算出してよいパラメーターとしては、初期粒子貫通率、初期圧力低下、初期品質係数QF、最大粒子貫通率、最大貫通時の圧力低下、最大貫通時の粒子捕集量(ミリグラム)(最大貫通時までにフィルターに捕集された試験物質の総重量)が挙げられる。初期品質係数QFの値は通常、全体的な性能に関する信頼できる指標を提供し、初期QF値が高いほど、濾過性能が優れていることを指し、初期QF値が低いほど、濾過性能が低いことを指す。
【0075】
変形抵抗DRは、直径25.4mmのポリカーボネートテストプローブが装備されているモデルTA−XT2i/5、テキスチャーアナライザー(テクスチャーテクノロジーズ社(Texture Technologies Corp.)製)を用いて求めてよい。顔面側を下に向けた状態で、試験用成形マトリックス(上記のキングこわさの定義の部分に記載されているように作製する)をテキスチャーアナライザーの試料台の上に置く。25mmの距離で、試験用成形マトリックスの中心に対してポリカーボネートプローブを10mm/秒で下向きに進めることによって、変形抵抗を測定する。5つの試験用成形マトリックスサンプルを用いて、最大(ピーク)力を記録し、その値を平均してDR値を定める。
【0076】
本発明は、以下の具体的実施例において更に例示されるが、その中での全ての部及びパーセンテージは、他に指示がない限り重量基準である。
【実施例】
【0077】
(実施例1)
図2〜図5に示されている装置を使用して、ポリプロピレンメルトスパン繊維及びポリプロピレンメルトブロー超極細繊維から、4つのウェブを作製した。前記メルトスパン繊維は、70のメルトフローインデックスを有する、トータルペトロケミカルズ(Total Petrochemicals)製のトータル(TOTAL)(商標)3860、ポリプロピレンに、チバスペシャリティーケミカルズ(Ciba Specialty Chemicals)製のチマソーブ(CHIMASSORB)944、ヒンダードアミン光安定剤0.75重量%を加えたものから作製した。押出ヘッド10は、オリフィスの列16を有し、1列につき32個のオリフィスによって、合わせて512個のオリフィスが作られていた。オリフィスは、6.4mm(0.25インチ)間隔で、正方形のパターンで配列されていた(オリフィスは、横方向及び縦方向の直線状に、並びに横方向及び縦方向の双方で等間隔に並んでいたことを意味する)。ポリマーを異なる速度で(下記の図1Aを参照)押出ヘッドに供給し、ポリマーを235℃(455°F)の温度まで加熱した。2つの急冷空気ストリーム(図2の18b。ストリーム18aは用いなかった)を用いた。第1の上方急冷空気ストリームを高さ406mm(16インチ)の急冷ボックスから、7.2℃(45°F)の温度で、実行番号1−1〜1−3ではおよそ0.42m/秒(83フィート/分)、実行番号1−4ではおよそ0.47m/秒(93フィート/分)の面速度によって供給した。第2の下方急冷空気ストリームを高さ197mm(7.75インチ)の急冷ボックスから、周囲室温で、実行番号1−1〜1−3ではおよそ0.16m/秒(31フィート/分)、実行番号1−4ではおよそ0.22m/秒(43フィート/分)の近似面速度によって供給した。0.76mm(0.030インチ)のエアナイフギャップ(バーリガン(Berrigan)らの特許の30)、0.1MPa(14psig)の圧力によるエアナイフへの空気供給、5mm(0.20インチ)の細化装置上端ギャップ幅、4.7mm(0.185インチ)の細化装置下端ギャップ幅、及び長さ152mm(6インチ)の細化装置側面(バーリガン(Berrigan)らの特許の36)を用いて、米国特許第6,607,624号(バーリガン(Berrigan)ら)に示されているような可動壁付きの細化装置を使用した。押出ヘッド10から細化装置16までの距離(図2の17)は78.7cm(31インチ)、細化装置16から収集ベルト19までの距離(図3の524+522)は68.6cm(27インチ)であった。メルトスパン繊維のストリームは、約36cm(約14インチ)の幅で収集ベルト19の上に配置させた。収集ベルト19を20メッシュのステンレス鋼から作製して、実行番号1−1〜1−3では8.8メートル/分(約29フィート/分)、実行番号1−4では14.3メートル/分(約47フィート/分)の速度で動かした。同様のサンプルに基づき、実行番号1−1〜1−3のメルトスパン繊維は、約11μmの中位繊維直径を有すると推定した。実行番号1−4のメルトスパン繊維を走査電子顕微鏡(SEM)で測定し、15μmの中位径(44本の繊維を測定)を有することが分かった。
【0078】
350のメルトフローインデックスを有する、トータルペトロケミカルズ(Total Petrochemicals)製のトータル(TOTAL)3960、ポリプロピレンに、チマソーブ(CHIMASSORB)944、ヒンダードアミン光安定剤0.75重量%を加えたものから、メルトブロー繊維を作製した。直径0.38mm(0.015インチ)のオリフィスを1インチあたり25個(1mmあたり1個のオリフィス)とともに、幅254mm(10インチ)のノーズチップを有する穿孔オリフィスメルトブローイングダイ(図2及び図3の504)に、毎時4.54kg(毎時10ポンド)の割合でポリマーを供給した。前記ダイの温度は325℃(617°F)、1次空気ストリームの温度は393℃(740°F)であった。1次空気ストリーム中の空気の流量は、約250scfm(7.1標準m/分)と推定した。メルトブローイングダイとスパンボンドストリーム1との関係は、以下の通りであった。距離520は約10cm(約4インチ)、距離522は22cm(約8.5インチ)、距離524は48cm(約19インチ)、角度θは20°であった。メルトブロー繊維のストリームを約30cm(約12インチ)の幅で収集ベルト19の上に配置させた。実行番号1−4のメルトブロー繊維をSEMで測定し、1.13μmの中位径(270本の繊維を測定)を有することが分かった。実行番号1−1〜1−3のメルトブロー繊維は、全て実行番号1−4と同じメルトブローイングプロセス条件を用いて作製したので、実行番号1−4のメルトブロー繊維と同じ繊維寸法を有すると推測した。
【0079】
収集ベルト19の下の真空度は、1.5〜3KPa(6〜12インチHO)の範囲内であると推定した。プレート211の領域215は、互い違いの間隔で直径1.6mm(0.062インチ)の開口部を有し、その結果23%の開口区域を有し、ウェブ押さえつけ領域216は、互い違いの間隔で直径1.6mm(0.062インチ)の開口部を有し、その結果30%の開口区域を有し、加熱/結合領域217及び急冷領域218は、互い違いの間隔で直径4.0mm(0.156インチ)の開口部を有し、その結果、63%の開口区域を有していた。14.2m/分(約500フィート/分)の空気をスロット209(3.8cm×55.9cm(1.5インチ×22インチ)であった)の位置に付与するのに十分な速度で、空気を導管207を通じて供給した。プレート208の底部は、コレクター19上の、収集されたウェブ20から1.9〜2.54cm(3/4〜1インチ)であった。スロット209を通る空気の温度(開放接点型熱電対によって、導管207のハウジング201への入口で測定した場合)は、それぞれのウェブについて表1Aに示されている。
【0080】
本質的に、メルトブロー繊維の100%をメルトスパンストリーム内で捕捉した。実行番号1−4のウェブを横に切断し、マイクロファイバーが、そのウェブの全厚にわたって分布していることが分かった。表1Aに示されているポリマー流速において、実行番号1−1〜1−3のウェブは、36重量部のメルトブロー繊維に対して、約64重量部の割合のメルトスパン繊維を有し、実行番号1−4のウェブは、18重量部のメルトブロー繊維に対して、約82重量部の割合のメルトスパン繊維を有していた。
【0081】
急冷区域220を出たウェブを、通常のプロセス及び装置で取り扱うのに十分な一体性を持たせて結合し、そのウェブは、通常の巻き取り法によって保管用ロールに巻き取るか、又は成形レスピレーターを形成させるための様々な作業(ウェブを加熱して、半球形成形型の上で圧縮させる作業など)を施すことが可能であった。顕微鏡検査を行ったところ、メルトスパン繊維は、繊維交点で結合されていることが分かり、メルトブロー繊維は、実質的に未融解であるとともに、メルトスパン繊維への結合が限られている(メルトスパンストリームとマイクロファイバーストリームとの混合中に少なくとも部分的に結合が確立された可能性がある)ことが分かった。
【0082】
その他のウェブ及び形成パラメーターは、下記の表1Aに記載されており、表中、「QFH」という略語は「急冷流ヒーター」を、「BMF」という略語は「メルトブローマイクロファイバー」をそれぞれ意味する。
【0083】
【表1】

表1A
【0084】
米国特許第5,496,507号(アンガドジバンド(Angadjivand)ら、‘507)に教示されている技法に従って、4つの収集されたウェブを脱イオン水によってハイドロ帯電させて、周囲条件で一晩、一列に吊るして乾燥させた。上記のようにDOPエアゾール試験物質を用いて平らな帯電ウェブを評価して、以下の表1Bに示されている、平らなウェブの特性を求めた。
【0085】
【表2】

表1B
【0086】
次に、加熱した油圧成形プレス、及び5.1mm(0.20インチ)の成形型ギャップを用いて、ウェブを滑らかなカップ形状成形レスピレーターに形成させた。このウェブのコレクター側(ウェブ収集中にコレクター表面に直接接触するウェブ側面)を上及び下の双方に向けた状態でウェブを成形し、繊維の混合又は収集表面が捕集挙動に影響を及ぼしたか否かを調査した。得られたカップ形状成形マトリックスは、約145cmの外部表面積、及び良好なこわさ(手で評価した)を有していた。実行番号1−2Fのウェブから作製した成形レスピレーターを評価してキングこわさ値を求め、0.68N(0.152ポンド)のキングこわさを有することが分かった。同様のサンプル並びに実施例10及び図23(下で論じる)のデータに基づくと、約20〜50gsmという適度な坪量の増加は、成形マトリックスのキングこわさを1N超増加させるはずである。
【0087】
上記のようにNaClエアゾール試験物質を用いて、成形マトリクスに対して捕集試験を行い、初期圧力低下及び初期NaCl貫通率(%)、最大圧力低下及び最大NaCl貫通率(%)、最大貫通時のNaClのミリグラム数(最大貫通時までにフィルターに捕集された試験物質の総重量)、並びに品質係数QFを求めた。比較の目的で、市販の多層N95レスピレーターを試験した。これらの結果を、下記の表1CBに示す。
【0088】
【表3】

表1C
【0089】
表1Cに示されている結果によれば、サンプルの多くは、98Pa(10mm HO)未満の圧力低下から始まり、5%未満の最大貫通率を経て、サンプルのいくつかは、98Pa(10mm HO)未満の圧力低下から始まり、1%未満の最大貫通率を経る。サンプルのいくつか(例えば、実行番号1−10M〜1−13M)が、複製物の間で中程度の変動性を示した相互の複製物であることも示されており、この変動性は、レスピレーター形成プロセス中に成形型ギャップを設定する際の変動によるものと考えられる。表1Cで最も好ましい実施形態は、実行番号1−10M、1−12M及び1−23Mである。実行番号1−10M及び1−12Mは、市販のレスピレーターに非常に近い貫通率及び圧力低下の捕集結果を示す。実行番号1−23は、有意に高いコレクター速度で形成させたウェブから作製したものであり、低い初期圧力低下を有し、5%未満の最大貫通率を有する。表1Cのその他の好ましい実施形態としては、実行番号1−5M、1−11M、1−13M及び1−24Mが挙げられる。これらは、98Pa(10mm HO)未満の初期圧力低下、5%未満の最大貫通率、及び最大貫通時の中程度なNaCl試験物質量(あまり即座には目詰まりしないことを意味する)を示すためである。
【0090】
(実施例2)
図8に示されているようなメルトブローイングダイ、並びにインダストリアルアンドエンジニアリングケミストリー(Industrial and Engineering Chemistry)48巻、8号(1956年)、1342〜1346頁のウェンテ、ヴァン・A.(Wente, Van A.)著「超微細熱可塑性繊維(superfine Thermoplastic Fibers)」、及び海軍研究試験所の報告書(Naval Research Laboratory Report)111437(1954年4月15日)に記載されているような手順を用いて、トータル(TOTAL)3960ポリプロピレンに、エレクトレット帯電添加剤として1%トリステアリルメラミンを加えたものから、4つの単一成分単層メルトブローウェブを形成させた。クロンプトンアンドノールズ社(Crompton & Knowles Corp.)のデービススタンダード部門(Davis Standard Division)製のモデル20デービススタンダード(Model 20 DAVIS STANDARD)(商標)、50.8mm(2インチ)の単軸押出成形機にポリマーを供給した。この押出成形機は、20/1の長さ/直径比、及び3/1の圧縮比を有していた。ゼニス(Zenith)の10cc/revのメルトポンプで、幅25.4cm(10インチ)の穿孔オリフィスメルトブローイングダイへのポリマーの流量を計測した。前記ダイの元々の0.3mm(0.012インチ)のオリフィスは、21個おきにオリフィスを0.6mm(0.025インチ)まで穿孔することによって修正し、それによって、寸法の小さい方のホール数と寸法の大きい方のホール数との20:1という比率、及び大きい方のホールの寸法と小さい方のホールの寸法との2:1という比率をもたらした。オリフィスの列は、10ホール/cm(25ホール/インチ)のホール間隔を有していた。熱風によって、繊維をダイチップで細化した。エアナイフでは、0.25mm(0.010インチ)のプラスセットバック、及び0.76mm(0.030インチ)の空気ギャップを採用した。ウェブ形成時点に、中庸なメッシュのコレクタースクリーンを通じて、ゼロから中程度までの減圧を行った。押出成形機からのポリマーの出力速度を0.18〜0.71kg/cm/時(1.0〜4.0ポンド/インチ/時)で変動させ、DCD(ダイとコレクターとの距離)を30.5〜63.5cm(12.0〜25.0インチ)で変動させ、気圧を必要に応じて調節して、下記の表1Aに示すような坪量及びEFDを有するウェブを作製した。このウェブを、米国特許第5,496,507号(アンガドジバンド(Angadjivand)ら、‘507)に教示されている技法に従って、蒸留水によってハイドロ帯電させ、乾燥させた。下記の表2Aには、13.8cm/秒の面速度におけるそれぞれのウェブの実行番号、坪量、EFD、ウェブ厚、初期圧力低下、初期NaCl貫通率及び品質係数QFが記載されている。
【0091】
【表4】

表2A
【0092】
次に、表2Aのウェブを成形して、個人用レスピレーターとして用いるためのカップ形状成形マトリックスを形成させた。頂部成形型を約113℃(235°F)まで加熱し、底部成形型を約116℃(240°F)まで加熱し、1.27mm(0.050インチ)の成形型ギャップを採用し、ウェブを成形型内に約9秒間、置いた。成形型から取り外したところ、マトリックスはその成形形状を保持していた。下記の表2Bには、成形マトリックスの実行番号、キングこわさ、初期圧力低下、及び初期NaCl貫通値(実行番号2−1M及び2−4Mについては最大捕集時NaCl貫通値も)が記載されている。
【0093】
【表5】

表2B
【0094】
図12は、実行番号2−1M及び2−4Mの成形マトリックスのNaCl貫通率(%)及び圧力低下を示すグラフである。曲線Aは、実行番号2−1MのNaCl貫通率(%)の結果、曲線Bは、実行番号2−4MのNaCl貫通率(%)の結果であり、曲線Cは、実行番号2−1Mの圧力低下の結果、曲線Dは、実行番号2−4Mの圧力低下の結果である。図12は、実行番号2−1M及び2−4Mの成形マトリックスが、連邦規則第42条第84章(42 C.F.R. Part 84)のN95 NaCl捕集試験に合格する単一成分単層成形マトリックスをもたらすことを示す。
【0095】
(実施例3)
実施例2の一般的方法を用いて、100%トータル(TOTAL)3960ポリプロピレンからウェブを作製してから、1)コロナ帯電、又は2)コロナ帯電及び蒸留水によるハイドロ帯電を行った。下記の表3Aには、それぞれのウェブの実行番号、帯電技法、坪量、EFD、ウェブ厚、初期圧力低下、初期NaCl貫通率及び品質係数QFが記載されている。
【0096】
【表6】

表3A
【0097】
次に、実施例2の方法を用いて、表3Aのウェブを成形して、個人用レスピレーターとして用いるためのカップ形状成形マトリックスを形成させた。下記の表3Bには、成形マトリックスの実行番号、キングこわさ、初期圧力低下、及び初期NaCl貫通率が記載されている。
【0098】
【表7】

表3B
【0099】
表3Bのデータは、これらの成形マトリックスが、実施例2の成形マトリックスよりも高い貫通率を有していたが、かなりのキングこわさも有していたことを示す。
【0100】
(実施例4)
実施例2の方法を用いて、トータル(TOTAL)3960ポリプロピレンに、エレクトレット帯電添加剤としてチバスペシャルティーケミカルズ(Ciba Specialty Chemicals)製のチマソーブ(CHIMASSORB)944ヒンダードアミン光安定剤0.8%を加えたものから、ウェブを作製してから、蒸留水によってハイドロ帯電させた。下記の表4Aには、それぞれのウェブの実行番号、坪量、EFD、ウェブ厚、初期圧力低下、初期NaCl貫通率及び品質係数QFが記載されている。
【0101】
【表8】

表4A
【0102】
次に、実施例2の方法を用いて、表4Aのウェブを成形して、個人用レスピレーターとして用いるためのカップ形状成形マトリックスを形成させた。下記の表4Bには、成形マトリックスの実行番号、キングこわさ、初期圧力低下、及び初期NaCl貫通率が記載されている。
【0103】
【表9】

表4B
【0104】
表4Bのデータは、これらの成形マトリックスが、実施例2の成形マトリックスよりも高い貫通率を有していたが、かなりのキングこわさも有していたことを示す。
【0105】
(実施例5)
実施例4の方法を用いて、37のメルトフローインデックスを有する、トータルペトロケミカルズ(Total Petrochemicals)製のトータル(TOTAL)3868ポリプロピレンに、エレクトレット帯電添加剤としてチバスペシャルティーケミカルズ(Ciba Specialty Chemicals)製のチマソーブ(CHIMASSORB)944ヒンダードアミン光安定剤0.8%を加えたものから、ウェブを作製してから、蒸留水によってハイドロ帯電させた。下記の表5Aには、それぞれのウェブの実行番号、坪量、EFD、ウェブ厚、初期圧力低下、初期NaCl貫通率及び品質係数QFが記載されている。
【0106】
【表10】

表5A
【0107】
次に、実施例2の方法を用いて、表5Aのウェブを成形して、個人用レスピレーターとして用いるためのカップ形状成形マトリックスを形成させた。下記の表5Bには、成形マトリックスの実行番号、キングこわさ、初期圧力低下、及び初期NaCl貫通率が記載されている。
【0108】
【表11】

表5B
【0109】
表5Bのデータは、これらの成形マトリックスが、実施例2の成形マトリックスよりも高い貫通率を有していたが、かなりのキングこわさも有していたことを示す。
【0110】
(実施例6)
実施例3の方法を用いて、エクソンモービル社(Exxon Mobil Corporation)から入手できるエクソン(EXXON)(商標)PP3746G、メルトフローレートが1475のポリプロピレンからウェブを作製してから、1)コロナ帯電、又は、2)コロナ帯電及び蒸留水によるハイドロ帯電を行った。下記の表6Aには、それぞれのウェブの実行番号、帯電技法、坪量、EFD、ウェブ厚、初期圧力低下、初期NaCl貫通率及び品質係数QFが記載されている。
【0111】
【表12】

表6A
【0112】
次に、実施例2の方法を用いて、表6Aのウェブを成形して、個人用レスピレーターとして用いるためのカップ形状成形マトリックスを形成させた。下記の表6Bには、成形マトリックスの実行番号、キングこわさ、初期圧力低下、及び初期NaCl貫通率が記載されている。
【0113】
【表13】

表6B
【0114】
15kV、15mm WD、0°のティルトで動作させたLEO VP 1450電子顕微鏡(カールツァイス電子顕微鏡グループ(Carl Zeiss Electron Microscopy Group)製)を使って作った走査電子顕微鏡(SEM)を50〜1,000倍の倍率で、高真空下で金/パラジウム被覆サンプルを用いて、実行番号6−8Fの平らなウェブ及び6−8Mの成形マトリックスを分析した。図13は実行番号6−8Fの平らなウェブの、図14は6−8Mの成形マトリックスの顕微鏡写真である。前記の平らなウェブ又はマトリックスのそれぞれの側面から350〜1,000倍の倍率で撮影したSEM画像から、繊維係数(度数)対繊維寸法(μm)のヒストグラムを得た。サンアントニオ(San Antonio)のテキサス大学健康科学センター(University of Texas Health Science Center)製のUTHSCSAイメージツール(UTHSCSA IMAGE TOOL)画像解析プログラムを用いて、それぞれの側面のSEM画像からの約150〜200本の繊維を計数及び測定し、その2つの側面の観測結果を合せた。図15は実行番号6−8Fの平らなウェブの、図16は6−8Mの成形マトリックスの繊維係数(度数)対繊維寸法(μm)のヒストグラムである。これらのウェブの繊維寸法分析に関する更なる詳細を、下記の表6Cに示す。
【0115】
【表14】

表6C
【0116】
(実施例7)
実施例2の方法を用いて、エクソン(EXXON)PP3746Gポリプロピレンに、エレクトレット帯電添加剤として1%トリステアリルメラミンを加えたものからウェブを作製してから、蒸留水によってハイドロ帯電させた。下記の表7Aには、それぞれのウェブの実行番号、坪量、EFD、ウェブ厚、初期圧力低下、初期NaCl貫通率及び品質係数QFが記載されている。
【0117】
【表15】

表7A
【0118】
次に、実施例2の方法を用いて、表7Aのウェブを成形して、個人用レスピレーターとして用いるためのカップ形状成形マトリックスを形成させた。下記の表7Bには、成形マトリックスの実行番号、キングこわさ、初期圧力低下、及び初期NaCl貫通率が記載されている。
【0119】
【表16】

表7B
【0120】
図17は、実行番号7−1Mの成形マトリックスのNaCl貫通率(%)及び圧力低下を示すグラフである。曲線AはNaCl貫通率(%)の結果、曲線Bは圧力低下の結果である。図17及び表7Bのデータは、実行番号7−1Mの成形マトリックスが、連邦規則第42条第84章(42 C.F.R. Part 84)のN95 NaCl捕集試験に合格する単一成分単層成形マトリックスをもたらすことを示す。
【0121】
(実施例8)
実施例4の方法を用いて、エクソン(EXXON)PP3746Gポリプロピレンに、エレクトレット帯電添加剤としてチバスペシャルティーケミカルズ(Ciba Specialty Chemicals)製のチマソーブ(CHIMASSORB)944ヒンダードアミン光安定剤0.8%を加えたものから、ウェブを作製してから、蒸留水によってハイドロ帯電させた。下記の表8Aには、それぞれのウェブの実行番号、坪量、EFD、ウェブ厚、初期圧力低下、初期NaCl貫通率及び品質係数QFが記載されている。
【0122】
【表17】

表8A
【0123】
次に、実施例2の方法を用いて、表8Aのウェブを成形して、個人用レスピレーターとして用いるためのカップ形状成形マトリックスを形成させた。下記の表8Bには、成形マトリックスの実行番号、キングこわさ、初期圧力低下、及び初期NaCl貫通値(実行番号8−3Mについては最大捕集時NaCl貫通値も)が記載されている。
【0124】
【表18】

表8B
【0125】
表8Bのデータは、少なくとも実行番号8−3Mの成形マトリックスが、連邦規則第42条第84章(42 C.F.R. Part 84)のN95 NaCl捕集試験に合格する単一成分単層成形マトリックスをもたらすことを示す。実行番号8−1M、8−2M、及び8−4Mの成形マトリックスに対しては、最大捕集時貫通率を求めるための試験を行わなかった。
【0126】
(実施例9)
実施例3の方法を用いて、エクソン(EXXON)PP3746Gポリプロピレンに、エレクトレット帯電添加剤として1%トリステアリルメラミンを加えたものからウェブを作製してから、蒸留水によってハイドロ帯電させた。得られた平らなウェブを、他の層が米国特許第6,041,782号(アンガドジバンド(Angadjivand)ら、‘782)及び同第6,923,182 B2号(アンガドジバンド(Angadjivand)ら、‘183)に記載されているような成形レスピレーターに形成させた。このレスピレーターは、ブローマイクロファイバー外側カバー層ウェブ、ボスティックフィンドリー(Bostik Findley)製のPE85−12熱可塑性不織布接着ウェブ、本実施例9の平らなウェブ、別のPE85−12熱可塑性不織布接着ウェブ、及び別のブローマイクロファイバー内側カバー層ウェブを含んでいた。上に記載されているような成形型であるが、リブ付きの前側表面を有する成形型を用いて、これらの層をカップ形状レスピレーターに形成させた。ASTM F−1862−05「医療用フェイスマスクの、人口血液(既知の速度での一定体積の水平射出)による貫通に対する耐性に関する標準試験方法(Standard Test Method for Resistance of Medical Face Masks to Penetration by Synthetic Blood(Horizontal Projection of Fixed Volume at a Known Velocity))」に従って、1.2kPa(120mm Hg)及び1.6kPa(160mm Hg)の試験圧力で、得られた成形レスピレーターを評価した。1.2kPa(120mm Hg)の試験では、0.640秒のバルブタイム、及び0.043MPaのタンク圧力を採用した。1.6kPa(160mm Hg)の試験では、0.554秒のバルブタイム、及び0.052MPaのタンク圧力を採用した。前記レスピレーターは、双方の試験圧力における試験に合格した。下記の表9には、成形単一成分ウェブの実行番号、坪量、EFD、厚さ、初期圧力低下、及び初期NaCl貫通率が記載されている。
【0127】
【表19】

表9
【0128】
(実施例10)
米国特許第6,319,865 B1号(ミカミ(Mikami))の比較例3の方法を用いて、幅25.4cm(10インチ)の穿孔オリフィスダイであって、寸法の大きいオリフィス及び寸法の小さいオリフィスからなる列をもたらすようにチップが修正された穿孔オリフィスダイを使用して、ウェブを作製した。前記の大きい方のオリフィスは0.6mmの直径(Da)を有し、前記の小さい方のオリフィスは0.4mmの直径(Db)を有し、そのオリフィス直径比R(Da/Db)は1.5で、一対の大きい方のオリフィスそれぞれの間に、小さい方のオリフィスが5つ存在し、オリフィスは、11.8オリフィス/cm(30オリフィス/インチ)で隔置されていた。直径50mmのネジ及び10ccのメルトポンプを有する単軸押出成形機を用いて、ダイに100%のトータル(TOTAL)3868ポリプロピレンを供給した。このダイは、0.20mmのエアスリット幅、60°のノズルエッジ角度、及び0.58mmのエアリップ開口部を有していた。1〜50m/分で動く微細メッシュスクリーンを用いて、繊維を収集した。その他の作業パラメーターは下記の表10Aに示されている。
【0129】
【表20】

表10A
【0130】
上記の作業パラメーターを用いたところ、ショットフリーのウェブは得られなかった。ショットフリーのウェブが形成されたとしたならば、有効繊維直径の観測値は、恐らく、上記の9.4μmという値よりも小さかったであろう。これにかかわらず、コレクター速度を変えることによって、4つの異なる坪量、即ち60、100、150及び200gsmでショット含有ウェブを作製した。
【0131】
図18は、200gsmのウェブの、質量分率対繊維寸法(μm)のヒストグラムである。このウェブは、2及び7μmでモードを示した。局所ピークは4及び10μmで現れた。4μmのピークは、2μm小さい繊維寸法及び2μm大きい繊維寸法よりも大きい高さを有さないとともに、モードに相当せず、10μmのピークは、2μm小さい繊維寸法よりも大きい高さを有さないとともに、モードに相当しなかった。図18に示したように、このウェブは、10μmを超える、寸法の大きい方の繊維のモードを有さなかった。
【0132】
実施例2の一般的方法を用いて、この200gsmのウェブを成形して、カップ形状成形マトリックスを形成させた。加熱成形型を0.5mmのギャップまで閉じて、約6秒のドエル時間を採用した。この成形マトリックスを冷却させ、0.64Nのキングこわさを有することが分かった。
【0133】
より高いメルトフローインデックスのポリマーを用いて、DCDの値を増大させることによって、ショットを軽減可能であることが明らかになった。メルトフローレートが100である、トータルペトロケミカルズ(Total Petrochemicals)から入手可能な100%トータル(TOTAL)3860Xポリプロピレン及び下記の表10Bに示されている作業パラメーターを用いて、コレクター速度を変えることによって、60、100、150及び200gsmで、実質的にショットが軽減されたウェブを形成させた。得られたウェブは、表10Aの作業パラメーターを用いて作製したウェブの場合よりも、直径が10μmを超える繊維をかなり多く有していた。
【0134】
【表21】

表10B
【0135】
図19は、200gsmのウェブの、質量分率対繊維寸法(μm)のヒストグラムである。このウェブは、4、10、17及び22μmでモードを示した。モードではない局所ピークは8及び13μmで現れた。図19に示されているように、このウェブは、10μmを超える、寸法の大きい方の繊維のモードを有していた。図20は、同じ200gsmのウェブの、繊維計数(度数)対繊維寸法(μm)のヒストグラムである。
【0136】
実施例2の一般的方法を用いて、この200gsmのウェブを成形して、カップ形状成形マトリックスを形成させた。加熱成形型を0.5mmのギャップまで閉じて、約6秒のドエル時間を採用した。この成形マトリックスを冷却させ、0.98Nのキングこわさを有することが分かった。
【0137】
ミカミ(Mikami)らのダイよりも、大きい方のオリフィス1つあたりの小さい方のオリフィスの数が多いダイを採用することによって、ショットを軽減可能であることも明らかになった。トータル(TOTAL)3868及びトータル(TOTAL)3860Xポリマーの両方、並びに幅25.4cm(10インチ)の異なる穿孔オリフィスダイを用いて、60、100、150及び200gsmで、最小限のショットしか有さないウェブも作製した。この後者のダイのダイチップは、寸法の大きい方のオリフィス及び寸法の小さい方のオリフィスからなる列をもたらすとともに、寸法の大きい方のオリフィス間にある小さい方のオリフィスの数が、ミカミ(Mikami)らの特許に開示されているものよりも多くなるように修正されていた。前記の大きい方のオリフィスは0.63mmの直径(Da)を有し、前記の小さい方のオリフィスは0.3mmの直径(Db)を有し、そのオリフィス直径比R(Da/Db)は2.1で、一対の大きい方のオリフィスそれぞれの間に、小さい方のオリフィスが9個存在し、オリフィスは、9.8オリフィス/cm(25オリフィス/インチ)で隔置されていた。直径50mmのネジ及び10ccのメルトポンプを有する単軸押出成形機を用いて、ダイにポリマーを供給した。このダイは、0.76mmのエアスリット幅、60°のノズルエッジ角度、及び0.86mmのエアリップ開口部を有していた。1〜50m/分で動く微細メッシュスクリーン及び下記の表10Cに示されている作業パラメーターを採用して、60、100、150及び200gsmでウェブを収集した。
【0138】
【表22】

表10C
【0139】
図21は、200gsm且つ100MFRのウェブの、質量分率対繊維寸法(μm)のヒストグラムである。このウェブは、15、30及び40μmでモードを示した。図21に示されているように、このウェブは、10μmを超える、寸法の大きい方の繊維のモードを有していた。図22は、同じ200gsmのウェブの、繊維計数(度数)対繊維寸法(μm)のヒストグラムである。
【0140】
実施例2の一般的方法を用いて、表10A、表10B及び表10Cのウェブを成形して、カップ形状成形マトリックスを形成させた。加熱成形型を、60及び100gsmの坪量を有するウェブの場合には、ギャップがなくなるまで閉じて、150及び200gsmの坪量を有するウェブの場合には、0.5mmのギャップまで閉じた。約6秒のドエル時間を採用した。キングこわさを求めるために、200gsmの成形マトリックスを評価して、それぞれ、1.2N(37MFRのポリマー)及び1.6N(100MFRのポリマー)のキングこわさ値を有することが分かった。60、100及び150gsmのウェブは、測定閾値を下回っていたため、キングこわさを求めるための評価を行わなかった。
【0141】
変形抵抗DRを求めるために、全てのウェブに由来する成形マトリックスを評価した。その結果を下記の表10Dに示す。
【0142】
【表23】

表10D
【0143】
図23は、変形抵抗DRの値対坪量のプロットを示す。曲線Aは表10A(37gsm、5:1のDb/Da比)、曲線Bは表10B、曲線Cは表10C(37gsm)、曲線Dは表10C(100gsm)に従って作製したウェブを示す。表10D及び図23に示されているように、ミカミ(Mikami)らが採用したメルトフローレート40のポリマーのようなポリマーを用いて、ミカミ(Mikami)らの比較例5に従って作製したウェブは、比較的低い変形抵抗DRの値を有していた。ミカミ(Mikami)らのポリマーよりもメルトフローレートの高いポリマーを採用するか、又は大きい方のオリフィス1つあたりの小さい方のオリフィスの数が、ミカミ(Mikami)らのダイよりも多いダイを用いて、ミカミ(Mikami)らのウェブよりも著しく大きい変形抵抗DRの値を有するウェブを作製した。
【0144】
(実施例11)
図6に示されているような装置、並びにインダストリアルアンドエンジニアリングケミストリー(Industrial and Engineering Chemistry)48巻、8号(1956年)、1342〜1346頁のウェンテ、ヴァン・A.(Wente, Van A.)著「超微細熱可塑性繊維(superfine Thermoplastic Fibers)」、及び海軍研究試験所の報告書(Naval Research Laboratory Report)111437(1954年4月15日)に記載されている手順を用いて、大きい方の繊維、及び同じポリマー組成の、別々に作製される寸法の小さい方の繊維のメルトブローイングを利用して、単一成分単層ウェブを形成させた。前記の寸法の大きい方の繊維は、トータル(TOTAL)3960ポリプロピレン(メルトフローレートが350のポリマー)に、エレクトレット帯電添加剤としてチマソーブ(CHIMASSORB)944ヒンダードアミン光安定剤0.8%、及びウェブ内における寸法の大きい方の繊維の分布を査定するのを助けるポリワン社(PolyOne Corp.)製のポリワン(POLYONE)(商標)番号CC10054018WE、青色顔料1%を加えたものを用いて、形成させた。得られた青色のポリマーブレンドを、クロンプトンアンドノールズ社(Crompton & Knowles Corp.)のデービススタンダード部門(Davis Standard Division)製のモデル20デービススタンダード(Model 20 DAVIS STANDARD)(商標)、50.8mm(2インチ)の単軸押出成形機に供給した。この押出成形機は、152cm(60インチ)の長さ、及び30/1の長さ/直径比を有していた。前記の寸法の小さい方の繊維は、エクソンモービル社(Exxon Mobil Corporation)から入手可能なエクソン(EXXON)PP3746ポリプロピレン(メルトフローレートが1475のポリマー)に、チマソーブ(CHIMASSORB)944ヒンダードアミン光安定剤0.8%を加えたものを用いて形成させた。この後者のポリマーは白色で、このポリマーを、クロンプトンアンドノールズ社(Crompton & Knowles Corp.)のデービススタンダード部門(Davis Standard Division)製のキリオン(KILLION)(商標)19mm(0.75インチ)の単軸押出成形機に供給した。ゼニスポンプス(Zenith Pumps)製の10cc/revのゼニス(ZENITH)(商標)メルトポンプを用いて、それぞれのポリマーの流量を計量して、幅50.8cm(20インチ)の穿孔オリフィスメルトブローイングダイ内のダイキャビティを分離させ、このダイでは、10ホール/cm(25ホール/インチ)の間隔で直径0.38mm(0.015インチ)のオリフィスを採用し、ぞれぞれのダイキャビティによって交互のオリフィスが供給された。熱風によって、繊維をダイチップで細化した。エアナイフでは、0.25mm(0.010インチ)のプラスセットバック、及び0.76mm(0.030インチ)の空気ギャップを採用した。ウェブ形成時点に、中庸なメッシュのコレクタースクリーンを通じて、中程度までの減圧を行った。押出成形機からのポリマーの出力速度は0.18kg/cm/時(1.0ポンド/インチ/時)であり、DCD(ダイとコレクターとの距離)は57.2cm(22.5インチ)であり、コレクター速度を必要に応じて調節して、208gsmの坪量を有するウェブを作製した。必要に応じて、押出流速、押出温度及び熱風の圧力を変えることによって、20μmの標的EFDを実現させた。それぞれの押出成形機から出るポリマーの速度を調節することによって、75%の寸法の大きい方の繊維、及び25%の寸法の小さい方の繊維を有するウェブを作製した。このウェブを、米国特許第5,496,507号(アンガドジバンド(Angadjivand)ら、‘507)に教示されている技法に従って、蒸留水によってハイドロ帯電させて、乾燥させた。下記の表11Aには、13.8cm/秒の面速度における平らなウェブの実行番号、坪量、EFD、ウェブ厚、初期圧力低下、初期NaCl貫通率及び品質係数QFが記載されている。
【0145】
【表24】

表11A
【0146】
次に、表11Aのウェブを成形して、個人用レスピレーターとして用いるためのカップ形状成形マトリックスを形成させた。頂部成形型を約113℃(235°F)まで加熱し、底部成形型を約116℃(240°F)まで加熱し、0.51mm(0.020インチ)の成形型ギャップを採用し、ウェブを成形型内に約6秒間、置いた。成形型から取り外したところ、マトリックスは、その成形形状を保持していた。下記の表11Bには、成形マトリックスの実行番号、キングこわさ、初期圧力低下、初期NaCl貫通率及び最大捕集時NaCl貫通率が記載されている。
【0147】
【表25】

表11B
【0148】
表11Bのデータは、前記成形マトリックスが、かなりのこわさを有していたことを示す。
【0149】
(実施例12)
寸法の大きい方の繊維又は寸法の小さい方の繊維のいずれかにおいてエレクトレット帯電添加剤を用いることなく、実施例11を繰り返した。このウェブを、米国特許第6,660,210号(ジョーンズ(Jones)ら)に教示されている技法に従ってプラズマ帯電させてから、米国特許第5,496,507号(アンガドジバンド(Angadjivand)ら、‘507)に教示されている技法に従って、蒸留水によってハイドロ帯電させ、乾燥させた。下記の表12Aには、13.8cm/秒の面速度における平らなウェブの実行番号、坪量、EFD、ウェブ厚、初期圧力低下、初期NaCl貫通率及び品質係数QFが記載されている。
【0150】
【表26】

表12A
【0151】
次に、実施例11の方法に従って、表12Aのウェブを成形した。成形型から取り外したところ、マトリックスは、その成形形状を保持していた。下記の表12Bには、成形マトリックスの実行番号、キングこわさ、初期圧力低下、初期NaCl貫通率及び最大捕集時NaCl貫通率が記載されている。
【0152】
【表27】

表12B
【0153】
表12Bのデータは、この成形マトリックスが、連邦規則第42条第84章(42 C.F.R. Part 84)のN95 NaCl捕集試験に合格する単一成分単層濾過層をもたらすことを示す。
【0154】
(実施例13)
実施例11の方法を用いて、単一成分単層ウェブを形成させた。トータル(TOTAL)3868ポリプロピレン(メルトフローレートが37のポリマー)に、エレクトレット帯電添加剤としてチバスペシャルティーケミカルズ(Ciba Specialty Chemicals)製のチマソーブ(CHIMASSORB)944ヒンダードアミン光安定剤0.8%及びポリワン(POLYONE)(商標)番号CC10054018WE青色顔料2%を加えたものを用いて、寸法の大きい方の繊維を形成させた。エクソン(EXXON)PP3746Gポリプロピレンに、チマソーブ(CHIMASSORB)944ヒンダードアミン光安定剤0.8%を加えたものを用いて、寸法の小さい方の繊維を形成させた。押出成形機からのポリマーの出力速度は0.27kg/cm/時(1.5ポンド/インチ/時)であり、DCD(ダイとコレクターとの距離)は34.3cm(13.5インチ)であり、それぞれの押出成形機からのポリマーの速度を調節して、65%の寸法の大きい方の繊維及び35%の寸法の小さい方の繊維を有するウェブを作製した。このウェブを、米国特許第5,496,507号(アンガドジバンド(Angadjivand)ら、‘507)に教示されている技法に従って蒸留水によってハイドロ帯電させ、乾燥させた。下記の表13Aには、13.8cm/秒の面速度における平らなウェブの実行番号、坪量、EFD、ウェブ厚、初期圧力低下、初期NaCl貫通率及び品質係数QFが記載されている。
【0155】
【表28】

表13A
【0156】
次に、表13Aのウェブを成形して、個人用レスピレーターとして用いるためのカップ形状成形マトリックスを形成させた。成形型の頂部及び底部の双方を約110℃(230°F)まで加熱し、1.02mm(0.040インチ)の成形型ギャップを採用し、ウェブを成形型内に約9秒間、置いた。成形型から取り外したところ、マトリックスは、その成形形状を保持していた。下記の表13Bには、成形マトリックスの実行番号、キングこわさ、初期圧力低下、初期NaCl貫通率及び最大捕集時NaCl貫通率が記載されている。
【0157】
【表29】

表13B
【0158】
図24は、実行番号13−1Mの成形レスピレーターのNaCl貫通率(%)及び圧力低下を示すグラフであり、図25は、多層濾過媒体から作製された市販のN95レスピレーターの同様のグラフである。曲線Aは、実行番号13−1MのレスピレーターのNaCl貫通率(%)の結果、曲線Bは、実行番号13−1Mのレスピレーターの圧力低下の結果であり、曲線Cは、前記市販レスピレーターのNaCl貫通率(%)の結果、曲線Dは、前記市販レスピレーターの圧力低下の結果である。図24及び表13Bのデータは、実行番号13−1Mの成形マトリックスが、連邦規則第42条第84章(42 C.F.R. Part 84)のN95 NaCl捕集試験に合格する単一成分単層濾過層をもたらし、前記市販レスピレーターよりも長い濾過寿命をもたらす場合があることを示す。
【0159】
図26は、実行番号13−1Mの成形マトリックスの顕微鏡写真、図27は、実行番号13−1Mの成形マトリックスの繊維係数(度数)対繊維寸法(μm)のヒストグラムである。下記の表13Cには、実行番号13−1Mの成形マトリックスの繊維寸法分布計数の一覧が記載されており、下記の表13Dには、実行番号13−1Mの成形マトリックスの繊維寸法統計値の一覧が記載されている。
【0160】
【表30】

表13C
【0161】
【表31】

表13D
【0162】
図26は、マトリックス繊維が、繊維交点の少なくともいくつかの点で相互に結合していることを示す。図27及び表13Cのデータは、寸法の大きい方の繊維と寸法の小さい方の繊維との混合物が、少なくとも3つの局所モードを有する多モード型であることを示す。
【0163】
(実施例14)
実施例2の方法を用いて、エクソン(EXXON)PP3746Gポリプロピレンに、エレクトレット帯電添加剤として1%トリステアリルメラミンを加えたものからウェブを作製した。実行番号14−1F及び14−2Fでは、ゼニス(Zenith)の10cc/revのメルトポンプで、幅50.8cm(20インチ)の穿孔オリフィスメルトブローイングダイへのポリマーの流量を計測した。前記ダイの元々の0.3mm(0.012インチ)のオリフィスは、9個おきにオリフィスを0.6mm(0.025インチ)まで穿孔することによって修正し、それによって、寸法の小さい方のホール数と寸法の大きい方のホール数との9:1という比率、及び大きい方のホールの寸法と小さい方のホールの寸法との2:1という比率をもたらした。オリフィスの列は、10ホール/cm(25ホール/インチ)のホール間隔を有していた。熱風によって、繊維をダイチップで細化した。エアナイフでは、0.25mm(0.010インチ)のプラスセットバック、及び0.76mm(0.030インチ)の空気ギャップを採用した。ウェブ形成時点に、中庸なメッシュのコレクタースクリーンを通じて、ゼロから中程度までの減圧を行った。押出成形機からのポリマーの出力速度を0.18〜0.54kg/cm/時(2.0〜3.0ポンド/インチ/時)で変動させ、DCD(ダイとコレクターとの距離)を45.7〜52.1cm(18.0〜20.5インチ)で変動させ、気圧を必要に応じて調節して、下記の表14Aに示されているような坪量及びEFDを有するウェブを作製した。例えば、実施例14−3Fでは、10ホール/cm(25ホール/インチ)のホール間隔で0.38mm(0.015インチ)のオリフィスを有する幅50.8cm(20インチ)の穿孔オリフィスメルトブローイングダイを用いた。押出成形機からのポリマーの出力速度は0.54kg/cm/時(3.0ポンド/インチ/時)であり、DCD(ダイとコレクターとの距離)は78.7cm(31インチ)であり、気圧を必要に応じて調節して、下記の表14Aに示すような坪量及びEFDを有するウェブを作製した。
【0164】
【表32】

表14A
【0165】
本発明の数多くの実施形態を記載してきた。しかしながら、本発明から逸脱することなく、様々な変更がなされ得ることが理解される。従って、他の実施及び実施形態は、以下の特許請求の範囲に入る。

【特許請求の範囲】
【請求項1】
a)混じり合った連続的な単一成分ポリマーマイクロファイバーと、同じポリマー成分の、寸法の大きい方の繊維との二峰性質量分率/繊維寸法混合物を含む単一成分単層不織布ウェブを形成させる工程と、
b)前記ウェブを帯電させる工程と、
c)前記帯電ウェブを成形して、カップ形状多孔質単一成分単層マトリックスを形成させる工程で、前記マトリックスの繊維が、繊維交点の少なくともいくつかの点で相互に結合され、前記マトリックスが、1Nを超えるキングこわさを有する工程と、を含む成形レスピレーターを作製するプロセス。
【請求項2】
質量分率対繊維寸法(μm)のヒストグラムが、約10〜約50μmの寸法の大きい方の繊維のモードを示す、請求項1に記載のプロセス。
【請求項3】
質量分率対繊維寸法(μm)のヒストグラムが、約10〜約40μmの寸法の大きい方の繊維のモードを示す、請求項1に記載のプロセス。
【請求項4】
質量分率対繊維寸法(μm)のヒストグラムが、約1〜約5μmのマイクロファイバーのモードと、約12〜約30μmの寸法の大きい方の繊維のモードを示す、請求項1に記載のプロセス。
【請求項5】
繊維計数(度数)対繊維寸法(μm)のヒストグラムが、少なくとも2つのモードを示し、前記モードに対応する繊維寸法が、それよりも小さい繊維寸法の少なくとも50%の差がある、請求項1に記載のプロセス。
【請求項6】
約0.1〜約10μmの寸法を有するマイクロファイバーと、約10〜約70μmの寸法を有する、寸法の大きい方の繊維とを含むウェブを収集する工程を含む、請求項1に記載のプロセス。
【請求項7】
約0.1〜約5μmの寸法を有するマイクロファイバーと、約15〜約50μmの寸法を有する、寸法の大きい方の繊維とを含むを含むウェブを収集する工程を含む、請求項1に記載のプロセス。
【請求項8】
前記マイクロファイバーが、前記ウェブの繊維表面積の少なくとも20%を提供する、請求項1に記載のプロセス。
【請求項9】
前記マイクロファイバーが、前記ウェブの繊維表面積の少なくとも40%を提供する、請求項1に記載のプロセス。
【請求項10】
約80〜約250gsmの坪量を有するウェブを収集する工程を含む、請求項1に記載のプロセス。
【請求項11】
前記マトリックスが、少なくとも2Nのキングこわさを有する、請求項1に記載のプロセス。
【請求項12】
前記繊維形成材がポリプロピレンである、請求項1に記載のプロセス。
【請求項13】
前記帯電ウェブが、13.8cm/秒の面速度で流れる0.075μmの塩化ナトリウムエアゾールに暴露されると、少なくとも約0.4mm−1 H2Oの品質計数(QF)を有する、請求項1に記載のプロセス。
【請求項14】
混じり合った連続的な単一成分ポリマーマイクロファイバーと、同じポリマー組成の、寸法の大きい方の繊維との帯電二峰性質量分率/繊維寸法混合物を含むカップ形状多孔質単一成分単層マトリックスを含み、前記繊維が、繊維交点の少なくともいくつかの点で相互に結合され、前記マトリックスが、1Nを超えるキングこわさを有する、成形レスピレーター。
【請求項15】
質量分率対繊維寸法(μm)のヒストグラムが、約10〜約50μmの寸法の大きい方の繊維のモードを示す、請求項14に記載の成形レスピレーター。
【請求項16】
質量分率対繊維寸法(μm)のヒストグラムが、約10〜約40μmの寸法の大きい方の繊維のモードを示す、請求項14に記載の成形レスピレーター。
【請求項17】
質量分率対繊維寸法(μm)のヒストグラムが、約1〜約5μmのマイクロファイバーのモードと、約12〜約30μmの寸法の大きい方の繊維のモードとを示す、請求項14に記載の成形レスピレーター。
【請求項18】
繊維計数(度数)対繊維寸法(μm)のヒストグラムが、少なくとも2つのモードを示し、前記モードに対応する繊維寸法が、それよりも小さい繊維寸法の少なくとも50%の差がある、請求項14に記載の成形レスピレーター。
【請求項19】
前記マイクロファイバーが、約0.1〜約10μmの寸法を有し、前記の寸法の大きい方の繊維が、約10〜約70μmの寸法を有する、請求項14に記載の成形レスピレーター。
【請求項20】
前記マイクロファイバーが、約0.1〜約5μmの寸法を有し、前記の寸法の大きい方の繊維が、約15〜約50μmの寸法を有する、請求項14に記載の成形レスピレーター。
【請求項21】
前記マイクロファイバーが、前記ウェブの繊維表面積の少なくとも20%を提供する、請求項14に記載の成形レスピレーター。
【請求項22】
前記マイクロファイバーが、前記ウェブの繊維表面積の少なくとも40%を提供する、請求項14に記載の成形レスピレーター。
【請求項23】
前記ウェブが、約80〜約250gsmの坪量を有する、請求項14に記載の成形レスピレーター。
【請求項24】
前記マトリックスが、少なくとも2Nのキングこわさを有する、請求項14に記載の成形レスピレーター。
【請求項25】
85リットル/分で流れる0.075μmの塩化ナトリウムエアゾールに暴露されると、5%未満の最大貫通率を示す、請求項14に記載の成形レスピレーター。
【請求項26】
85リットル/分で流れる0.075μmの塩化ナトリウムエアゾールに暴露されると、1%未満の最大貫通率を示す、請求項14に記載の成形レスピレーター。
【請求項27】
前記繊維形成材が、ポリプロピレンである、請求項14に記載の成形レスピレーター。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate

【図26】
image rotate

【図27】
image rotate


【公表番号】特表2009−545388(P2009−545388A)
【公表日】平成21年12月24日(2009.12.24)
【国際特許分類】
【出願番号】特願2009−522924(P2009−522924)
【出願日】平成19年7月17日(2007.7.17)
【国際出願番号】PCT/US2007/073645
【国際公開番号】WO2008/085544
【国際公開日】平成20年7月17日(2008.7.17)
【出願人】(505005049)スリーエム イノベイティブ プロパティズ カンパニー (2,080)
【Fターム(参考)】