説明

便座装置

【課題】便座ヒータの突入電流を抑制することができる便座装置を提供する。
【解決手段】便座ヒータ450と温水ヒータ1020とを直列あるいは並列に切替駆動できる切替駆動ユニット1300を設け、便座ヒータ450駆動初期時は便座ヒータ450と温水ヒータ1020とを直列に接続し、その後便座ヒータ450と温水ヒータ1020を並列に駆動する構成を有する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、便座装置に関する。
【背景技術】
【0002】
人体の局部を洗浄する衛生洗浄装置の分野においては、人体に不快感を与えないようにするために、例えば、洗浄に用いる洗浄水を適切な温度に調整する加熱装置や人体との接触部の温度を適切な温度に調整する便座装置等様々な機能を有する装置が案出されている。なかでも、上記に示す便座装置によれば、使用者は冬場等気温が低い場合においても不快感を感じることなく便座に着座することができる(例えば、特許文献1参照)。
【0003】
特許文献1記載の衛生洗浄装置においては、マグネシウム合金により形成された便座ケーシングの内部に線状ヒータが設けられている。線状ヒータは、芯線、芯線に巻回される発熱線、ならびに芯線および発熱線を覆う被覆チューブにより構成される。線状ヒータは、便座ケーシングの裏面全体にわたって蛇行するように配置されており、発熱線の両端部に電源回路が接続されている。
【0004】
このような構成において、電源回路から発熱線に電圧が印加されることにより発熱線が発熱する。そして、その熱が被覆チューブを介して便座ケーシングに伝達される。それにより、便座ケーシングの温度が上昇し、使用者は快適に便座に着座することができる。
【特許文献1】特開2003−310485号公報
【発明の開示】
【発明が解決しようとする課題】
【0005】
ところで、上記のような従来の衛生洗浄装置においては、発熱線は立ち上がり特性を良くするため、抵抗値が低く、大電流を流す設計とされていた。特に、急速に昇温させるため発熱線の熱容量を大きくすると、設定温度に至る過程で、発熱線の線温度が低い時には抵抗値が更に低くなり通電開始時に突入電流が流れ、機器の電力規格値を越えるなどの課題があった。
【0006】
本発明の目的は、便座の発熱線への突入電流を抑えて、機器としての総電力を抑えながら、便座を迅速に昇温させることができる便座装置を提供することである。
【課題を解決するための手段】
【0007】
上記課題を解決するために、本発明の便座装置は、便座と、前記便座を支持し、便器上に載置される便座装置本体と、前記便座装置本体内部に設けた便座装置の各種機能ユニットと、前記便座の使用を検知すると前記便座の着座面を電力により昇温させ暖房する便座ヒータと、前記便座ヒータと前記各種機能ユニットに設けた電力負荷とを直列あるいは並列に選択的に接続する直列並列切替手段とを備え、前記直列並列切替手段は前記便座ヒータへの大電力投入開始時に前記電力負荷と直列接続するものである。
【0008】
これによって、大容量の便座ヒータへの通電開始時に、各種機能ユニットに設けた電力負荷のうちの少なくともいずれか1つ、すなわち機器に内蔵する他の電力負荷と直列に接続して、突入電流の発生を抑制することができ、機器としての総電力を抑えながら便座を迅速に昇温させることができる。
【発明の効果】
【0009】
本発明によれば、便座ヒータへの突入電流を確実に抑制することが可能な便座装置を提
供することができる。
【発明を実施するための最良の形態】
【0010】
第1の発明は、便座と、前記便座を支持し、便器上に載置される便座装置本体と、前記便座装置本体内部に設けた便座装置の各種機能ユニットと、前記便座の使用を検知すると前記便座の着座面を電力により昇温させ暖房する便座ヒータと、前記便座ヒータと前記各種機能ユニットに設けた電力負荷とを直列あるいは並列に選択的に接続する直列並列切替手段とを備え、前記直列並列切替手段は前記便座ヒータへの大電力投入開始時に前記電力負荷と直列接続するものである。
【0011】
これにより、便座の使用を検知して、着座直前に便座ヒータに通電して便座を暖房する構成の暖房便座において、便座ヒータと便座装置内に備えた各種機能ユニットのうちの電力負荷とを、前記便座ヒータへ大電力投入開始時のみ、直列接続して、便座ヒータの突入電流の発生を防止することができる。さらに、便座装置内の電力負荷と一時的に直列接続して、電力負荷が駆動されても、便座装置使用時であり、その駆動は有効である。
【0012】
第2の発明は、各種機能ユニットとして温水ヒータユニットを有し、電力負荷は前記温水ヒータユニットのヒータであることを特徴とするものである。これにより、電力負荷として温水ヒータユニットの温水ヒータを用いることで、従来であれば、着座時にプレヒートとして水回路系を温水使用直前に暖めておく動作をするのであるが、便座ヒータの通電開始時にプレヒートのさらに事前通電を行うものとなり、温水ヒータにとってはプレヒートでの暖めのエネルギーが補足されることになる。
【0013】
第3の発明は、直列並列切替手段は、便座ヒータへの大電力投入開始前と、大電力投入開始後の所定の時間経過後は、電力負荷と前記便座ヒータとを並列に接続を切り替えて、各々を別々に駆動することを特徴とするものである。これにより、並列接続に切り換えた後は、便座ヒータと、各種機能ユニット毎に適切な動作タイミングにて加熱動作を行うことができる。
【0014】
第4の発明は、前記直列並列切替装置は電磁リレーにより構成したものである。
【0015】
第5の発明は、人体検知手段を備え、前記人体検知手段により使用者がトイレ室へ入室したことを検知すると、便座ヒータへの大電力の投入を開始するものである。
【0016】
これにより、人体検知して即座に便座ヒータへの通電を開始し、突入電流を抑制して便座暖房するので、省エネで、安全な便座暖房が実現できる。
【0017】
以下、本発明の第1の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって、本発明が限定されるものではない。
【0018】
<1> 衛生洗浄装置およびそれを備えるトイレ装置の外観
図1は本発明の一実施の形態に係る衛生洗浄装置およびそれを備えるトイレ装置を示す外観斜視図である。トイレ装置1000はトイレットルーム内に設置される。
【0019】
トイレ装置1000において、便器700には衛生洗浄装置100が取り付けられる。衛生洗浄装置100は、本体部200、遠隔操作装置300、便座部400および蓋部500により構成される。蓋部500を除く衛生洗浄装置100の各構成要素が、後述の便座装置110を構成する。
【0020】
本体部200には、便座部400および蓋部500が開閉可能に取り付けられている。
また、本体部200には、図示しない洗浄水供給機構が設けられるとともに、後述の制御部90(図2)が内蔵される。
【0021】
図1では、本体部200の正面上部に設けられる着座センサ610が示されている。この着座センサ610は、例えば反射型の赤外線センサである。この場合、着座センサ610は、人体から反射された赤外線を検出することにより便座部400上に使用者が存在することを検知する。
【0022】
さらに、図1では、本体部200の正面下部に設けられる便器ノズル40が便器700の内側に突出している状態が示されている。この便器ノズル40は、上述の洗浄水供給機構に接続されている。
【0023】
洗浄水供給機構は、図示しない水道配管に接続されている。これにより、洗浄水供給機構は、水道配管から供給される洗浄水を便器ノズル40に供給する。それにより、便器ノズル40から便器700の内面の広い範囲に洗浄水が噴出される(便器プレ洗浄)。または、便器ノズル40から便器700の内面の背面側に洗浄水が噴出される(便器後部洗浄)。詳細は後述する。
【0024】
また、洗浄水供給機構は、後述のノズル部20に接続されている。これにより、洗浄水供給機構は、水道配管から供給される洗浄水をノズル部20に供給する。それにより、ノズル部20から使用者の局部に洗浄水が噴出される。
【0025】
遠隔操作装置300には、複数のスイッチが設けられている。遠隔操作装置300は、例えば便座部400上に着座する使用者が操作可能な場所に取り付けられる。
【0026】
入室検知センサ600は、トイレットルームの入口等に取り付けられる。入室検知センサ600は、例えば反射型の赤外線センサである。この場合、入室検知センサ600は、人体から反射された赤外線を検出した場合にトイレットルーム内に使用者が入室したことを検知する。
【0027】
本体部200の制御部90(図2)は、遠隔操作装置300、入室検知センサ600および着座センサ610から送信される信号に基づいて、衛生洗浄装置100の各部の動作を制御する。
【0028】
(1−a) 便座装置の構成
図2は、便座装置110の構成を示す模式図である。上述のように、便座装置110は、本体部200、遠隔操作装置300、便座部400および使用者がトイレ室へ入室したことを検知する人体検知手段である入室検知センサ600を備える。
【0029】
図2に示すように、本体部200は、制御部90、温度測定部401、ヒータ駆動部402、便座温調ランプRA1および着座センサ610を含む。
【0030】
また、便座部400は便座ヒータ450およびサーミスタ401aを備える。
【0031】
制御部90は、例えばマイクロコンピュータからなり、使用者の入室および便座部400の温度等を判定する判定部、タイマ機能を有する計時部、種々の情報を記憶する記憶部、ならびに、ヒータ駆動部402の動作を制御するための通電率切替回路等を含む。
【0032】
本体部200の温度測定部401は、便座部400のサーミスタ401aに接続されている。これにより、温度測定部401は、サーミスタ401aから出力される信号に基づ
いて便座部400の温度を測定する。以下、サーミスタ401aを通じて温度測定部401により測定される便座部400の温度を測定温度値と称する。
【0033】
また、本体部200のヒータ駆動部402は、便座部400の便座ヒータ450に接続されている。これにより、ヒータ駆動部402は便座ヒータ450を駆動する。
【0034】
本実施の形態において、便座装置110は次のように動作する。初期設定時では、制御部90がヒータ駆動部402を制御することにより、便座部400が例えば約18℃となるように温度調整される。このときの温度を待機温度と称する。
【0035】
ここで、使用者が遠隔操作装置300の便座温度調整スイッチ333を操作することにより、便座設定温度が制御部90に送信される。制御部90は、遠隔操作装置300から受信した便座設定温度を記憶部に記憶する。
【0036】
使用者がトイレットルームに入室すると、入室検知センサ600が使用者の入室を検知する。それにより、使用者の入室検知信号が制御部90に送信される。
【0037】
次に、通常の使用時の動作について説明する。制御部90の判定部は、入室検知センサ600からの入室検知信号により使用者のトイレットルームへの入室を検知する。そこで、判定部は、便座部400の測定温度値、および記憶部に記憶された便座設定温度に基づいて便座ヒータ450の駆動に関する特定のヒータ制御パターンを選択する。
【0038】
通電率切替回路は、選択されたヒータ制御パターンおよび計時部により得られる時間情報に基づいてヒータ駆動部402の動作を制御する。
【0039】
それにより、ヒータ駆動部402により便座ヒータ450が駆動され、便座部400の温度が便座設定温度へと瞬時に上昇される。
【0040】
(1−b) 便座部400の第1の例
図3は、便座部400の分解斜視図である。図4(a)は、第1の例の便座部400の便座ヒータ450の平面図、図4(b)は、図4(a)の領域C72の拡大図である。図5は、第1の例の便座部400の平面図である。図6は、図5の便座部400のC5−C5断面図である。
【0041】
図3に示すように、便座部400は、主としてアルミニウムにより形成された略楕円形状の上部便座ケーシング410、略馬蹄形状の便座ヒータ450および合成樹脂により形成された略楕円形状の下部便座ケーシング420を備える。
【0042】
以下、着座した使用者から見て前方側を便座部400の前部とし、着座した使用者から見て後方側を便座部400の後部とする。
【0043】
図4(a)および図5に示すように、便座ヒータ450は、前部の一部が切り取られた略馬蹄状に形成される。なお、便座ヒータ450は、略楕円形状を有してもよい。便座ヒータ450は、例えばアルミニウムからなる金属箔451,453および線状ヒータ460を含む。
【0044】
線状ヒータ460は、シート中央部SE3からシート一方端部SE1までの領域およびシート中央部SE3からシート他方端部SE2までの領域において上部便座ケーシング410の形状に合わせて蛇行形状に配設される。
【0045】
具体的には、線状ヒータ460は、左右6列程度のU字状部を有するように形成される。これらのU字状部は、着座した使用者の大腿部の方向にほぼ沿って並行に配置される。各U字状部における線状ヒータ460の間隔は5mm程度である。
【0046】
線状ヒータ460のヒータ始端部460aおよびヒータ終端部460bは、便座部400の後部の一方側から引き出されるリード線470にそれぞれ接続される。
【0047】
さらに、図4(b)に示すように、蛇行形状の線状ヒータ460の経路中に熱応力緩衝部となる複数の折曲部CUが設けられる。
【0048】
図6に示すように、上部便座ケーシング410の外側の側辺に沿った領域G1における線状ヒータ460の間隔ds1および内側の側辺に沿った領域G3における線状ヒータ460の間隔ds3は、上部便座ケーシング410の中央部の領域G2における線状ヒータ460の間隔ds2よりも小さく設定される。それにより、上部便座ケーシング410の外側の側辺に沿った領域G1および内側の側辺に沿った領域G3では、中央部の領域G2に比べて線状ヒータ460が密に配列される。
【0049】
(1−c) 便座部400の第2の例
図7(a)は、第2の例の便座部400の便座ヒータ450の平面図、図7(b)は、図7(a)の領域C77の拡大図、図8は、第2の例の便座部400の平面図である。
【0050】
図7(a)および図8に示すように、線状ヒータ460は、シート中央部SE3からシート一方端部SE1までの領域およびシート中央部SE3からシート他方端部SE2までの領域において上部便座ケーシング410の形状に合わせて左右方向に蛇行する蛇行形状に配設される。本例では、線状ヒータ460は、蛇行形状の曲げ部が上部便座ケーシング410の外側の側辺および内側の側辺の近傍に位置するように配置される。
【0051】
具体的には、線状ヒータ460が便座ヒータ450の後部の一方側からシート一方端部SE1の近傍まで左右に蛇行しながら延びることにより図7(b)の第1系列Aの蛇行形状が形成される。また、線状ヒータ460がシート一方端部SE1の近傍から左右に蛇行しながらシート中央部SE3の近傍を経由してシート他方端部SE2の近傍まで延びることにより第2系列Bの蛇行形状が形成される。さらに、線状ヒータ460がシート他方端部SE2の近傍からシート中央部SE3の近傍を経由して便座ヒータ450の後部の一方側まで延びることにより第1系列Aの蛇行形状が形成される。
【0052】
さらに、図7(b)に示すように、第1系列Aの蛇行形状の線状ヒータ460と第2系列Bの蛇行形状の線状ヒータ460とはほぼ平行に配列される。第1系列Aおよび第2系列Bの蛇行形状の線状ヒータ460はヒータ始端部460aからヒータ終端部460bまで連続している。
【0053】
線状ヒータ460のヒータ始端部460aおよびヒータ終端部460bは、便座部400の後部の一方側から引き出されるリード線470にそれぞれ接続される。
【0054】
本例では、線状ヒータ460は、便座ヒータ450の内側の側辺の近傍および外側の側辺の近傍に曲げ部が位置する蛇行形状を有する。それにより、曲げ部間の間隔が短い。したがって、熱膨張および熱収縮に起因する長さ変化が小さくなるので、たとえ線状ヒータ460が伸縮しても曲げ部で伸縮による歪が吸収および緩衝される。その結果、線状ヒータ460の熱膨張および熱収縮に起因するストレスが小さくなり、長期間の使用での破損を抑制することができる。
【0055】
また、線状ヒータ460の熱的伸縮が小さいので、金属箔451,453に対する密着性を長期間良好に維持することができる。それにより、便座ヒータ450の加温を効率的にかつ確実に行うことができる。
【0056】
また、図7(b)に示すように、曲げ部の長さLa,Lbおよび曲げ部間の間隔Sは、任意に調整することができる。それにより、便座ヒータ450の加熱分布を調整することができる。
【0057】
例えば、便座ヒータ450の外側および内側の側辺近傍の加熱密度が便座ヒータ450の中央部の加熱密度よりも高くなるように、曲げ部の長さLa,Lbおよび曲げ部間の間隔Sを調整する。それにより、便座ヒータ450の全領域において均等な暖房温度を維持することができる。
【0058】
また、本例では、第1系列Aの蛇行形状の線状ヒータ460での電流の向きが第1系列Bの蛇行形状の線状ヒータ460での電流の向きと逆になる。それにより、線状ヒータ460から発生する電磁波が互いが打ち消される。その結果、ノイズの発生が防止される。
【0059】
(1−d) 便座部400の第3の例
図9(a)は、第3の例の便座部400の便座ヒータ450の平面図、図9(b)は、図9(a)の一部の拡大断面図である。
【0060】
図9(a)に示すように、便座ヒータ450の後部の両側に線状ヒータ460が高い密度で蛇行する検温部450Tがそれぞれ形成される。図9(b)に示すように、一方の検温部450Tには、バイメタル等を用いた復帰型のサーモスタット450Qが設けられる。他方の検温部450Tには、温度ヒューズ等を用いた非復帰型のサーモスタット450Qが設けられる。
【0061】
例えば、便座ヒータ450が想定外の異常温度になると、復帰型のサーモスタット450Qが開くことにより、一時的に通電が停止される。また、復帰型のサーモスタット450Qが故障等を起こすことにより、便座ヒータ450が危険温度に達しようとすると、非復帰型のサーモスタット450Qが開くことにより、電力の供給が遮断される。
【0062】
ここで、温度過昇防止のためのサーモスタット450Qまたは温度ヒューズの動作温度設定は、実際に遮断したい温度よりも低くしておくことが望ましい。本実施の形態で説明している構成の便座は昇温速度が速い。したがって、安全装置(例えば、サーモスタット450Qまたは温度ヒューズ等)の動作速度によっては、実際に通電が停止されたタイミングで便座表面が予め設定された温度よりもさらに高い温度になってしまっている可能性があるためである。人体の皮膚のうち、普段露出していない臀部や大腿部の皮膚は他の部分の皮膚に比べて敏感である。これにより、上記のような、より高い安全設計が重要となる。
【0063】
(1−e) 便座部400の第4の例
図10は、第4の例の便座部400の便座ヒータ450の平面図である。
【0064】
図10に示すように、シート中央部SE3から左シート一方端部SE1までの領域に配列される線状ヒータ460と、シート中央部SE3からシート他方端部SE2までの領域に配列される線状ヒータ460とが互いに分離されている。
【0065】
一方の線状ヒータ460のヒータ始端部460aおよびヒータ終端部460bは、便座部400の後部の一方側から引き出されるリード線470にそれぞれ接続される。他方の
線状ヒータ460のヒータ始端部460cおよびヒータ終端部460dは、便座部400の後部の他方側から引き出されるリード線470にそれぞれ接続される。
【0066】
(1−f) 便座ヒータ450の構造の一例
図11は、上部便座ケーシング410に取り付けられる便座ヒータ450の構造の一例を示す断面図である。
【0067】
図11に示すように、上部便座ケーシング410は、例えば厚さ1mmのアルミニウム板413により形成される。アルミニウム板413の上面には、アルマイト層412および表面化粧層411が形成される。表面化粧層411の上面が着座面410Uとなる。また、アルミニウム板413の下面には、塗装膜414が形成される。塗装膜414は、例えば膜厚40μmおよび150℃の耐熱性を有するポリエステル粉体塗装膜である。
【0068】
なお、アルミニウム板413の代わりに、銅板、ステンレス板、アルミニウムめっき鋼板および亜鉛アルミニウムめっき鋼板のうちいずれかまたは複数を用いてもよい。
【0069】
塗装膜414の下面に粘着層452aを介して例えばアルミニウムからなる金属箔451が貼着される。金属箔451の膜厚は、例えば50μmである。
【0070】
線状ヒータ460は、断面円形の発熱線463a、エナメル層463bおよび絶縁被覆層462により構成される。断面円形の発熱線463aの外周面がエナメル層463bおよび絶縁被覆層462で順に被覆される。発熱線463aおよびエナメル層463bによりエナメル線463が構成される。
【0071】
発熱線463aは、例えば0.16〜0.25mmの直径を有し、銅または銅合金からなる。本例では、発熱線463aとして、直径0.176mmの4%Ag−Cu合金からなる高抗張力型ヒータ線が用いられる。抵抗値は0.833Ω/mである。
【0072】
エナメル層463bは、例えば180〜300℃の耐熱性を有するポリエステルイミド(PEI)からなる。エナメル層463bの膜厚は、20μm以下であり、本例では12〜13μmである。このようなエナメル線463は、エナメル層463bの膜厚が極薄い0.01〜0.02mm程度であっても、電気用品技術基準である1000Vで1分間以上の電気絶縁耐圧性能を十分確保することができる。また、エナメル層463bの材料として、ポリイミド(PI)またはポリアミドイミド(PAI)を用いてもよい。
【0073】
絶縁被覆層462は、例えば260℃の耐熱性を有するパーフロロアルコキシ混合物(以下PFAと称する)等のフッ素樹脂からなる。絶縁被覆層462の厚みは、例えば0.1〜0.15mmである。PFAからなる絶縁被覆層462の形成は、押出し加工により行うことができる。この場合、絶縁被覆層462の厚みが0.05〜0.1mmと薄くても、雷サージにも耐える電気絶縁耐圧性能を確保することができる。
【0074】
なお、絶縁被覆層462の材料として、ポリイミド(PI)またはポリアミドイミド(PAI)を用いてもよい。
【0075】
線状ヒータ460の外径は、例えば0.46〜0.50mmである。線状ヒータ460の電力密度は、例えば0.95W/cmである。
【0076】
線状ヒータ460は、粘着層452bおよび例えばアルミニウムからなる金属箔453で覆うように金属箔451に取り付けられる。金属箔453の膜厚は、例えば50μmである。
【0077】
このように、単一のエナメル線463上に絶縁被覆層462を形成することにより二重の絶縁構造を確保することができる。
【0078】
また、絶縁被覆層462は比較的薄くても十分な絶縁性が得られる。したがって、絶縁被覆層462の厚さを薄くすることができる。上記の例では、線状ヒータ460の樹脂層(エナメル層463bおよび絶縁被覆層462)の厚さは、0.12mm程度であり、極めて薄い。この場合、発熱線463aから金属箔451および便座ケーシング410への熱伝導を極めて俊敏に行うことができる。
【0079】
ちなみに従来の便座装置においては、線状ヒータのシリコーンゴムまたは塩化ビニール等からなる被覆チューブの厚さは、上記の例の約10倍の1mm程度ある。このような被覆チューブの熱伝導速度は桁違いに遅く、便座の昇温速度を速くすることはできなかった。
【0080】
従来の便座装置において便座の昇温速度を無理やり速くするためにヒータ線に大きい電力を供給した場合、断熱状態でヒータ線の温度を高くした場合と同様に、被覆チューブが溶融および焼損する。そのため、このような方法による便座の昇温は実用できなかった。
【0081】
一方、本例のように耐熱性能に優れたエナメル線463をヒータ線として使用した場合、十分短時間で便座を昇温でき、かつ電気絶縁性および安全性を確保できる。したがって、本例の構造は、種々の便座装置に有効に実用することができる。
【0082】
また、本例の構造では、エナメル層463bおよび絶縁被覆層462等からなる樹脂層を0.1〜0.4mm程度の薄い厚さで形成できる。それにより、発熱線463aおよび樹脂層の絶対温度が低い温度に維持された状態で、便座を急速に昇温させることができる。その結果、高価な耐熱絶縁材料でなく比較的安価な絶縁材料を用いることができる。
【0083】
また、本例においては、線状ヒータ460の熱を便座ケーシング410に効率よく伝達するために、線状ヒータ460をアルミ箔451,452で挟んでいる。ここで、本例の
線状ヒータ460においては、エナメル層463bおよび絶縁被覆層462を薄くできるので、線状ヒータ460の外径を細く(約φ0.2〜φ0.4)できる。この場合、アルミ箔451とアルミ箔452とを貼り合わせる際に、アルミ箔451とアルミ箔452との間の空気層を小さくすることができるとともに、アルミ箔451,452のしわを少なくすることができる。それにより、エナメル線463の局所高熱が抑制され、エナメル線463の断線および電気絶縁層(エナメル層463bおよび絶縁被覆層462)の損傷が防止される。その結果、便座装置110の長寿命化が可能になる。
【0084】
また、エナメル線463を細くできるので、便座ヒータ450の重量を低減でき、便座開閉トルクを小さくすることができる。それにより、便座開閉用の電動開閉ユニットを小型化でき、便座装置110の小型化が可能となる。
【0085】
(1−g) 便座ヒータ450の構造の他の例
図12は、上部便座ケーシング410に取り付けられる便座ヒータ450の構造の他の例を示す断面図である。
【0086】
図12の例では、複数のエナメル線463が撚り合わされ、絶縁被覆層462で被覆されている。各エナメル線463は、例えば直径0.1mmの発熱線463aおよび膜厚10μmのエナメル層463bにより構成される。
【0087】
このように、複数のエナメル線463の束の周囲を取り囲むように絶縁被覆層462を形成することにより二重の絶縁構造を確保することができる。
【0088】
なお、図12の例では、7本のエナメル線463が撚り合わされているが、エナメル線463の数は7本に限定されない。例えば、2本のエナメル線463およびエナメル層463bにより被覆されていない1本の発熱線463a(以下、単体発熱線463aと称する)を撚り合わせてもよい。
【0089】
この構成においては、例えば、局所高熱等により上記2本のエナメル線463のうちの一方のエナメル層463bが絶縁破壊された場合、そのエナメル線463の発熱線463aと、上記の単体発熱線463aとが電気的に接続される。したがって、この構成によれば、単体発熱線463aを絶縁破壊検知線として用いることにより、エナメル層463bの絶縁破壊を検知することができる。それにより、2本のエナメル線463のうちいずれかのエナメル線463のエナメル層463bが絶縁破壊された場合には、すべての発熱線463aへの通電を遮断することができる。
【0090】
つまり、複数本の撚り線のうち少なくとも1本をエナメル層463bのない非絶縁電線とすることにより、局所高熱等によりいずれかのエナメル線463のエナメル層463bが絶縁破壊された場合にも、その絶縁破壊を迅速に検知することができる。それにより、安全に発熱線463aへの通電を遮断することができる。
【0091】
なお、上記においては、複数のエナメル線463を撚り合わせて用いた場合について説明したが、複数のエナメル線463を単に束ねて用いてもよい。
【0092】
また、複数本の発熱線463aのうちの所定数の発熱線463aに流れる電流の向きと残りの発熱線463aに流れる電流の向きとを逆にしてもよい。この場合、一方向に流れる電流により発生する磁界と他方向に流れる電流により発生する磁界とが打ち消し合う。それにより、漏洩磁界の発生およびノイズの発生を抑制することができる。
【0093】
(1−h) 便座ヒータ450の構造のさらに他の例
図13は、上部便座ケーシング410に取り付けられる便座ヒータ450の構造のさらに他の例を示す断面図である。
【0094】
図13の例では、金属箔451と粘着層452bとの間に耐熱絶縁層455が形成される。また、粘着層452bと金属箔453との間に耐熱絶縁層456が形成される。耐熱絶縁層455は、例えば150℃の耐熱性を有する膜厚12〜25μmのポリエチレンテレフタレート(PET)からなる。同様に、耐熱絶縁層455は、例えば150℃の耐熱性を有する膜厚12〜25μmのPETからなる。
【0095】
このように、単一のエナメル線463上に絶縁被覆層462を形成するとともに耐熱絶縁層455,456を形成することにより三重絶縁構造を確保することができる。
【0096】
なお、図13の便座ヒータ450において、単一のエナメル線463の代わりに複数のエナメル線463の束を用いてもよい。
【0097】
(1−i) 発熱線463aの被覆厚さ
図14は、発熱線463aの被覆厚さと便座部400の各部の温度上昇との関係の測定結果を示す図である。図14において、横軸は発熱線463aの被覆厚さを表し、縦軸は通電開始から6秒後の温度上昇値[K]を表す。
【0098】
測定には、図13の構造を有する便座ヒータ450を用いた。発熱線463aの被覆厚さは、発熱線463aとアルミニウム板413との間の厚さであり、本例では、エナメル層463b、耐熱絶縁層455、粘着層452aおよび塗装膜414の合計の厚さである。
【0099】
ここでは、6秒で約10Kの便座部400の着座面410Uの温度上昇を実用昇温性能とし、6秒で約13Kの温度上昇を目標昇温性能とした。
【0100】
図14において、丸印は便座部400の着座面410Uの温度上昇値であり、三角印はアルミニウムからなる金属箔451の温度上昇値であり、四角印は絶縁被覆層462の温度上昇値である。
【0101】
図14の結果から、発熱線463aの被覆厚さが0.4mm以下の場合には、実用昇温性能が得られることがわかる。また、発熱線463aの被覆厚さが0.2mm以下の場合には、目標昇温性能が得られることがわかる。したがって、発熱線463aの被覆厚さは、0.4mm以下であることが好ましく、0.2mm以下であることがより好ましい。
【0102】
(1−j) 絶縁被覆層462の材料
次に、図13の構造を有する3種類の便座ヒータ450に交流100Vの電圧を印加して発熱線463aの温度を測定した。
【0103】
第1の便座ヒータ450では、絶縁被覆層462の材料として膜厚100μmおよび耐熱温度260℃のPFAを用い、耐熱絶縁層455,456の材料としてそれぞれ膜厚25μmおよび耐熱温度150℃のPETを用いた。第2の便座ヒータ450では、絶縁被覆層462の材料として膜厚35〜40μmおよび耐熱温度350℃のPI巻被覆を用い、耐熱絶縁層455,456の材料としてそれぞれ膜厚25μmおよび耐熱温度150℃のPETを用いた。第3の便座ヒータ450では、絶縁被覆層462の材料として膜厚35〜40μmおよび耐熱温度350℃のPI巻被覆を用い、耐熱絶縁層455,456の材料としてそれぞれ膜厚3〜6μmおよび耐熱温度90℃のアクリル樹脂を用いた。
【0104】
第1の便座ヒータ450については、発熱線463aの温度がPFAからなる絶縁被覆層462の耐熱温度260℃よりも低い162.3℃となった。第2の便座ヒータ450については、発熱線463aの温度がPIからなる絶縁被覆層462の耐熱温度350℃よりも低い155.4℃となった。第3の便座ヒータ450については、発熱線463aの温度がPIからなる絶縁被覆層462の耐熱温度350℃よりも低い125.7℃となった。
【0105】
これらの結果から、絶縁被覆層462の材料として、PFAだけでなく、PI等の他の樹脂を用いることができることがわかった。
【0106】
(1−k) 線状ヒータ460とリード線470との接続方法
図15は、線状ヒータ460とリード線470との接続方法を示す図である。図16は、線状ヒータ460とリード線470との接続部の断面図である。図17は、熱カシメの方法を示す図である。
【0107】
図15および図16に示すように、リード線470の芯線は端子471に接続されている。端子471がU字形状に折曲され、線状ヒータ460の屈曲された先端部が端子471のU字形状の折曲部内に挿入される。
【0108】
この状態で、図17に示すように、端子471のU字形状の折曲部を一対の電極EL1
,EL2で挟み込む。一対の電極EL1,EL2で端子471のU字形状の折曲部を押圧しつつトランスTSから電極EL1,EL2を通して端子471および線状ヒータ460に電流を供給する。それにより、図16に示すように、絶縁被覆層462および線状ヒータ460のエナメル層463bが溶融する。その結果、線状ヒータ460の発熱線463aが接触点463Cで端子471に接触する。
【0109】
図15に示すように、リード線470の端子471と線状ヒータ460との接続部475には例えば厚さ12μmのポリイミド薄膜からなる耐熱シート480が2〜3回巻き付けられる。さらに、リード線470の端子471と線状ヒータ460との接続部475は、シリコーン樹脂で被覆され、図4〜図13の金属箔451,453間に挟み込まれる。
【0110】
このように、線状ヒータ460の発熱線463aの熱が金属箔451,453およびリード線470の端子471に伝導する。それにより、発熱線463aの局部過熱および断線が防止され、便座ヒータ450の均熱性が確保される。
【0111】
また、線状ヒータ460の発熱線463aとリード線470の端子471との接続部475が耐熱シート480およびシリコーン樹脂の二重絶縁構造を有する。この場合、接続部475の熱が耐熱シート480およびシリコーン樹脂を通して便座ヒータ450の金属箔451,453に伝導する。それにより、十分な絶縁性を確保しつつ発熱線463aの局部過熱および断線が防止される。
【0112】
さらに、線状ヒータ460の発熱線463aとリード線470の端子471とが熱カシメにより接続されるので、薄く確実な電気的接続が実現される。また、発熱線463aの浮き上がりが防止されるので、発熱線463aの局部過熱および断線が防止される。
【0113】
なお、便座部400の安全性確保のために、便座装置110には2つの安全回路が内蔵されている。1つの安全回路は、便座ヒータ450の一方のリード線470とプリント基板230内部の便座ヒータ絶縁破壊検知回路との間に接続され、他の1つの安全回路は、便座ヒータ450の両方のリード線470と便座ヒータ断線検出回路との間に接続されている。いずれの安全回路も便座ヒータ402に異常が発生したときに使用者の感電を防止するために用いるものである。
【0114】
便座ヒータ絶縁破壊検知回路は、便座ヒータ450が異常発熱した際の絶縁被覆層462溶融時に便座ヒータ450と金属箔451の間に電流が流れることを検出するものである。また、便座ヒータ断線検出回路は、便座ヒータ450両端に発生する電圧波形が便座ヒータ450断線時には発生しなくなることを検出するものである。ヒータ駆動部402は、2つの安全回路の両方が正常状態を検出しているときにのみ便座ヒータ450に通電を行う。
【0115】
(1―l) 便座ヒータと各種機能ユニットに設けた電力負荷との接続方法
本体部200には機能ユニットとして、温水加熱ユニット1000、乾燥ユニット1100、部屋暖房ユニット1200などが設けられており、これら各種機能ユニットには、各々温水ヒータ1020、乾燥ヒータ1120、部屋暖房ヒータ1220が組み込まれ、各々のヒータはそれぞれ電力負荷としても機能するよう構成されている。
【0116】
図19に便座ヒータ450と温水加熱ユニット1000の温水ヒータ1020との接続方法を示す。便座ヒータ450と温水ヒータ1020とは直列並列切替ユニット1300を介して便座ヒータ450と温水ヒータ1020とが直列に接続された状態でヒータ駆動部402に駆動される状態と、便座ヒータ450と温水ヒータ1020とが並列にそれぞれ便座ヒータ駆動部402と温水ヒータ駆動部1020で駆動される状態とが選択可能と
なっている。便座ヒータ450は1200Wの入力が定格であるが、初期電力投入時環境温度が室温レベルの場合,線状ヒータ460の抵抗値が低いため突入電流が流れてヒータ入力が1400W程度に達し定格値を大幅に超えてしまうが、、便座ヒータ450に他の電力負荷である温水ヒータ1020を直列並列切替ユニットにより直列に接続することにより、突入電流を抑えることができる。
【0117】
温水ヒータ1020と直列に接続した場合の動作は、入室検知センサー600により人体を検知して温水ヒータ1020と直列に接続された便座ヒータ450に電力を投入すると共に、温水ヒータは、水回路系の余熱動作をさせ、水回路系の余熱動作終了後、便座ヒータ450に直列に接続された温水ヒータ1020を、直列並列切替ユニット1300により便座ヒータ450と便座ヒータ駆動部402とを直接接続し、便座ヒータ402に直接電力を投入することにより、便座ヒータ450への大電流投入は便座ヒータ450が十分に加熱された後になるため、便座ヒータ450への突入電流を抑制することできる。
【0118】
つぎに直列並列ユニット1300の具体構成については図20に示すように電磁リレーA1310と電磁リレーB1320を配置し、便座ヒータ450の配線の片側のラインに電磁リレーA1310を投入し、温水ヒータ1020の両側を電磁リレーA1310および電磁リレーB1320にて直列並列を切り替えることにより、便座ヒータ450と温水ヒータ1020を単独動作の並列接続と直列に接続した動作とを切替動作させることができる。
【0119】
(1−m) 便座ヒータ450の動作
次に、便座ヒータ450の動作について説明する。便座ヒータ450のヒータ始端部460aとヒータ終端部460bとの間に一定の電圧が印加されると、内部の発熱線463aを電流が流れ、この発熱線463aが発熱する。このとき、発生した熱は、発熱線463aからエナメル層463bおよび金属箔451,453を通って上部便座ケーシング410の着座面410Uに伝導する。
【0120】
線状ヒータ460は、絶縁被覆層462が260℃程度の耐熱性を有するPFAにより形成されるため、絶縁被覆層462の厚みが例えば0.1〜0.15mmと薄くても、発熱線463aの100〜150℃への急速昇温時にもエナメル層463bが破壊されることが防止される。したがって、線状ヒータ460から着座面410Uへの熱伝導を迅速に進行させることにより、着座面410Uを急速に昇温させることができる。
【0121】
この場合、線状ヒータ460への通電開始から所定の最適温度に到達するのは5〜6秒と短時間であり、例えば、使用者がトイレットルームに入室して着座面410Uに着座するまでに要する7〜8秒より短時間である。したがって、使用者がトイレットルームに入室したことを入室検知センサ600により検知されると同時に線状ヒータ460に通電を開始しても、使用者が着座するまでには着座面410Uを十分に最適温度に到達させることができる。
【0122】
さらに、図6の着座面410Uの内側の領域G3および外側の領域G1は、中央部の領域G2に比べて放熱性が高い。本実施の形態では、内側の領域G3および外側の領域G1では、中央部の領域G2に比べて線状ヒータ460が密に配列される。したがって、使用者が着座面410Uに着座した瞬間に温度むらおよび冷感を感じることがない。
【0123】
一方、線状ヒータ460は、全長10m程度と長く、発熱線463aの急速昇温に伴って急速な膨張が発生し、結果として長さ方向に伸張する。また、通電が停止された場合は、発熱線463aの温度が低下し、収縮により元の長さに戻る。つまり、発熱線463aには熱膨張および熱収縮による熱応力歪が反復して形成される。
【0124】
線状ヒータ460と金属箔451,453との密着が弱く、または線状ヒータ460と着座面410Uとの間に隙間が形成された場合、熱応力歪全体がそれらのうちの最も動きやすい箇所に集中する。その結果、線状ヒータ460に比較的強い屈伸運動が発生し、その応力疲労の蓄積により発熱線463aの破断といった線状ヒータ460の破損が発生する。
【0125】
本例では、線状ヒータ460に熱応力緩衝部として複数の折曲部が形成されるので、これらの折曲部が全体の熱応力歪を細かく分散させるとともに、折曲部が熱応力歪を吸収する作用をも果たす。したがって、折曲部での熱応力は極めて小さく、結果として微小な屈伸の発生に留まる。その結果、発熱線463aの破断という事態には至らず、線状ヒータ460の長寿命化および耐久性が向上する。
【0126】
なお、比較的放熱の多い着座面410Uの内側の領域G3および外側の領域G1では、中央部の領域G2に比べて線状ヒータ460の間隔を大きくし、折曲部の数を少なくてもよい。
【0127】
上記のように、線状ヒータ460の全長はほぼ10mと長く、かつ線状ヒータ460には折曲部が形成される。そのため、着座面410Uへの線状ヒータ460の装着時に、これらの線状ヒータ460の配列を維持および固定化する必要がある。線状ヒータ460を金属箔451,453で挟持した状態で線状ヒータ460を金属箔451,453に密着させることによりユニット化された便座ヒータ450が構成される。したがって、線状ヒータ460の配列を強固に維持した状態で線状ヒータ460を着座面410Uに接着することができる。
【0128】
また、金属箔451,453により線状ヒータ460が挟持されるように構成されるので、金属箔451,453により均等に熱分散が行われる。それにより、線状ヒータ460が高温化することを防止することができる。また、着座面410Uが均熱化されるとともに、便座ヒータ450の破損が防止される。
【0129】
(1−n) 便座装置110の通電シーケンス
便座ヒータ450の駆動の制御は、便座ヒータ450を駆動する電力を大きく3つに変化させることにより行う。
【0130】
例えば、便座部400を第1の温度勾配で昇温させる場合、図2のヒータ駆動部402は約1200Wの電力で便座ヒータ450を駆動する(1200W駆動)。
【0131】
前述のように、便座ヒータ450の抵抗値は0.833Ω/mであり、全長10mである。したがって、便座ヒータ450の抵抗値は8.33Ωとなる。この抵抗値を有する便座ヒータ450に交流100Vが印加されると、(100V×100V)÷8.33Ω=1200Wの電力が発生する。すなわち、便座ヒータ450に交流電源の全周期に渡って電流を流すことにより、1200Wの電力が発生する。
【0132】
また、便座部400を第1の温度勾配よりもやや緩やかな第2の温度勾配で昇温させる場合、ヒータ駆動部402は約600Wの電力で便座ヒータ450を駆動する(600W駆動)。さらに、便座部400の温度を一定に保つ場合、ヒータ駆動部402は約50Wの電力で便座ヒータ450を駆動する(低電力駆動)。なお、低電力駆動とは、1200W駆動および600W駆動に比べて十分に低い電力(例えば、0W〜50Wの範囲内の電力)により便座ヒータ450を駆動することをいう。
【0133】
1200W駆動、600W駆動および低電力駆動の切替えは、制御部90の通電率切替回路が、ヒータ駆動部402から便座ヒータ450への通電を制御することにより行われる。
【0134】
ヒータ駆動部402には図示しない電源回路から交流電流が供給されている。そこで、ヒータ駆動部402は、通電率切替回路から与えられる通電制御信号に基づいて供給された交流電流を便座ヒータ450に流す。
【0135】
図18は、便座ヒータ450の駆動例および便座部400の表面温度の変化を示す図である。
【0136】
図18においては、便座部400の表面温度と時間との関係を示すグラフと、便座ヒータ450を駆動する際の通電率と時間との関係を示すグラフとが示されている。これら2つのグラフの横軸は共通の時間軸である。
【0137】
本例では、使用者が予め暖房機能をオンし、便座設定温度を高く(38℃)設定した場合を想定する。
【0138】
冬季等室温が待機温度である18℃よりも低い場合、制御部90(図2)は、便座部400の温度を18℃となるように温度調整する。このように、制御部90は、入室検知センサ600により使用者の入室が検知されるまでの待機期間D1の間、便座部400の表面温度が18℃で一定となるように、便座ヒータ450の低電力駆動を行う。
【0139】
制御部90は、時刻t1で入室検知センサ600により使用者の入室が検知された場合、突入電流低減期間D2の間、600W駆動を行う。なお、この600W駆動は、突入電流を十分に低減するために行う。この場合、便座部400の表面温度はやや緩やかな第2の温度勾配で上昇される。
【0140】
突入電流の抑制については、温水ヒータ1020と直列並列切替ユニット1300により通電開始時のみ、直列接続とし突入電流を抑えても良い。温水ヒータ1020と直列に接続した場合の動作は、入室検知センサー600により人体を検知して温水ヒータ1020と直列に接続された便座ヒータ450に電力を投入すると共に、温水ヒータ1020は、水回路系の余熱動作をさせ、水回路系の余熱動作終了後、便座ヒータ450に直列に接続された温水ヒータ1020の接続を、直列並列切替ユニット1300により便座ヒータ450に直接電力を投入する接続と切り替えることができるため、便座ヒータ450への突入電流を抑制することができる。
【0141】
その後、制御部90は、突入電流低減期間D2の経過後の時刻t2で、便座ヒータ450の1200W駆動を開始し、第1の昇温期間D3の間便座ヒータ450の1200W駆動を継続する。この場合、便座部400の表面温度は上述の第1の温度勾配で上昇される。
【0142】
ここで、便座部400の表面温度は急激に上昇される。便座ヒータ450の1200W駆動は、便座部400の表面温度が所定温度(例えば30℃)に達するまで行われる。もちろん、この所定温度は暖房温度として設定された温度であってもよいが、この所定温度は暖房温度にまで十分に上昇した温度でなく、それよりも低くても、使用者が着座した際に冷たいという不快感情を生じない最低限界の温度(限界温度)であればよい。この限界温度は、発明者らの実施した被験者実験により約29℃であることがわかっている。
【0143】
このように、第1の昇温期間D3においては、便座部400の表面温度が1200W駆
動により迅速に所定温度まで上昇される。それにより、使用者は便座部400を冷たいと感じることなく便座部400に着座することができる。
【0144】
また、便座ヒータ450と温水ヒータ1020とは直列並列切替ユニット1300より直列に接続することを選択することが可能となっている。便座ヒータ450は1200Wの入力が定格であるが、初期電力投入時、環境温度が室温レベルの場合,線状ヒータ460の抵抗値が低いため突入電流が流れてヒータ入力が1400W程度に達する可能性があるが、便座ヒータ450と他の電力負荷を直列に接続することにより、突入電流を抑えることができる。温水ヒータ1020と直列に接続した場合は、人体検知して便座ヒータ450に電力を投入すると共に、水回路系の余熱動作をさせて便座の昇温をスタートさせ、その後、便座ヒータ450に直列に接続された温水ヒータ1020の接続を並列の接続に切替え、直接電力を投入することにより、便座ヒータ450への突入電流を抑制することができる。
【0145】
便座の昇温が終了し、人体の着座が検知されてから、温水ヒータ1020へのプレヒート(着座後の動作の説明の部分で説明)を行う。このように、便座ヒータ450の突入電流防止と同時に温水ヒータ1020への通電と、着座時のプレヒートの2度の断続的な通電、すなわち2段階のプレヒートを行うことで、温水ヒータ全体へ熱が行渡り、冷めにくく十分な予熱も行える。もちろん、便座ヒータ450への突入電流防止のための通電については、便座ヒータ450の制御を優先し、温水ヒータ1020へのプレヒートとしての十分な通電と昇温は着座時に行えばよい。
【0146】
また、上述のように、便座部400の表面温度を急激に上昇させると、その温度変化にオーバーシュートが生じる。しかしながら、本例では、便座部400の表面温度が所定温度に達したときに便座ヒータ450の1200W駆動を600W駆動に切替える。したがって、便座部400の表面温度の変化がオーバーシュートした場合でも、その表面温度は便座設定温度を超えない。その結果、使用者が着座時に便座部400を熱いと感じることが防止される。
【0147】
続いて、制御部90は、第1の昇温期間D3の経過後の時刻t3で、便座ヒータ450の600W駆動を開始し、第2の昇温期間D4の間便座ヒータ450の600W駆動を継続する。この場合、便座部400の表面温度は上述の第2の温度勾配で上昇される。
【0148】
便座ヒータ450の600W駆動は、便座部400の表面温度が便座設定温度(38℃)に達するまで行われる。
【0149】
第2の温度勾配は第1の温度勾配よりも緩やかである。これにより、便座部400の表面温度の変化に大きなオーバーシュートが生じることが防止される。
【0150】
制御部90は、第2の昇温期間D4の経過後の時刻t4で、便座ヒータ450の低電力駆動を開始し、第1の維持期間D5の間便座ヒータ450の低電力駆動を継続する。それにより、便座部400の表面温度が便座設定温度で一定となる。
【0151】
制御部90は、時刻t5で着座センサ290により使用者の便座部400への着座が検知された場合、低電力駆動の通電率を低下させ、第1の着座期間D6の間便座部400の表面温度が便座設定温度を維持するように便座ヒータ450の低電力駆動を継続する。本例では、第1の着座期間D6は約10分に設定される。
【0152】
また、制御部90は、第1の着座期間D6の経過後の時刻t6で、低電力駆動の通電率をさらに低下させ、第2の着座期間D7の間便座部400の表面温度が便座設定温度より
もやや低い温度(36℃)に低下するように便座ヒータ450の低電力駆動を継続する。本例では、第2の着座期間D7は約2分に設定される。
【0153】
制御部90は、第2の着座期間D7の経過後の時刻t7で、低電力駆動の通電率をさらに低下させ、第2の維持期間D8の間便座部400の表面温度が便座設定温度よりもやや低い温度(36℃)で一定となるように便座ヒータ450の低電力駆動を継続する。以下の説明では、第2の維持期間D8において一定に維持される期間便座部400の表面温度、すなわち便座設定温度よりもやや低い温度を維持温度と称する。
【0154】
このように、本例では、使用者が便座部400に着座した後、制御部90が徐々に便座部400の表面温度を低下させる。それにより、使用者が低温やけどすることが防止される。
【0155】
制御部90は、時刻t8で着座センサ290により使用者が便座部400から離れたことを検知すると、停止期間D9の間便座ヒータ450の駆動を停止する。それにより、便座部400の表面温度が低下する。
【0156】
制御部90は、便座部400の表面温度が18℃に達した時刻t9で、再び便座ヒータ450の低電力駆動を開始し、便座部400の表面温度が18℃で一定となるように待機期間D10の間便座ヒータ450の低電力駆動を維持する。
【0157】
このように温度勾配が徐々に緩やかになる場合、便座部400の温度変化により生じるオーバーシュートを十分に小さくすることができる。
【0158】
本例では、使用者の便座部400への着座後、便座ヒータ450の駆動に用いる電力を調整することにより便座部400の表面温度を徐々に低下させているが、便座ヒータ450の駆動は使用者の便座部400への着座時に停止してもよい。この場合においても、使用者が低温やけどすることが防止される。
【0159】
上記のように、本例では、時刻t8に使用者が便座部400から離れたことが検知されることにより便座ヒータ450の駆動が停止される旨を説明したが、便座ヒータ450の駆動の停止は、使用者が便座部400から離れたことが検知された時刻t8から一定時間(例えば1分間)経過後に行われてもよい。この場合、一度使用者が便座部400から離れた後に再度便意をもよおし、再度便座部400に着座する際にも、便座部400の表面温度が低下しない。これにより、使用者は快適に便座部400に着座することができる。
【0160】
1200W駆動時、600W駆動時および低電力駆動時における便座ヒータ450への通電状態を通電率切替回路の通電制御信号とともに説明する。
【0161】
以下の説明において、通電率とは交流電流の1周期に対して便座ヒータ450に交流電流を流す時間の割合をいう。
【0162】
図21(a)は1200W駆動時に便座ヒータ450を流れる電流の波形図、図21(b)は1200W駆動時に通電率切替回路からヒータ駆動部402に与えられる通電制御信号の波形図である。
【0163】
図21(b)に示すように、1200W駆動時における通電制御信号は常に論理「1」となる。ヒータ駆動部402は通電制御信号が論理「1」のときに電源回路から供給される交流電流を便座ヒータ450に流す(図21(a)太線部)。それにより、全周期の期間に渡って交流電流が便座ヒータ450に流れる。その結果、便座ヒータ450が約12
00Wの電力で駆動される。
【0164】
図22(a)は600W駆動時に便座ヒータ450を流れる電流の波形図、図22(b)は600W駆動時に通電率切替回路からヒータ駆動部402に与えられる通電制御信号の波形図である。
【0165】
図22(b)に示すように、600W駆動時における通電制御信号は、ヒータ駆動部402に供給される交流電流と同じ周期のパルスからなる。パルスのデューティー比は50%に設定される。
【0166】
ヒータ駆動部402は通電制御信号が論理「1」のときに電源回路から供給される交流電流を便座ヒータ450に流す(図22(a)太線部)。それにより、半周期の期間交流電流が便座ヒータ450に流れる。その結果、便座ヒータ450が約600Wの電力で駆動される。
【0167】
図23(a)は低電力駆動時に便座ヒータ450を流れる電流の波形図、図23(b)は低電力駆動時に通電率切替回路からヒータ駆動部402に与えられる通電制御信号の波形図である。
【0168】
図23(b)に示すように、低電力駆動時における通電制御信号は、ヒータ駆動部402に供給される交流電流と同じ周期のパルスからなる。パルスのデューティー比は50%よりも小さく(例えば数%程度)に設定される。
【0169】
ヒータ駆動部402は通電制御信号が論理「1」のときに電源回路から供給される交流電流を便座ヒータ450に流す(図23(a)太線部)。各周期においては、パルス幅に相当する期間交流電流が便座ヒータ450に流れる。その結果、便座ヒータ450が例えば約50Wの電力で駆動する。
【0170】
上記の他、便座部400の温度を低くする場合、または便座装置110の暖房機能をオフしている場合等には、通電率切替回路はヒータ駆動部402に通電制御信号を与えない(通電制御信号を論理「0」に設定する)。これにより、ヒータ駆動部402は便座ヒータ450を駆動しない。
【0171】
ここで、一般に、電子機器に供給される電流が高調波成分を有する場合、ノイズが発生する。本例では、上述のように便座ヒータ450の1200W駆動または600W駆動を行う場合には、便座ヒータ450に供給される電流がサインカーブを描くように変化するので、電流の大きさが大きくなってもノイズの発生が十分に低減される。
【0172】
また、便座ヒータ450の低電力駆動を行う場合、便座ヒータ450に供給される電流は高調波成分を有するが、電流の大きさが1200W駆動時および600W駆動時に比べて非常に小さいので、ノイズの発生が十分に低減される。
【0173】
上記のように、本実施の形態では、便座ヒータ450を1200W、600Wおよび約50Wの電力で駆動するとしているが、他の大きさの電力で便座ヒータ450を駆動してもよい。
【0174】
例えば、便座ヒータ450に半周期の期間交流電流を流す場合には、交流電流を流すタイミングを2周期または3周期等所定の周期の間隔で設定する。それにより、1200W、600Wおよび約50Wとは異なる大きさの電力で、ノイズの発生を十分に防止しつつ便座ヒータ450を駆動することができる。
【0175】
なお、本例では、制御部90は通電制御信号が論理「1」のときに便座ヒータ450に電流を供給し、通電制御信号が論理「0」のときに便座ヒータ450への電流の供給を停止しているが、通電制御信号が論理「1」のときに便座ヒータ450への電流の供給を停止し、通電制御信号が論理「0」のときに便座ヒータ450に電流を供給してもよい。
【0176】
なお、便座ヒータ450のオンおよびオフは時間により制御されるため、時間の計測がずれると便座部400の温度が所定値を超えたり、所定値に達しない。そこで、時間の計測がずれないように、制御部90では、2つの計測源にて便座部400のオンの時間を計測する。1つの計測源として、制御部90のプログラムの実効速度を規定する発振子により便座ヒータ450のオンの時間を計測し、もう1つの計測源して、交流電圧の周期を基準として便座ヒータ450のオンの時間を計測する。これらの計測値の少なくとも一方が規定時間を超過すると、次の通電パターンに移行する。
【0177】
特に、便座に1200W通電される時間が正確に計測されることにより過昇温が確実に防止される。これにより、さらに機器の安全性が向上する。ここでは、計測源を複数設けることにより計測の精度を向上させる方法について記載したが、便座ヒータ450がフル通電される時間を計測し、強制的にヒータへの通電を遮断もしくは制限する方法であっても、同様の効果を得ることができる。
【0178】
(1−0) 便座装置110に関する効果
本例の便座装置110においては、線状ヒータ460の発熱線463aで発生された熱がエナメル層463bおよび絶縁被覆層462を介して上部便座ケーシング410に伝達される。それにより、着座面410Uの温度が上昇する。
【0179】
ここで、エナメル層463bは十分な電気絶縁性を有する。そのため、エナメル層463bの厚さを小さくしても、発熱線463aと上部便座ケーシング410とを十分に絶縁することができる。また、それにより、絶縁被覆層462の厚さも小さくすることができる。
【0180】
したがって、この便座装置110においては、発熱線463aと上部便座ケーシング410のアルミニウム板413とを確実に絶縁しつつ、エナメル層463bおよび絶縁被覆層462の厚さを小さくすることができる。この場合、エナメル層463bおよび絶縁被覆層462の熱容量を小さくすることができるので、発熱線463aで発生された熱を効率よく着座面410Uに伝達することが可能となる。
【0181】
また、この便座装置110においては、上部便座ケーシング410にアルミニウム板413が用いられている。したがって、発熱線463aで発生された熱をさらに効率よく着座面410Uに伝達することができる。
【0182】
以上の結果、発熱線463aと上部便座ケーシング410のアルミニウム板413とを確実に絶縁しつつ、着座面410Uを迅速に昇温させることが可能となる。
【0183】
また、発熱線463aの熱を効率よく着座面410Uに伝達することができるので、発熱線463aの発熱量を抑制することができる。それにより、エナメル層463bおよび絶縁被覆層462の耐久性が向上する。その結果、便座装置110の信頼性が向上する。
【0184】
また、発熱線463aと上部便座ケーシング410のアルミニウム板413とを絶縁するためのエナメル層463bおよび絶縁被覆層462の厚さを小さくすることができるので、便座装置110の軽量化が可能となる。
【0185】
また、十分な耐熱性を有するエナメル層463bで発熱線463aを被覆しているので、絶縁被覆層462として耐熱性の低い材料を用いることができる。それにより、便座装置110の製品コストを確実に低減することができる。
【0186】
また、エナメル層463bがポリエステルイミドまたはポリアミドイミドにより形成される場合、ポリエステルイミドおよびポリアミドイミドは電気絶縁性および耐熱性に優れているので、発熱線463aと上部便座ケーシング410のアルミニウム板413とをより確実に絶縁しつつ、着座面410Uを迅速に昇温させることが可能となる。
【0187】
さらに、エナメル層463bの厚さおよび絶縁被覆層462の厚さの合計が0.4mm以下である場合、発熱線463aと上部便座ケーシング410のアルミニウム板413とを確実に絶縁しつつ、着座面410Uをより迅速に昇温させることができる。
【0188】
特に、エナメル層463bの厚さおよび絶縁被覆層462の厚さの合計が0.2mm以下である場合、着座面410Uをさらに迅速に昇温させることができる。
【0189】
また、絶縁被覆層462がエナメル層463bより耐熱性の低い材料からなるので、便座装置110の製品コストを十分に低減できる。
【0190】
また、線状ヒータ460が上部便座ケーシング410の裏面側に設けられる金属箔451と金属箔453との間に挟まれるように設けられるので、発熱線463aで発生された熱が金属箔451,453に効率よく伝達される。また、金属箔451の一面が上部便座ケーシング410の裏面に貼着されかつ金属箔453の一面が金属箔451の他面に貼着されている。それにより、発熱線463aから金属箔451,453に伝達された熱を上部便座ケーシング410の裏面全体に効率よく伝達することができる。それにより、着座面410Uの全体を均一に昇温させることができる。
【0191】
特に、金属箔451,453がアルミニウムからなる場合、発熱線463aで発生された熱を上部便座ケーシング410により迅速に伝達することができる。
【0192】
さらに、上部便座ケーシング410の裏面と金属箔451との間に耐熱絶縁層455が設けられる場合、耐熱絶縁層455により発熱線463aと上部便座ケーシング410のアルミニウム板413とをより確実に絶縁することができる。
【0193】
また、リード線470と線状ヒータ460との接続部475が金属箔451と金属箔453との間に設けられるので、リード線470と線状ヒータ460との接続部475における発熱が金属箔451,453に伝達される。それにより、着座面410Uをより迅速に昇温させることができる。
【0194】
また、接続部475は耐熱シート480で被覆されてるので、接続部475と上部便座ケーシング410とを確実に絶縁することができる。
【0195】
さらに、接続部475がシリコーン樹脂で被覆されるので、接続部475を確実に防水することができる。
【0196】
線状ヒータ460の発熱線463aとしてAg−Cu合金からなる高抗張力型ヒータ線が用いられるので、発熱線463aの強度を確保しつつ発熱線463aの径を小さくすることができる。それにより、狭いスペースに長い発熱線463aを高い密度で配列することができる。その結果、着座面410Uの昇温速度を向上させることができる。
【0197】
<2> 衛生洗浄装置100の各部の動作シーケンス
図24は、衛生洗浄装置100の各部の動作シーケンスを示すタイミング図である。
【0198】
ここで、図3の人体用切替弁13は、切替弁モータ13mが回転することにより洗浄水の供給経路を切り替える。
【0199】
ここで、おしりノズル21から洗浄水を噴出させるための切替弁モータ13mmの回転位置をおしり洗浄位置と呼び、ビデノズル22から洗浄水を噴出させるための切替弁モータ13mの回転位置をビデ洗浄位置と呼ぶ。また、人体洗浄前にノズル洗浄ノズル23から洗浄水を噴出させるための切替弁モータ13mの回転位置を前洗浄位置と呼び、人体洗浄後にノズル洗浄ノズル23から洗浄水を噴出させるための切替弁モータ13mの回転位置を後洗浄位置と呼び、ノズル洗浄ノズル23から洗浄水を排出しながら洗浄水を予め加熱するための切替弁モータ13mの回転位置をプレヒート位置と呼ぶ。さらに、おしりノズル21、ビデノズル22およびノズル洗浄ノズル23に洗浄水を供給しない切替弁モータ13mの回転位置を停止(待機)位置と呼ぶ。本例では、前洗浄位置、後洗浄位置およびプレヒート位置は同じである。
【0200】
時点t11で、使用者が便座部400に着座すると、制御部90は切替弁モータ13mをプレヒート位置に回転させ、止水電磁弁7を開くとともにポンプ11を弱い駆動力で作動させる。それにより、洗浄水が熱交換器9、ポンプ11および人体用切替弁13を通ってノズル洗浄ノズル23から排出される。
【0201】
本体部200への通電の1回目等のように、水回路に通水が行われていない可能性がある場合には、時点t11から時点t12の間、水回路が満水になるまでの時間(約3秒)は、熱交換器9への通電は行わない。
【0202】
時点t12から時点t13までの期間は、熱交換器9の空焚き防止のために設けられている。その後、時点t13で流量センサ8により測定される流量が所定値になると、制御部90は、熱交換器9をオンにする。それにより、洗浄水が加熱される。
【0203】
洗浄水の昇温が完了すると、時点t14で、制御部90は、切替弁モータ13mを停止位置に回転させ、止水電磁弁7を閉じるとともにポンプ11および熱交換器9をオフにする。
【0204】
時点t15で、使用者がおしりスイッチ312を押下すると、制御部90は、切替弁モータ13mを前洗浄位置に回転させ、止水電磁弁7を開くとともにポンプ11を所定の前洗浄時の駆動力で作動させる。それにより、洗浄水が熱交換器9、ポンプ11および人体用切替弁13を通ってノズル洗浄ノズル23から噴出される。時点t16で流量センサ8により測定される流量が所定値になると、制御部90は、熱交換器9をオンにする。それにより、洗浄水が加熱される。
【0205】
時点t17で、制御部90は、切替弁モータ13mをおしり洗浄位置に回転させ、止水電磁弁7を閉じるとともにポンプ11および熱交換器9をオフにする。
【0206】
時点t18で、制御部90は、ノズル駆動モータ20mにより停止位置からおしりノズル21の突出を開始させる。時点t19で、ノズル駆動モータ20mよりおしりノズル21が標準位置まで移動すると、制御部90は、止水電磁弁7を開くとともにポンプ11を設定された洗浄強さに対応する駆動力(設定値)で作動させる。
【0207】
時点t20で、流量センサ8により測定される流量が所定値になると、制御部90は、熱交換器9をオンにする。それにより、洗浄水が加熱され、加熱された洗浄水が使用者の局部に噴出される。時点t21から時点t22までの期間は、止水電磁弁7を閉じた後におけるノズル部20内部の水圧を排除するために設けられた期間である。この期間は、例えば、0.5秒程度に設定される。
【0208】
時点t21で、使用者が停止スイッチ311を押下すると、制御部90は、切替弁モータ13mを停止位置へ向かって回転させ、止水電磁弁7を閉じるとともにポンプ11および熱交換器9をオフする。それにより、人体洗浄が終了する。
【0209】
時点t22で、制御部90は、ノズル駆動モータ20mによりおしりノズル21を標準位置から停止位置に向かって移動させる。
【0210】
時点t23で、切替弁モータ13mが停止位置まで回転すると、制御部90は、切替弁モータ13mを後洗浄位置に回転させ、止水電磁弁7を開くとともにポンプ11を弱い駆動力で作動させる。それにより、洗浄水が熱交換器9、ポンプ11および人体用切替弁13を通ってノズル洗浄ノズル23から噴出される。
【0211】
時点t24で、流量センサ8により測定される流量が所定値になると、制御部90は、熱交換器9をオンにする。それにより、洗浄水が加熱され、加熱された洗浄水でおしりノズル21およびビデノズル22が洗浄される。
【0212】
時点t25で、制御部90は、切替弁モータ13mを停止位置に回転させ、止水電磁弁7を閉じるとともにポンプ11および熱交換器9をオフにする。
【0213】
<3> トイレ装置1000の使用時の動作シーケンス
(3−a) トイレットルーム入室時
使用者がトイレットルームに入室すると、入室検知センサ600により使用者が検知される。それにより、入室検知センサ600から本体部200の制御部90に入室検知信号が赤外線により送信される。
【0214】
入室検知センサ600は、使用者を検知しているときに入室検知信号を赤外線により本体部200の制御部90に送信し続けてもよいが、電池寿命を延ばすためには、入室検知センサ600が一旦入室検知信号を送信した後は一定時間入室検知信号を送信を行わなくてもよい。
【0215】
制御部90は、入室検知センサ600から入室検知信号を受信すると、便座便蓋開閉装置により蓋部500を閉状態から開状態にする。
【0216】
制御部90は、ヒータ駆動部402により便座部400を図18に示したパターンで昇温させる。また、制御部90は、便器ノズル40により便器プレ洗浄と称した便器面への放水を行うことにより、便が便器面に付着することを防止する動作を行う。
【0217】
また、制御部90は、便器プレ洗浄の際には、視覚的な効果を上げるために放射状に噴出される洗浄水を男子小用標的表示LED(発光ダイオード)で照らす。
【0218】
ここで用いた入室検知センサ600は、使用者がトイレに入ることを確実かつ早いタイミングで検知し、便座部400の昇温を開始させるものである。したがって、例えば使用者が夜中にトイレの主照明をつけずに入室した際にも、非常に早いタイミングで衛生洗浄装置100の蓋部500が開く。
【0219】
そして、入室検知センサ600が人体を検知した瞬間に男子小用標的表示LEDが点灯される。これにより、便器700の内部の光とともに便器700から漏れ出る光が、便器700の周辺をぼんやりと照らす。それにより、眠っていた使用者の覚醒が抑制される。また、安全性に優れたトイレの間接照明が行われる。
【0220】
(3−b) 男子小用時
使用者が遠隔操作装置300の便座開閉スイッチ(図示せず)を操作すると、制御部90は、便座便蓋開閉装置により便座部400を閉状態から開状態にする。また、制御部90は、便座ヒータ450への通電を停止するとともに、便座温調ランプRA1を消灯させる。それにより、省エネルギー性がさらに向上する。また、男子小用標的表示LEDが点灯される。ここで、男子小用標的表示LEDは、便器700内で男子小用の標的部分に光を照射する。
【0221】
なお、便座部400および蓋部500の開状態で入室検知センサ600から入室検知信号が5分間受信されない場合には、制御部90は便座便蓋開閉装置により便座部400および蓋部500を開状態から閉状態にする。
【0222】
(3−c) 着座および排便時
制御部90は、着座センサ610からの着座検出信号に基づいて便座部400への使用者の着座時からの経過時間を計測する。そして、ヒータ駆動部402により便座部400を図18に示したパターンで昇温させる。
【0223】
また、使用者が便座部400に着座すると、熱交換器9を含む水回路を温めるために図24に示したプレヒートを行う。上記のように、熱交換器9に洗浄水が供給されていないときには、制御部90は、熱交換器9に配置されているヒータ(例えば、シーズヒータ91,92)をオフにする。熱交換器9に洗浄水が供給されているか否かは流量センサ8により検出される。ただし、シーズヒータ91,92の1回目のオンの際には、水回路に通水されていないため、水回路が満水になるまでの時間(約3秒)は、流量センサ8により所定の流量が検出されてもシーズヒータ91,92へ通電されない。また、使用者が便座部400に着座すると、制御部90は脱臭ユニット220を作動させる。使用者が便座部400に着座を続けている間は最大30分間脱臭ユニット220が作動状態を継続する。脱臭ユニット220の風量は3段階に切り替えられる。使用者の着座から洗浄開始までは、風量が「中」に設定され、洗浄中は風量が「弱」に設定され、使用者の脱座から1分間は風量が「強」に設定される。
【0224】
(3−d) 人体洗浄時
使用者が遠隔操作装置300のおしりスイッチ312またはビデスイッチ313を押下すると、制御部90は、水回路を温めるために上記の前洗浄を行う。それにより、使用者に冷水が吐出されることが防止される。
【0225】
制御部90は、熱交換器9の出湯温度センサ98により検出される温度が規定時間(3秒)以上規定温度(32℃)を継続した場合に前洗浄を終了する。前洗浄の終了後に、制御部90は止水電磁弁7を閉じた状態でノズル駆動モータ20mによりおしりノズル21またはビデノズル22を突出させる。それにより、おしりノズル21またはビデノズル22の突出時に洗浄水が使用者にかかることが防止される。
【0226】
おしりノズル21またはビデノズル22が標準位置にまで到達した後、制御部90はポンプ11を制御することにより遠隔操作装置300を用いて使用者により設定された水勢(水量)で人体洗浄を行う。洗浄の最大時間は例えば5分間である。
【0227】
使用者が遠隔操作装置300の停止スイッチ311を押下すると、制御部90は、止水電磁弁7を閉じるとともに、ノズル駆動モータ20mによりおしりノズル21またはビデノズル22をノズル部20内に収納する。
【0228】
その後、制御部90は、ノズル部20の清掃のためにノズル洗浄ノズル23による後洗浄を行う。
【0229】
ノズル部20による洗浄中は、制御部90は、脱臭ユニット220を弱状態で作動させる。それにより、トイレットルーム内の脱臭が行われる。
【0230】
(3−e) 脱座時
着座センサ610により使用者の着座が検出されなくなると、制御部90は、視覚的効果を上げるためにノズル駆動モータ20mによりおしりノズル21およびビデノズル22を前後に移動させつつノズル洗浄ノズル23によりノズル部20を洗浄する。このとき、制御部90は、男子小用標的表示LEDを点灯させることによりノズル洗浄動作を強調させる。
【0231】
また、制御部90は、使用者の脱座後1分の間、脱臭ユニット220を強状態で作動させる。それにより、トイレットルーム内の脱臭が強力に行われる。
【0232】
さらに、着座センサ610により使用者の着座が検出されなくなり、入室検知センサ600により使用者が3分間検出されない場合、制御部90は、便座便蓋開閉装置により蓋部500を開状態から閉状態にする。
【0233】
(3−f) 退室時
入室検知センサ600が使用者を一定時間検知しない場合には、制御部90は、便座部400および蓋部500を便座便蓋開閉装置により閉じる。また、入室検知センサ600が使用者を検知しなくなってから1分後に、制御部90は、ヒータ駆動部402による便座ヒータ450への通電を遮断する。それにより、トイレ装置1000の一連の動作シーケンスが終了する。
【0234】
<4> 請求項の各構成要素と実施の形態の各要素との対応
以下、請求項の各構成要素と実施の形態の各要素との対応の例について説明するが、本発明は下記の例に限定されない。
【0235】
上記実施の形態では、便座部400が便座の例であり、発熱線が便座ヒータの例であり、温水ヒータユニットや脱臭装置、部屋暖房が各種機能ユニットの例であり、特に、便座装置、およびトイレ装置に付随し装置内で電力制御される系のうちに含まれる各種機能において電力負荷となる部分が電力負荷の例に相当する。電磁リレー、および回路切換のほかの構成例が直列並列切替手段の例であり、入室検知センサ600が人体検知手段の例である。この入室検知センサは、リモコン、便座装置本体とは別体に設けた構成としたが、リモコンまたは便座装置本体と一体に設けて、使用者の着座と入室検知とを判定条件をかえて行うような検知構成としてもよい。
【0236】
請求項の各構成要素として、請求項に記載されている構成または機能を有する他の種々の要素を用いることもできる。トイレ装置に付随する各種機能における電力負荷としては、乾燥ユニット210のヒータ、部屋暖房機能のヒータなどを用いても、同様の効果がある。便座に着座して、用便後に使用する可能性のある機能として温水機能のヒータ、乾燥ユニット210のヒータなどは、突入電流防止のためのヒータ通電が予熱となり、便座装
置の動作に好都合である。また、部屋暖房などは、部屋温度の低温時には有効である。
【産業上の利用可能性】
【0237】
本発明は、人体の局部を洗浄する衛生洗浄装置等に利用することができる。
【図面の簡単な説明】
【0238】
【図1】本発明の一実施の形態に係る衛生洗浄装置およびそれを備えるトイレ装置を示す外観斜視図
【図2】便座装置の構成を示す模式図
【図3】便座部の分解斜視図
【図4】(a)は、第1の例の便座部の便座ヒータの平面図、(b)は、(a)の領域の拡大図
【図5】第1の例の便座部の平面図
【図6】図5の便座部のC5−C5断面図
【図7】(a)は、第2の例の便座部の便座ヒータの平面図、(b)は、(a)の領域の拡大図
【図8】第2の例の便座部の平面図
【図9】(a)は、第3の例の便座部の便座ヒータの平面図、(b)は、(a)の一部の拡大断面図
【図10】第4の例の便座部の便座ヒータの平面図
【図11】上部便座ケーシングに取り付けられる便座ヒータの構造の一例を示す断面図
【図12】上部便座ケーシングに取り付けられる便座ヒータの構造の他の例を示す断面図
【図13】上部便座ケーシングに取り付けられる便座ヒータの構造のさらに他の例を示す断面図
【図14】発熱線の被覆厚さと便座部の各部の温度上昇との関係の測定結果を示す図
【図15】線状ヒータとリード線との接続方法を示す図
【図16】線状ヒータとリード線との接続部の断面図
【図17】熱カシメの方法を示す図
【図18】便座ヒータの駆動例および便座部の表面温度の変化を示す図
【図19】便座ヒータと温水加熱ユニットの温水ヒータとの接続方法を示す図
【図20】直列並列ユニットの具体構成を示す図
【図21】(a)は1200W駆動時に便座ヒータを流れる電流の波形図、(b)は1200W駆動時に通電率切替回路からヒータ駆動部に与えられる通電制御信号の波形図
【図22】(a)は600W駆動時に便座ヒータを流れる電流の波形図、(b)は600W駆動時に通電率切替回路からヒータ駆動部に与えられる通電制御信号の波形図
【図23】(a)は低電力駆動時に便座ヒータを流れる電流の波形図、(b)は低電力駆動時に通電率切替回路からヒータ駆動部に与えられる通電制御信号の波形図
【図24】衛生洗浄装置の各部の動作シーケンスを示すタイミング図
【符号の説明】
【0239】
90 制御部
110 便座装置
200 本体部
210 乾燥ユニット
300 遠隔操作装置
400 便座部
401 温度測定部
402 ヒータ駆動部
410 上部便座ケーシング
420 下部便座ケーシング
411 表面化粧層
412 アルマイト層
413 アルミニウム板
414 塗装膜
450 便座ヒータ
451,453 金属箔
455,456 耐熱絶縁層
460 線状ヒータ
462 絶縁被覆層
470 リード線
471 端子
475 接続部
480 耐熱シート
500 蓋部
600 入室検知センサ
610 着座センサ
1000 トイレ装置

【特許請求の範囲】
【請求項1】
便座と、前記便座を支持し、便器上に載置される便座装置本体と、前記便座装置本体内部に設けた便座装置の各種機能ユニットと、前記便座の使用を検知すると前記便座の着座面を電力により昇温させ暖房する便座ヒータと、前記便座ヒータと前記各種機能ユニットに設けた電力負荷とを直列あるいは並列に選択的に接続する直列並列切替手段とを備え、前記直列並列切替手段は前記便座ヒータへの大電力投入開始時に前記電力負荷と直列接続する便座装置。
【請求項2】
各種機能ユニットとして温水ヒータユニットを有し、電力負荷は前記温水ヒータユニットのヒータであることを特徴とする請求項1記載の便座装置。
【請求項3】
直列並列切替手段は、便座ヒータへの大電力投入開始前と、大電力投入開始後の所定の時間経過後は、電力負荷と前記便座ヒータとを並列に接続を切り替えて、各々を別々に駆動することを特徴とする請求項1または2記載の便座装置。
【請求項4】
前記直列並列切替装置は電磁リレーにより構成した請求項1から3のいずれか1項記載の便座装置。
【請求項5】
人体検知手段を備え、前記人体検知手段により使用者がトイレ室へ入室したことを検知すると、便座ヒータへの大電力の投入を開始する請求項1から4のいずれか1項記載の便座装置。



























【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図14】
image rotate

【図15】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図12】
image rotate

【図13】
image rotate

【図16】
image rotate


【公開番号】特開2009−125333(P2009−125333A)
【公開日】平成21年6月11日(2009.6.11)
【国際特許分類】
【出願番号】特願2007−304068(P2007−304068)
【出願日】平成19年11月26日(2007.11.26)
【出願人】(000005821)パナソニック株式会社 (73,050)
【Fターム(参考)】