説明

偏光変調光学素子

偏光変調光学素子(1)であって、当該偏光変調光学素子は旋光性材料から成り、厚さプロファイルを有し、当該厚さは光軸の方向において測定され、光学素子の領域にわたって変化する。この偏光変調光学素子(1)は、次のような効果を有している。すなわち、第1の直線偏光光線の振動面および第2の直線偏光光線の振動面がそれぞれ、第1の回転角度および第2の回転角度で回転されるという効果を有している。ここで第1の回転角度と第2の回転角度は相互に異なっている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明の背景
本発明は、光線の偏光に影響を及ぼす光学素子に関する。この光学素子は厚さプロファイルを有し、光軸を伴う旋光性結晶から成る。
【0002】
マイクロリソグラフィの領域においてより優れた解像度を有する構造体を得ようとする継続的な努力において、実質的に3つの先導的なコンセプトが平行して追究されている。これらのコンセプトのうちの第1のコンセプトは、非常に高い開口数を有する投影対物レンズを提供することである。第2のコンセプトは、例えば248nm,193nmまたは157nm等のより短い波長へ向かう一定の傾向である。最後に、高い屈折係数を有する液浸媒体を、投影対物レンズの最後の光学素子と感光性基板の間の空間に導入することによって、到達可能な解像度を高めるコンセプトがある。最後の技術は液浸リソグラフィと称される。
【0003】
定められた偏光の光によって照明される光学システムでは、電界ベクトルのs成分およびp成分はフレネルの式に相応して、異なる屈折係数を有する2つの媒体のインタフェースでの異なる反射および屈折度合いそれぞれに影響される。このコンテキストおよび以降で、光線の入射面に対して平行に振動する偏光成分をp成分と称し、光線の入射面に対して垂直に振動する偏光成分をs成分と称する。s成分において生じる反射および屈折の異なる度合いは、p成分と比較して、イメージングプロセスに格段に有害な影響を与える。
【0004】
この問題は、特別な偏光分布(distribution of the polarization)によって回避される。ここで各直線偏光光線(linearly polarized light rays)の電界ベクトルの振動面は、光学システムの瞳面において、光軸に対してほぼ放射状の配向を有している。この種の偏光分布を以降で放射偏光(radial polarization)と称する。前述の定義に相応して放射偏光された光線束が、対物レンズのフィールド面において、異なる屈折係数の2つの媒体に入射すると、電界ベクトルのp成分のみが存在する。従ってイメージングクォリティへの上述した有害な作用がかなり低減される。
【0005】
前述のコンセプトと類似して、次のような偏光分布も選択可能である。すなわち、各直線偏光光線の電界ベクトルの振動面がシステムの瞳面において光軸から生じる半径に対して垂直な配向を有する偏光分布である。このタイプの偏光分布を以降で接線偏光(tangential polarization)と称する。この定義に相応して接線偏光された光線束が、異なる屈折係数の2つの媒体の間のインタフェースに入射すると、電界ベクトルのs成分のみが存在し、上述の場合のように、フィールド面における反射および屈折において統一性が生じる。
【0006】
接線偏光または放射偏光のいずれかを有する照明を、瞳面において提供することが非常に重要である。これは殊に、液浸リソグラフィの上述したコンセプトを実行する場合に非常に重要である。なぜなら、偏光の状態へ甚大な負の作用が与えられるからである。これは屈折係数における差および、投影対物レンズの最後の光学素子から液浸媒体へのインタフェース、および液浸媒体からコーティングされた感光基板までのインタフェースそれぞれでの非常に傾斜した入射角に基づいて予期される。
【0007】
米国特許第6191880B1号は、ほぼ放射状の偏光を生じさせる光学装置を開示している。この装置は、殊に、半波長板のラスタを含む。このラスタの、各優先方向は、次のように配向されている。すなわち、直線偏光光がこのラスタ装置を通過すると、振動面が光軸から生じる半径の方向へ回転されるように配向されている。しかし、このラスタ装置は多数の個々に配向された半波長板を合わせることによって製造されているので、製造コストが高い。さらに、偏光方向の変化は各半波長板のエリア内で一定であり、この半波長板の直径は典型的に10〜20mmである。従って、継続的な放射偏光はこのコンセプトによって生じない。
【0008】
厚さの不規則な変化による水晶の複屈折素子は、DE19807120A1号において提示されている。これは、光学システムにおける偏光の定められた状態の局部的な収差を補償するために用いられる。しかしこのタイプの複屈折素子における厚さの変化は、局部的に異なった偏光状態を生じさせてしまう。殊に、偏光の直線状態は通常は、このタイプの装置では保持されない。
【0009】
本発明の課題
従って本発明の課題は、次のような偏光変調光学素子(polarization-modulating optical element)を提示することである。すなわち、最小の強度損失で、各光線の振動面の第1の方向分布を伴う直線偏光から、各光線の振動面の第2の方向分布を伴う直線偏光を光学素子が生じさせるように、光線の偏光に影響を与える偏光変調光素子を提示することである。
【0010】
本発明のさらなる課題は、振動面の第2の分布(偏光分布)の熱安定性に関する偏光変調光学素子の改善された特性を有する光学素子を提示し、光線がこの素子を通過した後で偏光分布へ与えられる光学システム内の付加的な光学素子の影響を最小化することである。
【0011】
本発明の要約
前述の課題を解決するために、旋光性結晶から成り、本発明と相応に、厚さプロファイルで成形された偏光変調光学素子が提示される。この厚さプロファイルは、光軸に対して垂直な方向において変化する。さらにこの光学システムは特許請求の範囲57,64,65,70および75に記載されているように、本発明のこれらの課題を解決する。
【0012】
本発明に相応したこの光学システムの付加的な有利な実施形態は、従属請求項に記載されている。
【0013】
本発明に相応した偏光変調光学素子は次のような効果を有している。すなわち、第1の直線偏光光線の振動面と第2の直線偏光光線の振動面がそれぞれ、第1の回転角度および第2の回転角度で回転されるという効果を有している。第1の回転角度は、第2の回転角度と異なる。本発明で、偏光変調光学素子は旋光性材料から成る。
【0014】
本発明の有利なさらなる利点を以下に記載する。
【0015】
直線偏光光から、最小強度損失で、直線偏光光線の任意に選択された分布を生じさせるために、光軸を伴う旋光性結晶が、偏光変調光学素子の原料として使用される。等方性の軸とも称されるこの結晶の光軸は、光軸の方向に関連した光伝播の唯一の速が存在する特性によって定められる。換言すれば、光軸の方向において移動する光線は直線複屈折の影響を受けない。この偏光変調光学素子は、結晶の光軸に対して垂直な方向において変化する厚さプロファイルを有している。このコンテキストおよび以降における用語「直線偏光分布」は、個々の光線が直線に偏光されているが、各電界ベクトルの振動面は異なった方向に配向可能な偏光分布の意味で用いられる。
【0016】
直線偏光光が、結晶の光軸に沿ってこの偏光変調光学素子を横切ると、電界ベクトルの振動面は、この結晶内を移動距離に比例する角度で回転される。回転の向き、すなわち振動面が時計回りに回転されるかまたは逆時計回りに回転されるかは、結晶材料に依存する。例えば右回りの水晶対左回りの水晶である。偏光面は光線の各偏光方向および伝播方向に対して平行である。任意に選択された回転角度の分布を得るために、第1の直線偏光光線の振動面および第2の直線偏光光線の振動面が、それぞれ第1の回転角度および第2の回転角度で回転されるように厚さプロファイルが設計されるのは有利である。第1の回転角度は第2の回転角度と異なっている。この素子を各箇所で特定の厚さで成形することによって、振動面に対する回転の任意に選択された回転角度を実現することが可能である。
【0017】
異なった旋光性材料は、使用される放射波長に依存して適切に見つけられる。これは殊に水晶、TeOおよびAgGaSである。
【0018】
本発明の有利な実施形態では、この偏光変調光学素子は水晶の光軸と同じ方向に配向された素子軸を有している。この素子軸に関連して、光学素子の厚さプロファイルは、方位角θ単独の関数である。ここでこの方位各θは基準軸に対して相対的に測定される。この基準軸は素子軸と直角に交差する。この設計に相応する厚さプロファイルによって、光学素子の厚さは、素子軸と直角に交差し、基準軸と方位角θを成す半径に沿って一定である。
【0019】
本発明の別の有利な実施形態では、素子軸から一定の距離rでの、厚さプロファイルd(r,θ)の方位部分d(r=定数,θ)は、方位角θの一次関数である。理想的な場合には、この方位部分は方位角で不連続性を有している。素子軸から一定の距離rでの一次関数d(r=定数,θ)はスロープ
【数1】

を有しており、この式においてαは旋光性結晶の比旋光度に対する状態である。θ=0に対する不連続的な位置では、360°/αの量による、厚さにおける急峻な段が存在する。不連続な位置でのこの段は、幾つかの度数の方位角領域にわたって配分されてもよい。しかしこれは、移行領域における最適化されていない偏光分布の結果を有する。
【0020】
本発明のさらなる有利な実施形態では、素子軸から一定の距離rでの、厚さプロファイルd(r,θ)の方位部分d(r=定数,θ)は、同じスロープmを有する方位角θの一次関数であるが、理想的な場合には、それぞれ、方位角θ=0およびθ=180°での2つの不連続性を伴う。各不連続的な位置では、180°/αの量による、厚さにおける急峻な段が存在する。不連続な位置での2つの急峻な段は、幾つかの度数の方位角領域にわたって配分されてもよい。しかし、これは、移行領域における最適化されていない偏光分布の結果を有する。
【0021】
本発明のさらなる有利な実施形態では、素子軸から一定の距離rで、かつ10°<θ<170°の第1の方位角領域での、厚さプロファイルd(r,θ)の方位部分d(r=定数,θ)は、第1のスロープmを有する方位角θの一次関数であり、190°<θ<3500°の第2の方位角領域では、方位部分は第2のスロープnを有する方位角θの一次関数である。スロープmおよびnは同じ絶対量を有しているが、反対の符号を有している。素子軸から距離rでのスロープmおよびnの量は、
【数2】

である。この配置によって、θ=0およびθ=180°を含む全ての方位角に対する厚さプロファイルは、厚さにおける急峻な変化を伴わない連続的な関数である。
【0022】
本発明のさらなる有利な実施形態では、偏光変調光学素子は、異なる厚さを有する多数の平面平行部分に分けられる、または少なくとも2つの平面平行部分を含む。これらの部分は例えば円のサークルとして構成され得る。しかしこれらの部分が六角形、正方形、長方形または台形を有していてもよい。
【0023】
本発明のさらなる有利な実施形態では、第1の平面平行部分の対が前記偏光変調光学素子の中央素子軸の反対側に配置され、第2の平面平行部分の対が素子軸の反対側に配置され、前記第1の平面平行部分に関して、前記素子軸のまわりの周辺に配置される。ここで前記各第1の部分は各第2の部分の厚さとは異なる厚さを有している。
【0024】
本発明のさらなる有利な実施形態では、偏光変調光学素子を通過する直線偏光光の振動面が、第1の回転角βによって、前記第1の平面平行部分の少なくとも1つ内で回転され、第2の回転角βによって、前記第2の平面平行部分の少なくとも1つ内で回転される。従ってβおよびβは、式|β|=(2n+1)・90°にほぼ従っている、または従う。この式でnは整数をあらわす。
【0025】
有利な実施形態では、βは式β=90°+p・180°にほぼ従っている、または従い、ここでpは整数を表している。βは、は式β=q・180°にほぼ従っている、または従い、ここでqは0とは異なる整数を表している。以下でより詳細に示すように、偏光変調光学素子のこのような実施形態は有利には、伝播する偏光光の偏光に影響を与えることに使用される。これによって出力する光は、入射光に依存して、実質的に接線偏光された偏光分布または実質的に放射状に偏光された偏光分布を有する。
【0026】
第2の平面平行部分の対は、殊に、第1の平面平行部分に関連して、前記素子軸の周りで約90°で円周方向にずらされている(circumferentially displaced)。
【0027】
本発明のさらなる有利な実施形態では、第1の平面平行部分の対と第2の平面平行部分の対は、前記偏光変調光学素子の中央開口部または中央掩蔽部(central obscuration)の反対側に配置されている。
【0028】
前記第1および第2の対の隣接部分は、相互に領域によって空間が開けられている。この領域は、前記偏光変調光学素子に入射する直線偏光光に対して不透明である。前記第1および第2のグループの前記部分は殊に、取付部によって共に保持されている。この取付部は、前記偏光変調光学素子に入射する直線偏光光に対して不透明である。この取付部は、実質的にスポークホイール(spoke-wheel)形状を有している。
【0029】
本発明のさらなる有利な実施形態では、偏光変調光学素子は、実質的な平面平行部分の第1グループを含み、ここで、伝播している直線偏光光の振動面は第1の回転角度βによって回転される。偏光変調光学素子はさらに、実質的な平面平行部分の第2グループを含み、ここで、伝播している直線偏光光の振動面は第2の回転角度によって回転される。従って、βおよびβは、式|β|=(2n+1)・90°にほぼ従っている、または従う。この式でnは整数をあらわす。
【0030】
本発明のさらなる有利な実施形態では、βは式β=90°+p・180°にほぼ従っている、または従い、ここでpは整数を表している。βは、は式β=q・180°にほぼ従っている、または従い、ここでqは0とは異なる整数を表している。
【0031】
本発明のさらなる有利な実施形態では、偏光変調光学素子の厚さプロファイルは、厚さにおける急峻な変化なしに連続的な表面輪郭を有している。ここでは任意に選択された偏光分布が生成される。ここでこの厚さプロファイルは、位置の連続的な関数によってあらわされる。
【0032】
光学素子の適切な機械的安定性を確実にするために、偏光変調光学素子の最小の厚さdminを少なくとも、素子の直径Dの0.002倍と等しくすることが重要である。
【0033】
例えば水晶の場合にはよくあることだが、光学素子に使用されている旋光性材料が複屈折特性も有している場合には、光線に対して複屈折性が考慮されなければならない。この光線の伝播方向は、光学結晶軸の方向から偏差している。結晶内の90°/αの移動距離によって、直線偏光は90°で回転される。複屈折が回転効果に対して付加的に存在する場合には、90°の回転は、光の電界ベクトルに対する関係における早い軸と遅い軸との間の変換に等しい。従って、結晶内で移動した距離が180°/αの整数倍に等しい場合、小さい入射角で複屈折の全体的な補償が光線に対して行われる。複屈折の影響を最小化しながら、機械的な安定性に対する上述した要求に応えるために、偏光変調光学素子が
【数3】

の最小厚さで設計されるのは殊に有利である。この式でNは正の整数をあらわしている。
【0034】
製造の観点から、この光学素子に中央での孔または中央掩蔽部を設けるのは殊に有利である。
【0035】
光線が、正確には光学結晶軸と平行して伝播しない場合には、回転角度の偏差が存在している。付加的に、複屈折現象は影響を有する。従って、光学結晶軸と相対した角度の広がり内の多数の光線を伴う入射光束の最大の入射角度が100mradよりも大きくないのは殊に有利である。これは有利には70mradよりも大きくなく、特に有利には45mradよりも大きくない。
【0036】
偏光状態に関する、さらなる柔軟性を提供するために、光学装置には有利には、次のようなデバイスが具備される。すなわち、少なくとも1つのさらなる偏光変調光学素子が光路内に配置されることを可能にするデバイスが具備される。このさらなる偏光変調光学素子は、上述した特徴を有する付加的な素子であり得る。しかしこれは、旋光性材料の平面平行面または2つの半波長板の装置として構成されてもよい。この、複屈折の各速い軸および遅い軸は相互に45°回転される。
【0037】
光学装置内に配置され得るこのさらなる偏光変調光学素子は、殊に次のように設計可能である。すなわちこれが直線偏光光線の振動面を90°回転させる。光学装置内の第1の偏光変調素子が、接線偏光を生じさせる場合にこれは殊に有利である。90°の回転を挿入する場合、この接線偏光は放射偏光に変換される。
【0038】
光学装置のさらなる有利な実施形態では、さらなる偏光変調光学素子を平面平行板として構成することは有利である。これは、180°の方位角領域に相当する半空間に対する半波長板として機能する。第1の偏光変調光学素子が方位角θによってのみ変化する厚さプロファイル(r=定数,θ)を有し、10°<θ<170°の第1の方位角領域において、この厚さプロファイル(r=定数,θ)が第1のスロープmを伴う方位角θの一次関数であり、190°<θ<350°の第2の方位角領域において、この厚さプロファイル(r=定数,θ)が第2のスロープnを伴う方位角θの一次関数である場合にこの構成は殊に有利である。ここでスロープmとnは同じ絶対量を有しているが反対の符号を有している。
【0039】
殊に、偏光変調素子のスロープを有する表面で生じる屈折によって、偏光変調素子を通過した後に元来の軸平行光線の方向において偏差が生じる。偏光変調素子によって生じた波面のこの種の偏差を補償するために、非旋光性材料から成る補償プレートを光学システムの光路内に配置するのは有利である。ここでこの補償プレートの厚さプロファイルは次のように設計されている。すなわち、これが、偏光変調光学素子によって生じた、実質的に透過された放射の角度偏差を補償するように設計されている。択一的に、偏光変調素子の輪郭形成された表面を覆う液浸液が同じ目的で使用され得る。
【0040】
前述の偏光変調素子および、この偏光変調光学素子に具備された光学装置は有利には、マイクロリソグラフィ用途に対する投影系において使用される。ことにこの種の偏光変調素子およびこの偏光変調光学素子に具備された光学装置は、上述した液浸技術が使用されている投影系に良く適合する。すなわち、空気とは異なる屈折係数を有する液浸媒体が、基板に最も近い光学素子と、基板との間に存在する投影系に良く適合する。
【0041】
図面の簡単な説明
本発明を以降で、添付された図面を参照してより詳細に説明する:
図1は、厚さプロファイルを有する偏光変調光学素子を示した図であり、
図2は、直線偏光光線が旋光性結晶内の光軸に沿って伝播する場合に、どのように振動面が回転されるのかを示した概略図であり、
図3は、偏光変調光学素子の第1の実施例を示した図であり、
図4aは、偏光変調光学素子の第2の実施例を概略的に示した図であり、
図4bは、図4aに示された偏光変調光学素子の実施形態における、方位角の関数としての厚さプロファイルを示した図であり、
図4cは、偏光変調光学素子のさらなる実施形態における、方位角の関数としての厚さプロファイルを示した図であり、
図4dは、図3に示された偏光変調光学素子の実施形態における、方位角の関数としての厚さプロファイルを示した図であり、
図4eは、偏光変調光学素子のさらなる実施形態における、方位角の関数としての厚さプロファイルを示した図であり、
図4fは、偏光変調光学素子のさらなる実施形態の概略図であり、
図5は、図3または4dに記載された厚さプロファイルを有する偏光変調光学素子を通過する前および後の光線束の偏光分布を概略的に示した図であり、
図6は、図3に記載された厚さプロファイルを有する偏光変調光学素子およびさらなる偏光変調光学素子を有する光学配置を通過する前および後の光線束の偏光分布を概略的に示した図であり、
図7aは、図4eに記載された厚さプロファイルを有する偏光変調光学素子および、その半分が版波長板として構成されている平面平行板を有する光学配置を通過する前および後の光線束の偏光分布を概略的に示した図であり、
図7bは、その半分が半波長板として構成されている平面平行板の平面図を示しており、
図8は、偏光変調光学素子を伴うマイクロリソグラフィ投影システムを概略的に示した図であり、
図9は、その温度および/または温度プロファイルを調整することによって偏光変調素子として使用されている旋光性材料から成る平行平面板を概略的に示した図であり、
図10は、旋光性材料から成る平行板と複屈折材料から成る板との組み合わせを示した図であり、
図11は、光学システム内での使用のための温度補償がされた偏光変調光学素子を概略的に示した図である。
【0042】
有利な実施形態の仮の説明
図1は、旋光性材料から成る偏光変調光学素子1を示している。殊に、この目的に良く適しているのは、使用されている光の波長に対して透過性である少なくとも1つの光学結晶軸を有する旋光性結晶である。例えばTeOは、1000nm〜300nmまでの波長の領域において作用し、AgGaSは500nm〜480nmの波長領域において作用し、水晶は800nm〜193nmまでの波長領域において作用する。偏光変調光学素子1は、素子軸が光学結晶軸に対して平行に配向されるように設計されている。選択された偏光分布を生じさせるために、光学素子1は厚さプロファイル(素子軸EAに対して平行に測定される)を伴って設計されている。ここでこの厚さプロファイルは、素子軸EAに対して垂直な方向において変化する。すなわち、例えば素子軸EAの固定された距離で、方位方向θ(図3を参照)において光学素子の厚さにおいて変化を含む。
【0043】
図2は、旋光性結晶の機能、殊にこのような結晶から成る偏光変調素子の機能をより詳細に説明するために用いられる。
【0044】
旋光性結晶は、少なくとも1つの光軸OAを有している。この光軸は結晶構造体において固有のものである。直線偏光光がこの光軸OAに沿って伝播すると、電界ベクトル206の振動面が、結晶202内を光が移動した距離dとしての比例した大きさの角度βで回転される。距離dと回転角度の間の比例ファクタは、比旋光度αである。後者は材料特有の数であり、結晶内を伝播する光線の波長に依存する。例えば水晶では、温度21.6℃で、180nmの波長での比旋光度は約α=(325.2±0.5)°/mmとして測定され、193nmではα=323.1°/mmである。
【0045】
本発明には次のことも重要である。すなわち、旋光性材料を、例えばマイクロリソグラフィにおいて使用される投影装置の照明システムにおいておよび/または投影光学システムの対物レンズにおいて使用することも重要である。比旋光度の温度依存性も考慮される。所与の波長に対する比旋光度αの温度依存性は、α(T)=α(T)+γ*(T−T)によってあらわされる良好かつ第1の一次近似である。ここでγは比旋光度αの線形温度係数である。このケースにおいてα(T)は温度Tでの旋光性係数または比旋光度であり、αは基準温度Tでの比旋光度である。旋光性水晶材料の場合には、波長193nmおよび室温での値γはγ=2.36mrad/(mmK)である。
【0046】
再び図2を参照されたい。殊に、結晶202内で光軸OAに沿って伝播する光は、直線的な複屈折の影響を受けない。従って、直線偏光光線が旋光性結晶202を、光軸OAに沿って伝播する場合、電界ベクトル206の振動面の空間的な配向いおける変化を除いて偏光のその状態は維持される。これは結晶202内を光線が移動した距離dに依存する。
【0047】
旋光性結晶のこの特性に基づいて、図1に示された偏光変調光学素子を、位置に依存して変化する厚さプロファイルで設計することによって、任意に選択された直線偏光分布を生じさせることができる。この厚さプロファイルは、次のような作用を有するように設計されている。すなわち、平行直線偏光光線の偏光の方向が、光線が光学素子を通過する位置に依存して変化する角度で回転される作用を有するように設計されている。
【0048】
より一般的には、偏光変調素子の厚さの変化d=d(x,y)に対して択一的にまたは付加的に、比旋光度αそれ自体が、変調素子内の位置に依存してよい。従ってαはα(x,y,z)またはα(r,θ,z)になり、ここでx,yまたはr,θは、例えば図1に示されているように、偏光変調素子の素子軸EA(または光軸OAに対して択一的)に対する平面垂直における直交座標または極座標である。ここでzは、素子軸EAに沿った軸である。当然、r,θ,φ等の球座標または他の座標で表すことも可能である。比旋光度αの変化を考慮すると、偏光変調光学素子は、一般的に「光学的に有効な厚さ(optical effective thickness)D」の変化するプロファイルを有する。これはz方向においてαの依存がない場合には、
D(x,y)=d(x,y)α(x,y)によって定められる。αがz方向において(光軸または素子軸EAに沿って、またはより一般的には光学システムにおける優先方向または光学システムの光軸に対して平行する方向に沿って)も依存する場合には、Dは、偏光変調光学素子に沿って、積分D(x,y)=∫α(x,y,z)dz(x,y)によって計算されなければならない。一般的に、偏光変調光学素子が光学システム内で使用されている場合には、光学的に有効な厚さDは、偏光変調光学素子内の光線の行路に沿った比旋光度αを積分することによって計算される。ここでこの光学システムは、光軸または光学システムを通る光ビームの伝播によって定められた優先方向を有する。この一般的な観点の下で、本発明は光学システムに関係する。この光学システムは、光軸または優先方向を含む。この優先方向は、光学システムを通って伝播する光ビームの方向によって与えられる。すなわちこの光学システムは、座標系の座標によって記述される偏光変調光学素子を含む。ここで座標系の1つの優先座標は、光学システムの光軸に対して平行、または優先方向に対して平行である。例として、上述したケースではこの優先方向はz座標である。これは優先座標である。付加的に、偏光変調光学素子は、旋光性材料および上述したような効果的な光学的厚さDのプロファイルを有している。ここで効果的な光学厚さDは少なくとも、偏光変調光学素子を示す座標系の優先座標から異なる1つの座標の関数として変化する。上述の例では、効果的な光学的厚さDは、少なくとも、z座標(優先座標)とは異なる、x座標またはy座標の関数として変化する。旋光性材料の効果的な光学的厚さを変化させるための種々異なる独立した方法がある。1つは、適切な材料を選択すること、または統一されていない温度分布を旋光性材料に与えること、または旋光性材料の幾何学的形状厚さを変えることによって比旋光度を変えることである。上述した独立した方法を組み合わせることによっても、旋光性材料の有効な光学的厚さを変えることができる。
【0049】
図3は、偏光変調光学素子301の実施形態を示している。この偏光変調光学素子は特に接線偏光を生じさせるのに適している。詳細な説明は、図4dおよび5のコンテキスト内に示されている。図3に示された実施形態は、本明細書で定められる特定の意味で以降で使用される幾つかの技術的な用語を導入するために用いられる。
【0050】
偏光変調光学素子301は円筒状であり、底面303と対向面305を有している。底面303は、平面な円状の面として設計される。素子軸EAは、この平面面に対して垂直に延在する。対向面305は、この素子軸EAに関連して、所与の厚さプロファイルに相応して輪郭形状を有している。旋光性結晶の光軸は、素子軸EAと平行に走行している。基準面内に延在する基準軸RAは、直角で素子軸と交差し、基準として用いられる、この基準から方位角θが測定される。図3に示された特別な構成では、偏光変調光学素子301の厚さは、半径Rに沿って一定である。この半径Rは素子軸EAに対して垂直であり、基準軸RAに相対して角度θで方向付けされている。従って、図3の図示された実施例では厚さプロファイルは方位角θにのみ依存し、d=d(θ)によってあらわされる。この光学素子301は中央孔307を有しており、この中央孔は素子軸EAと同軸である。偏光光学素子の他の有利な実施形態ではこの厚さは半径に沿って変化する。従って、この厚さプロファイルはd=d(R,θ)であり。さらに普遍化された有利な実施形態では、図3に示された厚さプロファイルは、上述のように変調光学素子の幾何学的形状の厚さdをあらわしているのではない。しかし、このプロファイルは、使用されている座標軸に依存して、光学的に有効な厚さD=D(R,θ)=D(x,y)をあらわす。この場合には、例えばα=α(x,y)=α(R,θ)またはα=α(x,y,z)=α(R,θ,z)等の比旋光度のあらゆるプロファイルも、偏光変調光学素子のプロファイルにおいて考慮される。これは、通過された光ビームの偏光面の方向における変化に対して効果的である。
【0051】
付加的に、偏光変調光学素子301は、平面な底面303を必ずしも含む必要はないということに言及しておく。この表面は一般的には、輪郭形成された表面も含む。これは例えば、図3に示された305によって設計された表面と類似している、または等しい。このような場合には、輪郭表面303および305を、光軸または素子軸に垂直な平面表面に相対して記述するのは有利である。
【0052】
図4aは、偏光変調光学素子401のさらなる実施形態を概略的に示している。この偏光変調光学素子の中央を通る素子軸EAは、この図では、図平面に対して垂直に走行している。この結晶の光学的な結晶軸はこの素子軸に対して平行に走行する。図3の実施形態と同じように、この偏光変調光学素子401は、オプショナルの中央孔407を有している。この偏光変調光学素子401は、円の扇形形状で、多数の平面平行部分409に分けられる。これは、それらの厚さにおいて異なる。これらの部分409の異なった形状を伴う択一的な実施形態が可能である。これらは、例えば六辺形、正方形、長方形または台形形状のラスタ素子として構成可能である。
【0053】
図3に関連して示されたように、図4aに示された実施形態は修正可能であり、従って扇形の異なる厚さは、異なる有効光学厚さDとして理解されるべきである。この場合には比旋光度αは1つのセグメントから他のセグメントへも変化してよい。このような実施形態を製造するために、偏光変調光学素子は例えば図4aに示された形状を有することができる。ここで扇形409は少なくとも部分的に、例えばあらゆる非旋光性材料によって交換される。これは、比旋光度を0に変える最もシンプルなケースである。さらなる実施形態として、扇形409をキュベット(cuvettes)またはセルによって置き換えてもよい。これらのキュベットまたはセルは、旋光性液体または非旋光性液体によって満たされている。この場合には、偏光変調光学素子は、旋光性部分と非旋光性部分を含んでよい。扇形409が部分的にのみキュベットによって置き換えられる場合、または少なくとも1つのキュベットが偏光変調光学素子401内で使用されている場合、例えば旋光性結晶を例えば旋光性液体または非旋光性液体を1つの素子40内で組み合わせることが可能である。本発明に相応するこのような光学システムは、旋光性液体または非旋光性液体および/または旋光性結晶を含む偏光変調光学素子を含んでよい。さらに、本発明に相応する光学システムの偏光変調光学素子が、時計回りおよび逆時計回りに旋光性材料を含むことが可能であるのは有利である。これらの材料は、固体または液体の旋光性材料であり得る。キュベットにおいて液体を使用することによって次のような利点が生じる。すなわち液体を変えることによって、またはこの液体内の旋光性材料の濃度を変えることによって、偏光における変化の大きさを容易にコントロールすることができるという利点が生じる。比旋光度αの熱係数γによる比旋光度αのあらゆる熱的変化も、例えば旋光性液体の温度コントロールによってコントロール可能である。これによって、キュベット内の温度が一定であるか、または温度が予め定められた値Tを有する。これによって、比旋光度は値α(T)=α(T)+γ*(T−T)を有する。コントロール手段によってコントロールされた適切な加熱および/または冷却手段によって液体内の特定の温度分布を形成することも可能である。
【0054】
本発明に相応した光学システムは有利には、第1の直線偏光光線および第2の直線偏光光線の各振動面を修正する。両方の光線は光学システムを通って伝播し、少なくとも、光学システムを通って伝播する光ビームの一部である。この光線は、異なる経路を有する偏光変調光学素子も通過し、それぞれ第1および第2の回転角度で回転される。これによって、第1の角度は第2の角度とは異なる。一般的に、本発明に相応する光学システムの偏光変調光学素子は、前記偏光変調光学素子に入射する第1の直線偏光分布を有する光束を、前記偏光変調光学素子から出る光束に変える。この出射光束は、第2の直線偏光分布を有しており、ここでこの第2の直線偏光分布は、第1の直線偏光分布とは異なっている。
【0055】
図4bは、偏光変調光学素子401に対する、図4aに示されたように扇形に分けられた方位部分d(r=定数,θ)に沿った厚さプロファイルを示している。この文脈で使用されている用語である方位部分は、次のような部分を意味している。すなわち、図4aに示された円411に沿って厚さプロファイルd(θ,r)を横切る部分を意味している。
すなわち、一定の半径rで0°≦θ≦360°の方位角領域にわたって延在する部分である。一般的にこのプロファイルは、円411に沿った光学的に有効な厚さD=D(θ)を示している。
【0056】
扇形状部分に分けられた偏光変調光学素子401の方位部分は、階段形状プロファイルを有している。ここでこのプロファイル内では各ステップは厚さdにおける差または隣接する扇素子間の光学的有効厚さDに相当する。このプロファイルは、例えば最大厚さdmaxと最小厚さdminを有している。直線偏光光の振動面の回転角度の領域に対する0°≦β≦360°の領域をカバーするために、dmaxとdminの間に360°/αの差があるはずである。このプロファイルの各個々の段の高さは、扇形素子の数nに依存し、360°/(n・α)の大きさを有している。方位角θ=0°では、このプロファイルは不連続性を有しており、ここでは偏光変調光学素子401の厚さはdminからdmaxへ跳躍している。光学素子の異なった実施形態は厚さプロファイルを有しており、ここでは、方位部分は厚さの2つの不連続性を有している。これは例えばθ=0°とθ=180°である。
【0057】
択一的な実施形態では、このプロファイルは例えば最大の光学有効厚さDmaxと最小の光学有効厚さDminを有している。幾何学的形状の厚さdは例えば一定であり、これは素子401の個々のセグメント409の比旋光度αの変化をもたらす。直線偏光光の振動面の回転角度の領域に対する0°≦β≦360°の領域をカバーするために、αmaxとαminの間に360°/dの差があるはずである。このプロファイルの各個々の段の比旋光度の変化は、扇形素子409の数nに依存し、360°/(n・d)の大きさを有している。方位角θ=0°では、このプロファイルは、光学的有効厚さに関する不連続性を有しており、ここではこれはDminからDmaxへ跳躍する。有利にはこの実施形態において、偏光変調光学素子401の幾何学的形状厚さdにおける不連続性は存在しないことを指摘しておく。方位部分が光学的有効厚さの2つの不連続性を有する、光学的有効厚さの厚さプロファイルも容易に実現可能である。これは例えばθ=0°およびθ=180°においてある。Δα=360°/(n・d)の比旋光度の大きさにおける定められた変化を実現するために(素子401を形成するために、n個の角セグメント409が存在する場合には)、個々の扇形セグメント409は有利にはキュベットまたはセルから成る。これは、必要な比旋光度αを伴う旋光性液体によって満たされている。例として、m番目の扇形素子の場合には、比旋光度α(m)=αmin+m360°/(n・d)であり、0≦m≦nである。必要な比旋光度は例えば、液体の旋光性材料の濃度、または液体材料自体を変えることによって調整される。
【0058】
さらなる実施形態では、偏光変調光学素子401のセグメント409は、固体の旋光性材料(結晶性水晶等)と、旋光性材料によって満たされているセルまたはキュベットから成る。これらのコンポーネントは、光伝播方向において相互後ろに置かれる。択一的にまたは付加的に、キュベットそれ自体は、結晶性水晶のような旋光性材料を含む。
【0059】
上述した偏光変調光学素子は、直線偏光入射光を直線偏光分布に変える。ここでは、直線偏光光線の振動面は各扇形素子の厚さ(または光学的に有効な厚さ)に依存する角度によって回転される。しかし偏光の方向が回転されるこの角度は、各扇形素子にわたって一定である。従って、個々のフィールドベクトルの振動面の方向に対する分布関数は、特定の離散値しかとらない。
【0060】
直線偏光の連続的な分布は、方位部分に沿って連続的に変化する厚さ(光学的に有効な厚さ)プロファイルを有している光学素子によって達成される。
【0061】
連続的に変化する厚さプロファイルの例は図4cに示されている。この実施形態において方位部分411は、厚さ(一般的に光学有効厚さ)において、スロープm=−180°/(α・π)で、0≦θ≦360°の方位角領域にわたって、線形の増加を示している。ここでこのスロープは、スクリューのスロープとして定められる。択一的にこのスロープは、m=−180°/(απr)によって定められる。ここでrは、素子軸EAで中央に配置されている円の半径である。このケースでは、このスロープは素子軸の距離に依存する。これは例えば偏光変調光学素子301が所与の一定のスクリュースロープ(screw-slope)を有している場合(スクリューのリード)である。
【0062】
このコンテキストにおいて記号αは、旋光性結晶の比旋光度をあらわしている。図4bの上述された実施例でのように、図4cの厚さプロファイルは同じように方位角θ=0°で非連続性を有する。偏光変調光学素子401の厚さは、ほぼ360°/αの量によって、dminからdmaxへ跳躍する。
【0063】
偏光変調光学素子のさらなる実施形態は図4dに示されている。これは厚さプロファイル(一般的には光学的に有効な厚さプロファイル)を有している。これは同じように、直線偏光、殊に接線配向された偏光の連続的な分布を生じさせるのに適している。この厚さプロファイルは、図3に示された実施例に相応する。ここでは角度θは逆時計方向に測定される。この実施形態において方位部分411は、0<θ<180°および180°<θ<360°の各2つの領域にわたった、スロープm=−180°/(α・π)を有する方位角θの一次関数である。厚さプロファイルは、θ=0°およびθ=180°で非連続性を有する。ここで厚さは突発的に、180°/αの量によって、dminからdmaxへ上昇する。
【0064】
図4eは、偏光変調光学素子401のさらなる実施形態に対する方位部分に沿った厚さプロファイル(一般的には光学的に有効な厚さプロファイル)をあらわしている。方位部分はこのケースでは、0<θ<180°に対する第1のスロープmと、180°<θ<360°に対する第2のスロープnを伴う方位角θの一次関数である。このスロープmおよびnは、等しい絶対値を有しているが、反対の符号を有している。素子軸からの距離rでのmおよびnに対する各量は、m=−180°/(α・π・r)およびn=180°/(α・π・r)である。最小厚さdminと最大厚さdmaxとの間の差は再びほぼ180°/αである。すなわち、図4dの実施形態と同じである。2つの方位角領域におけるスロープに対して反対の符号を使用しているコンセプトによって、非連続性が生じるのが回避される。
【0065】
付加的に、特定の比旋光度に対して時計回りおよび逆時計回りの旋光性材料が偏光変調光学素子内で組み合わされるということを言及しておく。
【0066】
方位部分に沿って厚さプロファイルのスロープが、小さい半径とともに強力に増大するので、製造の観点から中央開口部407または中央掩蔽部を、円偏光変調光学素子の中央軸の回りの中央部分に設けるのは有利である。さらに、機械的な安定性の理由のために、素子直径の千分の2を下回らない、最小厚さdminを有する偏光変調光学素子を設計することが必要である。dmin=N・90°/αの最小厚さを使用することは特に有利である。ここでNは正の整数である。この設計選択は、入射光束の光線に対する複屈折の影響を最小化するために用いられる。ここでこの入射光束は、光軸に相対する角度で偏光変調素子を通過する。
【0067】
図4fは、偏光変調光学素子のさらなる実施形態421を概略的に示している。図4aのように、偏光変調光学素子の中央部分を通過する素子軸EAは、図平面に対して垂直に走行し、光学的な結晶軸はこの素子軸に対して平行に走行する。しかし、結晶性水晶のような結晶性材料の場合のように偏光変調光学素子301、401が有利には1つの部品から成る図3および4aの実施形態とは反対に、偏光変調光学素子421は、旋光性結晶材料の4つの別個の扇形部分422,423,424,425から成る。これらの扇形部分は取り付けデバイス426によってともに保持される。この取り付けデバイスは例えば金属から成り、その形状は4つの放射状スポーク428を有する円形プレート427として記述される。この取り付けは有利には、偏光変調光学素子に入射する放射に対して不透明である。これによって、スペーサーとしても用いられる。これは、扇形状部分422,423,424,425を相互に別個にする。当然ながら、図4fに従った本発明の実施形態は、いかなる特定の形状および、省かれてもよい取り付けデバイス426の領域によっても限定されるものではない。
【0068】
図4fに示されていない択一的な実施形態では、偏光変調光学素子に入射する入射光は、扇形状部分上へ選択的に方向付けされ得る。これは例えば、回折構造体または他の適切な光学コンポーネントによって行われる。扇形状部分422および424は第1の厚さd1を有している。これは選択されて、部分422および424は、直線偏光された、軸に平行な光の振動面を90°+p・180°回転させる。ここでpは整数をあらわしている。扇形状部分423および425は第2の厚さd2を有する。これは選択されて、部分423および425は、直線偏光された、軸に平行な光の振動面をq・180°回転させる。ここでqは0ではない整数をあらわす。従って、y方向において直線偏光されている軸平行光線の束が偏光変調光学素子421に入射すると、扇形状部分423および425を通過する光線は、その振動面を変えずにこの偏光変調光学素子421から出射する。また扇形状部分422および424を通過する光線は、その振動面をx方向に回転させて、この偏光変調光学素子421から出射する。偏光変調光学素子421を通過した結果、出射光は次のような偏光分布を有する。すなわち、扇形状部分422,423,424,425の中央線429および430で正確に接線であり、偏光変調光学素子421の残りに対して接線偏光分布に近い偏光分布を有する。
【0069】
x方向において直線偏光された軸平行光線の束が偏光変調光学素子421に入射すると、扇形状部分423および425を通過する光線はこの偏光変調光学素子421から、その振動面を変えずに出射し、また扇形状部分422および424を通過する光線は、その振動面をy方向に回転させて、この偏光変調光学素子421から出射する。偏光変調光学素子421を通過した結果、出射光は次のような偏光分布を有する。すなわち、扇形状部分422,423,424,425の中央線429および430で正確に放射状であり、偏光変調光学素子421の残りに対して放射状偏光分布に近い偏光分布を有する。
【0070】
当然ながら、図4fに従った本発明の実施形態は、図4fに例示された扇形状部分の形状、領域および数に限定されるものではない。従って他の適切な形状(これは例えば台形形状、長方形、正方形、六角形または円形の幾何学的形状を有するが、これに限定されない)が、多かれ少なかれ扇形状部分422,423,424および425と同様に使用可能である。さらに、扇形状部分422,423,424,425(すなわち、扇形状部分422,423,424,425の相当する厚さ)によって与えられる回転角度βおよびβがより一般的に選択されて、式|β−β|=(2n+1)・90°とほぼ一致してよい。ここでnは整数をあらわす。これは例えば、相対的な配置も考察するためである。ここでは、xまたはy方向と必ずしもアライメントされない偏光面を有している入射光が使用されている。図4と関連して説明された実施形態では、接線偏光を伴う偏光分布に近づけることも可能である。
【0071】
193nmの波長と、個々の光線の電界ベクトルの振動面の統一方向を有する直線偏光光から接線偏光分布を生じさせるために、例えば、図3および4dに示された設計を有する結晶性水晶の偏光変調光学素子を使用することができる。193nmの波長を有する光に対する水晶の比旋光度αは、(325.2±0.5)°/mmの領域にある。これは180nmの波長で測定されたものである。またより詳細にはこれは、21.6℃で321.1°/mmである。旋光性の強さおよび効果は、100mradまでの入射角の小さい領域内でほぼ一定である。例えば以下の記述に従って、ある実施形態が設計可能である:すなわち、結晶性水晶が使用されている場合には、最小厚さdminに対して276.75μmの量が選択される。これは90°/αに実質的に等しい。択一的に、最小厚さdminがこの量の整数倍であってもよい。素子直径は110mmである。旋光性部分の直径は幾分小さく、例えば105mmである。底面は、図3に示されているように、平面表面として設計されている。対向面は、図4dに従って厚さプロファイルd(r,θ)を有している。この厚さプロファイルは、以下の数学的な関係によって定められる:
【数4】

【0072】
上述のデータは、(325.2±0.5)°/mmの比旋光度に対する例に基づいている。193nmで21.6℃の温度での値である比旋光度αが321.1°/mmに変わると、厚さプロファイルは以下のように変化する:
【数5】

【0073】
この実施形態に相応する偏光変調光学素子は中央開口部407を有している。これは直径10.5を有している。すなわち、最大開口の10分の1である。最大厚さおよび最小はそれぞれ第1の所与の例に対して830.26μmおよび276.75μmである。
【0074】
上述した実施例は、ロボット研磨プロセスによって製造される。偏光変調光学素子を、2つのくさび形状または螺旋形状の半部分から製造するのは特に有利である。これらは研磨の後にシームレスに結合される。この素子が半板から製造される場合には、1つの時計まわりおよび逆時計まわりの旋光性材料を使用するのは容易であり、幾つかの用途では有利である。これは時計まわり結晶性水晶および逆時計まわり結晶性水晶である(右水晶および左水晶)。
【0075】
図5は、図3および4dに従った厚さプロファイルを有する偏光変調光学素子501がどのように、統一して配向された直線偏光分布517を有する入射光束513の偏光分布を、出射光束515の接線偏光519に変換するのかを概略的に示している。これは次のようにして視覚化されている:偏光変調光学素子を最小厚さの場所で、例えばθ=180°で通過する入射光束513の直線偏光光線は、旋光性結晶内で90°/αの距離をカバーする。これによって、電界ベクトルの振動面は、90°で回転される。他方で、偏光変調光学素子501を、θ=45°を伴う場所で通過する直線偏光された光線は、旋光性結晶内で135°/αの距離をカバーする。従って、この光線の電界ベクトルの振動面は135°で回転される。同じような結論が、入射光束513の各光線に対して示される。
【0076】
図6は、図3および4dに従った厚さプロファイルを有する偏光変調光学素子601を伴う光学配置が、さらなる偏光変調素子621と組み合わされてどのように、統一して配向された直線偏光分布617を有する入射光束613の偏光分布を、出射光束615の放射状偏光623に変えるのかを概略的に示している。図5のコンテキストにおいて説明されたように、偏光変調光学素子601は、接線偏光分布を生じさせる。接線偏光分布は、光束の各直線偏光された光線の各振動面の90°の回転によって、放射状偏光分布に変換される。これを、図6に従った光学装置で成し遂げるための幾つかの異なった方法がある。1つの可能なコンセプトは、旋光性結晶の平面平行板をさらなる偏光変調素子621として光路内に配置することである。ここでは、板の厚さは約90°/αであり、ここでαpは、旋光性結晶の比旋光度をあらわしている。偏光変調素子601内でのように、平面平行板の光学結晶軸は同じように素子軸に対して平行に走行する。他の可能なコンセプトとして、さらなる偏光変調素子621は90°回転部として構成される。これは2つの半波長板から構成される。90°回転部は、複屈折結晶材料の2つの半波長板から成る。各板は、遅い軸と、この遅い軸に直交した速い軸を有している。ここでこの遅い軸は、より高い屈折率の方向に関連しており、速い軸はより低い屈折率の方向に関連している。2つの半波長板は相互に相対的に回転され、その各速い軸および遅い軸は相互から45°の角度でセットになっている。
【0077】
当然ながら放射状偏光分布を生じさせるためのさらなる各実施形態が、本発明の範囲内で考えられる。例えば、さらなる偏光変調光学素子621が、偏光変調光学素子601に接続される。接線偏光から放射状偏光への迅速な切換を可能にするために、交換デバイスを設けることができる。これによって、さらなる偏光変調素子621が光路内に配置され、再び除去される、または他の素子によって置き換えられる。
【0078】
接線偏光分布は、図4eに従った厚さプロファイルを有する偏光変調光学素子によっても生成される。本発明のこの実施形態において厚さプロファイルは、不連続性を有していない。図7aに示されているように、入射光束713の、統一されて方向付けされた偏光分布717ははじめに、偏光変調光学素子701によって、出射光束715の直線偏光分布727に変換されている。図4eに示された厚さプロファイルの方位角領域0≦θ≦180°において偏光変調光学素子701を通過する入射光束713の二分の一が変換され、出射する光束の相応する二分の一が接線偏光分布を有する。しかし他の半分は、異なった、非接線偏光分布727を有する。偏光変調光学素子701から出射する光束715の偏光分布727を完全に接線偏光分布719へ変換するために、さらなる偏光変調光学素子がこの光路内で必要とされる。このさらなる偏光変調光学素子はこの場合には、平面平行板725として構成される。この平面平行板は第1の半分729と第2の半分731を有している。平面平行板725の平面図が図7bに示されている。第1の半分729は、等方性材料から成る。これは、光線の偏光の状態に影響を与えない。また第2の半分731は半波長板として設計されている。図7aの光学装置内の平面平行板725は次のように配置されている。すなわち、偏光変調光学素子701の基準軸RAの投影RA' が、平面平行板上で、実質的に、第1の半分729と第2の半分731の間の分離線に沿って走行するように配置されている。半波長板の複屈折の遅い軸LAは、この分離線に対して垂直である。択一的に、接線偏光は次のような場合に、図4eによって与えられた厚さプロファイルを有する偏光変調光学素子によっても得られる。すなわち、この素子が、結晶性水晶の2つの半くさび形状または螺旋形状素子から構成されている場合である。ここで1つの素子の旋光性は時計まわりであり、他の素子の旋光性は逆時計まわりである。この場合には、図7aの実施形態でのように、付加的な平面平行板725は必要ではない。この実施形態では、有利には各くさび形状素子は一定のスクリュースロープを有する。しかしこのスロープは、図4eに示されているプロファイルとは異なる方向を有する。さらに、幾何学的形状厚さdのスロープが同じ絶対値を有する必要はない。光学有効厚さのスロープDが同じ絶対値を有していれば十分である。この場合には、比旋光度αは、2つのくさび形状素子に対する絶対値に異なって留意する。これらのくさび形状素子は、偏光変調光学素子を形成する。
【0079】
図8は、マイクロリソグラフィ投影システム833を概略的に示している。これは光源ユニット835,照明システム839,マイクロ構造をもたらすマスク853,投影対物レンズ855および投影に曝される基板859を含む。光源ユニット835は、DUVレーザまたはVUVレーザを含む。これは例えば192nmに対するArFレーザ、157nmに対するFレーザ、126nmに対するArレーザまたは109nmに対するNeレーザである。光源ユニットはさらにビーム成形光学システムを含む。これは平行光束を生じさせる。光束の光線は直線偏光分布を有しており、ここで各光線の電界ベクトルの振動面は統一した方向に配向される。照明システム839の基本構造は、DE19529563(US6258433)に記載されている。平行光束は拡散上昇(divergence-increasing)光学素子837上に入射する。発散上昇光学素子としては、例えばラスタ板を使用することができる。これは回折性または屈折性のラスタ素子の配置を伴う。各ラスタ素子は光束を生じさせ、この光束の角度分布は、このラスタ素子の寸法および焦点距離によって定められる。ラスタ板は、光路において下流に続く、対物レンズ840の対象面または対象面近傍に配置されている。対物レンズ840は、可変直径を伴う平行な光束を生じさせるズーム対物レンズである。方向変化ミラー841は、平行光束を光学ユニット842へ向ける。ここでこの光学ユニットは、アキシコン(axicon)(すなわち、回転対称プリズム配置)843を含む。ズーム対物レンズ840はアキシコン843と共働し、瞳面845において異なる照明プロファイルを生じさせる。これはズームおよびアキシコン素子の位置の設定に依存する。例えば図3に示された種類の偏光変調素子801は、瞳面845に配置されている。偏光変調光学素子801には、光路において、補償プレート847が続く。この補償プレートは、角度偏差を補償するように設計された厚さプロファイルを有する。この角度偏差は、偏光変調光学素子によって、この偏光変調光学素子を通過する光線内で生じる。光学ユニット842にはレチクルマスキングシステム(REMA)849が後続する。REMA対物レンズ851は、レチクルマスキングシステム849のイメージを構造搬送マスク(レチクル)853上に投影する。これによってレチクル853の照明領域の境界が定められる。投影対物レンズ855は、構造搬送マスク853のイメージを感光性基板859上へ投影する。投影対物レンズの最後の光学素子857と、感光性基板859の間の空間は、浸液861を含む。この浸液は、空気とは異なる屈折率を有する。
【0080】
本発明の付加的な利点は、本発明に相応する偏光変調光学素子または光学システムが、図8に示されたマイクロリソグラフィ投影システムにおいて、偏光分布の調整にも、偏光分布の温度補償にも使用可能であるということである。最新のマイクロリソグラフィ投影システムは幾つかの用途において、レチクル853で、予め定めらえた偏光分布を必要とする。これは約5°またはそれより良好な精度を伴う、幾つかのケースでは1°よりも良好な精度を伴う。
【0081】
レチクルでの偏光分布は、種々の光学素子によって影響される。例えばテンション誘導された複屈折性、または、個々の光学素子の温度の定められていないまたはコントロールされていない変化によって影響される。従って、偏光分布は時間にわたって予知できずにまたはコントロールできずに変化する。このような変化を修正するために、偏光変調光学素子の比旋光度αの温度依存性を、偏光角度の大きさをコントロールするために使用することができる。本発明の実施形態に従った光学システムは有利には、偏光コントロールシステムを含む。これは、光学システムを通って伝播する光ビームの偏光分布をコントロールする。関心対象の偏光分布は、光学システムの予め定められた位置での偏光分布である。偏光コントロールシステムは、偏光変調光学素子の温度および/または温度分布を修正するために、少なくとも1つの加熱または冷却デバイスを含む。これによって予め定められた位置での光ビームの偏光分布に影響が与えられる。ここで偏光変調光学素子が可変の有効光学厚さまたは一定の有効光学厚さを有していてよい。
【0082】
一定の有効光学厚さの場合には、光学システムは、光学システムを通って伝播する光ビームの方向によって与えられる光軸または優先方向(preferred direction)を含む。この光学システムは付加的に、座標系の座標によって記述される偏光変調光学素子を含む。ここで座標系の1つの優先座標は、光軸に対して平行であるか、または前記優先方向に対して平行である。偏光変調光学素子は固体および/または液体の旋光性材料を含む。ここで有効光学厚さは、座標系の優先座標とは異なる少なくとも1つの座標の関数として一定である。光学システムはさらに、光学システム内の予め定められた場所で、(光学システムを通って伝播する)光ビームの偏光分布をコントロールする偏光コントロールシステムを含む。この偏光コントロールシステムは、偏光変調光学素子の温度および/または温度分布を修正するために、少なくとも1つの加熱または冷却デバイスを含む。これによって予め定められた位置での光ビームの偏光分布に影響が与えられる。
【0083】
例として、(例えば本発明に相応する光学システム内で使用されるような)偏光変調光学素子が、平行板を含んで、または平行板として構成されて、合成(結晶性)水晶から成る場合には、このような板の10mmの厚さは結果的に、1.35°/Kに等しい、23.6mrad/℃または23.6mrad/Kの偏光の変化を生じさせる。これは、γ=2.36mrad/(mmK)を伴う比旋光度αの線形温度係数γによる。これらのデータは193nmの波長に相当する。図9に概略的に示されている、このような実施形態では、平行板901の光軸OAは、光学システムにおいて光の伝播(参照番号950によって示されている)に対して、平行にまたはほぼ平行に方向付けされる。ほぼ平行が意味するのは、平行板901の光軸OAと、光学システムを通って伝播する光の方向との間の角度が200mradよりも小さく、有利には100mradよりも小さく、または50mradよりも小さいということである。板901の温度をコントロールすることによって、偏光の変化がコントロールされる。例えば板の温度が約20℃から40℃の領域内でコントロールされる場合、偏光角度は、水晶から成るこのような板901に対しては約±13.5°の領域内でコントロール可能に変化される。この高い感度によって、温度コントロールによる偏光分布のコントロールが可能になる。このような場合には、約0.1mmから20mmまでの厚さdを伴う平行板も、偏光変調光学素子901になり、板901の温度を変えることによって偏光分布をコントロール可能に調整することができる。有利には、合成(結晶性)水晶の場合には、板901の厚さはn278.5μmである(nはあらゆる整数である)。この結果、n=1の場合には少なくとも90°の偏光面の回転になり、n=2の場合には180°の回転になり、これは一般的にはn90°で、193nmの波長に対して、約21.6℃の場合である。偏光面の90°の回転の場合には、合成水晶は少なくとも278.5μmであり、180°の回転の場合には少なくとも557.1μmであり、270°回転の場合には厚さは835.5μmであるべきであり、偏光の360°回転の場合には、厚さは1.114mmである。厚さに関する製造公差は約±2μmである。従ってこの製造公差によって、光の偏光面の角度が不正確になる。この光は約±0.64°の板を約21.6℃かつ193nmで通過する。この不正確さのために、この板(または偏光変調光学素子)の温度変動によって生じる付加的な不正確性が考慮されなければならない。これは比旋光度αの線形温度係数γによって与えられる。ここでγ=2.36mrad/(mmK)=0.15°/(mmK)である。
【0084】
板901の温度コントロールは、温度センシングデバイスを用いて、閉ループまたは開ループコントロールによって行われる。ここでこの温度センシングデバイスは、板901の温度を定める(または偏光変調光学素子の温度および/または温度分布をあらわすまたはこれに等しい温度センサ値を与える)少なくとも1つの温度センサ902,903と、有利には赤外放射線906によって板を加熱する赤外線ヒータを含む、少なくとも加熱装置904,905と、少なくとも1つの加熱装置904,905をコントロールするためのコントロール回路910を伴う。温度センシングデバイスの温度の例としては、投影光学系を伴う反応性のCCD素子が使用されてよい。ここで投影光学系は、板901の少なくとも一部をCCD素子上に結像し、これによって板901の見られる部分の温度プロファイルがCCD素子信号を分析することによって定められる。コントロール回路910は、コンピュータシステム915を含む、またはマイクロリソグラフィ投影システム833(図8参照)のコンピュータまたはコントロールシステム915と接続される。温度がコントロールされる板901の有利な実施形態では、厚さが選択され、n90°(nはあらゆる整数)の偏光の回転が温度T=(Tmax−Tmin)/2+Tminで得られる。ここでTmaxおよびTminは、板901(または一般的には偏光変調光学素子)の最大温度および最小温度である。有利には、加熱装置または加熱システム(およびペルチエ素子のような冷却デバイス)が次のように配置される。すなわちこれがマイクロリソグラフィ投影システム833の光路内ではなく、または本発明の実施形態に従った光学システムを通って伝播する光ビームの光路内でないように配置される。有利には、本発明に従った偏光コントロールシステムを伴うこの光学システムは、次のようなシステム内で使用される。すなわち、偏光変調光学素子と光学システム内の予め定められた位置との間に配置された少なくとも1つの付加的な光学素子を伴うシステム内で使用される。このような配置によって、光ビームは、偏光変調光学素子から予め定められた位置へ伝播するときに、少なくとも1つの付加的な光学素子に接触する。付加的な光学素子は有利にはレンズ、プリズム、ミラー、屈折性又は回折性の光学素子または線形の複屈折材料を含む光学素子を有する。従って、本発明に相応する光学システムは、マイクロリソグラフィ投影システム833の一部を形成する。
【0085】
さらなる有利な実施形態では、偏光変調光学素子901(図9では板として示されている)の温度は予め定められた温度プロファイルに相当する。例として、このような温度プロファイルは、複数の赤外線ヒータ904,905を使用することによって得られる。これによって光学素子901にわたった放射状分布が生じる。これは、上述したようにコントロール回路によってコントロールされて光学素子901を加熱する。このような実施形態では、コントロール回路910に対して複数の温度センサ902,903も使用される。この実施形態では、マイクロリソグラフィ投影システム833のフィールド面または瞳面における偏光状態を局部的に調整することができる。
【0086】
択一的にまたは付加的に、加熱装置または加熱デバイス904,905が1つまたは複数のペルチエ素子907,908によって置き換えられるまたは補足される。1つまたは複数のペルチエ素子は有利にはコントロール回路910に接続され、開および/または閉ループコントロールによるコントロールが可能である。ペルチエ素子の利点は、偏光マニピュレーティング光学素子901のコントロールされた冷却が得られるということである。光学素子を同時に加熱および冷却することによって、偏光変調光学素子901内で複雑な温度分布が生じる。これによって、例えば素子901を通過した後に、マイクロリソグラフィ投影システム833を通って伝播する光950の複雑な偏光分布が生じる。当然ながら、上述したものの他の加熱手段および冷却手段を使用して、偏光変調光学素子901の必要な温度プロファイルまたは必要な温度を得ることができる。
【0087】
マイクロリソグラフィ投影装置833(図8参照)の照明システムにおいて偏光変調光学素子801として平面板(plane plate)901を使用することは、瞳面845および/または光源ユニット835と上述した瞳面845の間の位置で有利である。平面板901をこの位置で使用することは次のような利点を有する。すなわち、板901およびマイクロリソグラフィ投影装置を通過する入射光の角度が6°(100mrad)よりも小さいという利点を有する。この小さい角度で、板901によって生じる線形複屈折の影響は非常に小さい。従って、板901に入射する前に光が直線偏光されていた場合には、無視できる楕円形状部分を伴って、板901を通過した後の光の伝播はほぼ直線である。
【0088】
本発明のさらなる有利な実施形態では、本発明に相応する偏光変調光学素子901または光学システムを通過した光の偏光の状態が測定される。このために、偏光コントロールシステムは、偏光値を与える偏光測定デバイスを含む。ここでこの偏光値は、光学システム内の所定の位置での光ビームの偏光または偏光分布を代表する、またはこれに等しい。さらに、コントロール回路は、少なくとも1つの加熱または冷却デバイスを、開ループコントロールまたは閉ループコントロールによって、温度センサ値および/または偏光値に依存してコントロールする。偏光の測定状態は必要な状態と比較され、測定された状態偏差が許容値を上回っている場合には、平面板901等の偏光変調光学素子の温度および/または温度分布が変えられ、偏光の測定された状態と必要な状態の間の差がより小さくなり、可能であればこの差が許容値内である程度に小さくなる。図9には、偏光状態の測定がその場で測定される、または別個の特別な測定によって、偏光測定デバイス960に依存して測定される。偏光測定デバイスは、コントロール回路910と接続される。これによって、測定された偏光状態値に依存して、加熱手段904,905および/または907,908がコントロールされて加熱されるおよび/または冷却される。この結果、測定され、必要とされる偏光状態が小さくなる。このコントロールは開ループモードまたは閉ループモードで行われる。
【0089】
偏光変調光学素子として使用される、またはこの種のエレメントの一部である平面板901は特に、通過した光束の偏光状態の配向を背優勢するのに適している。
【0090】
本発明のさらなる実施形態では、偏光変調光学素子として使用されている平面板901(旋光性材料を含むまたは旋光性材料から成る)は、直線複屈折性材料を含むまたはこれから成る板971(図10を参照)と組み合わされる。本発明のこの実施形態では、通過光束950の配向および位相に影響が与えられ、例えば、平面偏光光束は、2つの板901と971を通過した後に、またはこの逆を通過した後に楕円偏光される。この実施形態では少なくとも1つの板901または971が、その温度および/または温度分布に関して、図9に関連して記載したようにコントロールされる。さらに、板901と907のシーケンスが変えられ、通過光束ははじめに、線形複屈折材料を含むまたはこれから成る板971を通過し、その後に、旋光性材料を含むまたはこれから成る板901を通過してもよい。またその逆でもよい。有利には2つの板は、連続的に、このシステムの光軸OAに沿って配置される。また、線形複屈折材料を含むまたはこれから成る1つより多い板および/または、旋光性材料を含むまたはこれから成る1つより多い板が、通過光束の偏光状態を操作するために用いられてもよい。さらに、平面板971または901が旋光性材料を含む液体セルまたはキュベットによって置き換えられてもよい。線形複屈折材料を含むまたはこれから成る平行板971および旋光性材料を含むまたはこれから成る板901が配置され、少なくとも1つの他の光学素子981がこれらの平面板の間に配置されることが可能である。この素子981は例えばレンズ、回折性または屈折性の光学素子、ミラーまたは付加的な平面板であってよい。
【0091】
本発明の付加的な実施形態では、偏光変調光学素子または一般的には偏光光学素子は温度補償されて、偏光変調光学素子によって、この素子の温度変動が原因でもたらされる偏光分布の不正確さが低減される。これは、合成水晶材料の場合には、水晶に対する比旋光度αの線形温度係数γによって与えられる(これは、上述したようにγ=2.36mrad/(mmK)=0.15°/(mmK)である)。この温度補償は、合成水晶の場合には、時計まわりの旋光性を伴う1つの水晶材料と逆時計まわりの旋光性を伴う1つの水晶材料が存在するという認識を使用する(右水晶および左水晶)。時計まわり旋光性および反時計まわり旋光性の両方は、各比旋光度αに関する大きさにおいてほぼ等しい。比旋光度の差は0.3%を下回る。合成水晶が時計まわり(右水晶)の旋光性を有しているか、または逆時計まわり(左水晶)の旋光性を有しているかは、種結晶に依存する。この種結晶は合成水晶の製造プロセスにおいて使用される。
【0092】
右水晶および左水晶は、図11に示されているように、熱、または温度補償された偏光変調光学素子911を製造するために結合される。偏光状態の変化に関して、この種の温度補償された偏光変調光学素子911は厚さdの合成水晶の平面板に等しい。例えば、2つの平面板921および931は、光の方向950において相互に背後に配置される。この光は光学システムを通って伝播し、この光学システムは温度補償された偏光変調光学素子911を含む。板のこの配置によって、1つの板931は厚さdを伴う右水晶から成り、他の板921は厚さdを伴う左水晶から成り、|d−d|=dである。dおよびd(min(d,d))の小さい方の厚さが、dまたはmin(d,d)>dより大きい場合には、偏光状態の温度依存が部分的に補償される。これは次のことを意味する。すなわち、右水晶および左水晶板のシステムの温度依存性がγ=2.36mrad/(mmK)d=0.15°/(mmK)dより小さいことを意味する。ここでdは、2つの板の厚さの差の絶対値d=|d−d|である。以下の説明はこの効果を証明する。例えば厚さd=557.1μmを伴う右水晶板931(結果として、入射偏光面と比較して出射偏光面の180°時計まわり変化を生じさせる)は、厚さd=557.1μm+287.5μmを伴う左水晶板921(結果として、入射偏光と比較して出射偏光面の270°逆時計まわり変化を生じさせる)と組み合わされる。この結果、光が平面板921,931両方を通過した後に、90°の偏光面の逆時計まわり変化が生じる。これは、右水晶板のみが使用されている場合の偏光面の270°の時計まわり方向の変化に相当する。温度補償が完全に得られない場合には、2つの板が使用されている場合には、これは約0.04°/Kの値まで低減される。これは、d=557.1μm+287.5μmの右水晶板だけが使用されている場合には0.13°/Kであるのと比較される。これは温度依存性の格段の低減である。なぜなら、温度が10℃変化しても、偏光板の変化は1°よりも小さいからである。
【0093】
一般的に、右水晶または左水晶から成るあらゆる構造化された偏光変調光学素子(例えば図3および図4aと組み合わされて記述された素子)が、それぞれ他の水晶タイプ(左水晶または右水晶)の平面板と組み合わされる。この結果、組み合わされたシステム911が、偏光の変化に関して低減された温度依存性を有する。平行板の代わりに、それぞれ他の水晶タイプから成る構造化された光学素子が使用されてもよい。これによって、図11において、示された板921および931が、この明細書で言及された構造化された偏光変調光学素子になる。これは反対の符号の比旋光度を有し、時計まわりおよび逆時計まわりに偏光状態を変化させる。
【0094】
温度補償された偏光変調光学素子911の上述した例を一般化するために、本発明は、光軸OAまたは優先方向950を含む光学システムにも関連する。これは光学システムを伝播して通る光ビームの方向によって定められる。光学システムは、座標系の座標によってあらわされる、温度補償された偏光変調光学素子911を含む、座標系の座標によってあらわされている。ここで、座標系の1つの優先座標は光軸OAに対して平行である、または前記優先方向950に対して平行である。温度補償された偏光変調光学素子911は、第1の偏光変調光学素子921と第2の偏光変調光学素子931を含む。第1および/または第2の偏光変調光学素子は固体および/または液体の旋光性材料と、有効光学厚さのプロファイルを含む。ここで有効光学厚さは、少なくとも、座標系の優先座標とは異なる1つの座標の関数として変化する。付加的にまたは択一的に、第1の偏光変調光学素子921および/または第2の偏光変調光学素子931は、固体および/または液体の旋光性材料を含む。ここで有効光学厚さは、少なくとも、座標系の優先座標とは異なる1つの座標の関数として一定である。付加的な特徴として、第1および第2の偏光変調光学素子921,931は、反対の符号の比旋光度を有する旋光性材料を含む。または第1の偏光変調光学素子は、次のような旋光性材料を含む。すなわち、第2の偏光変調光学素子の旋光性材料と比較して反対の符号の比旋光度を伴う旋光性材料を含む。平行板の場合には、有利には第1および第2の板の第1および第2の厚さの差の絶対値はより小さい板の厚さよりも小さい。
【0095】
本発明の有利な実施形態では、偏光変調光学素子は旋光性材料成分および/または非旋光性材料成分を含む。ここで、この成分は磁界の影響を受け、これによって磁界のフィールド成分が、偏光変調素子を通る光ビームの伝播方向に沿って存在する。旋光性材料成分は上述したように解釈されてよい。しかし旋光性材料も使用される。これは、旋光性材料と関連して記述したのと同じまたは類似の構造を有する。磁界の使用によって、ファラデー効果によって、旋光性および/または非旋光性材料を通過する光の偏光状態も変化し、偏光状態は磁界によってコントロールされる。
【0096】
本発明に従った偏光変調光学素子に対する、または光学システムに対する種々の実施例をこの出願で説明した。さらに、本発明に従った偏光変調光学素子または光学システムの付加的な実施例が、本出願において示された個々の実施例の個々の特徴および/または特性を交換するおよび/または組み合わせることによって得られる。
【図面の簡単な説明】
【0097】
【図1】厚さプロファイルを有する偏光変調光学素子を示した図。
【図2】直線偏光光線が旋光性結晶内の光軸に沿って伝播する場合に、どのように振動面が回転されるのかを示した概略図。
【図3】偏光変調光学素子の第1の実施例を示した図。
【図4a】偏光変調光学素子の第2の実施例を概略的に示した図。
【図4b】図4aに示された偏光変調光学素子の実施形態における、方位角の関数としての厚さプロファイルを示した図。
【図4c】偏光変調光学素子のさらなる実施形態における、方位角の関数としての厚さプロファイルを示した図。
【図4d】図3に示された偏光変調光学素子の実施形態における、方位角の関数としての厚さプロファイルを示した図。
【図4e】偏光変調光学素子のさらなる実施形態における、方位角の関数としての厚さプロファイルを示した図。
【図4f】偏光変調光学素子のさらなる実施形態の概略図。
【図5】図3または4dに記載された厚さプロファイルを有する偏光変調光学素子を通過する前および後の光線束の偏光分布を概略的に示した図。
【図6】図3に記載された厚さプロファイルを有する偏光変調光学素子およびさらなる偏光変調光学素子を有する光学配置を通過する前および後の光線束の偏光分布を概略的に示した図。
【図7a】図4eに記載された厚さプロファイルを有する偏光変調光学素子および、その半分が版波長板として構成されている平面平行板を有する光学配置を通過する前および後の光線束の偏光分布を概略的に示した図。
【図7b】その半分が半波長板として構成されている平面平行板の平面図。
【図8】偏光変調光学素子を伴うマイクロリソグラフィ投影システムを概略的に示した図。
【図9】その温度および/または温度プロファイルを調整することによって偏光変調素子として使用されている旋光性材料から成る平行平面板を概略的に示した図。
【図10】旋光性材料から成る平行板と複屈折材料から成る板との組み合わせを示した図。
【図11】光学システム内での使用のための温度補償がされた偏光変調光学素子を概略的に示した図。

【特許請求の範囲】
【請求項1】
偏光変調光学素子であって、
当該偏光変調光学素子は厚さプロファイルを有しており、または厚さプロファイルを含み、
光軸を有する旋光性結晶から成り、または光軸を有する旋光性結晶を含み、
前記光軸の方向において測定される前記厚さプロファイルは可変である、
ことを特徴とする偏光変調光学素子。
【請求項2】
第1の直線偏光光線および第2の直線偏光光線の各振動面はそれぞれ、第1の回転角度および第2の回転角度によって回転され、前記第1の回転角度は前記第2の回転角度と異なる、請求項1記載の偏光変調光学素子。
【請求項3】
前記旋光性結晶は水晶、TeOまたはAgGaSである、請求項1または2記載の偏光変調光学素子。
【請求項4】
前記偏光変調光学素子は、第1の直線偏光分布を有する入射光束を、第2の直線偏光分布を有する出射光束に変換し、前記第1の直線偏光分布は前記第2の直線偏光分布と異なる、請求項1から3までのいずれか1項記載の偏光変調光学素子。
【請求項5】
前記出射光束の偏光分布は、実質的に接線偏光分布である、請求項4記載の偏光変調光学素子。
【請求項6】
前記出射光束の偏光分布は、実質的に放射状偏光分布である、請求項4記載の偏光変調光学素子。
【請求項7】
前記偏光変調光学素子は実質的に旋光性結晶の光軸の方向に配向されている素子軸を有しており、
前記厚さプロファイルは当該素子軸に関連して変化し、当該変化は方位角θにのみ依存し、当該方位角θは基準軸から測定され、当該基準軸は前記素子軸に対して垂直に延在し、前記素子軸と交差する、
請求項1から6までのいずれか1項記載の偏光変調光学素子。
【請求項8】
前記厚さプロファイルは半径に沿って一定の値を有しており、
当該半径は、前記素子軸に対して垂直に、かつ前記基準軸に相対して角度θで配向されている、請求項7記載の偏光変調光学素子。
【請求項9】
前記厚さプロファイルの方位部分d(r=定数,θ)は、方位角10°<θ<350°の領域において、かつ前記素子軸から一定の距離rで、方位角θの一次関数であり、
前記方位部分はスロープmを有しており、当該スロープは式
【数1】

に実質的に一致し、ここでαは旋光性結晶の比旋光度をあらわしている、
請求項7または8記載の偏光変調光学素子。
【請求項10】
前記方位部分d(r=定数,θ)は、実質的に、方位角θ=0°で跳躍のような360°/αの上昇を有する、請求項9記載の偏光変調光学素子。
【請求項11】
前記厚さプロファイルd(r,θ)の方位部分d(r=定数,θ)は、方位角10°<θ<170°および190°<θ<350°の領域において、かつ前記素子軸から一定の距離rで前記方位角θの一次関数であり、
当該方位部分はスロープmを有しており、当該スロープは式
【数2】

に実質的に一致し、ここでαは旋光性結晶の比旋光度をあらわしている、
請求項7または8記載の偏光変調光学素子。
【請求項12】
前記方位部分d(r=定数,θ)は、実質的に、方位角θ=0°およびθ=180°で跳躍のような180°/αの上昇を有する、請求項11記載の偏光変調光学素子。
【請求項13】
前記厚さプロファイルd(r,θ)の方位部分d(r=定数,θ)は前記素子軸から一定の距離rで、かつ10°<θ<170°の第1方位角領域において前記方位角θの一次関数であり、ここで第1のスロープmを伴っており、
190°<θ<350°の第2方位角領域において、前記方位部分は前記方位角θの一次関数であり、ここで第2のスロープnを伴っており、
前記スロープmとnは同じ絶対値を有しているが、反対の符号を有しており、前記スロープmとnの大きさは、
【数3】

と一致し、ここでαは旋光性結晶の比旋光度をあらわしている、請求項7または8記載の偏光変調光学素子。
【請求項14】
前記偏光変調光学素子は、異なる厚さまたは異なる光学的有効厚さを有する少なくとも2つの平面平行部分から成る、または、異なる厚さまたは異なる光学的有効厚さを有する少なくとも2つの平面平行部分を含む、請求項1から8までのいずれか1項記載の偏光変調光学素子。
【請求項15】
前記部分は円の扇形として、または六角形として、または正方形として、または長方形として、または台形状ラスタ素子として構成されている、および/または少なくとも、旋光性液体または非旋光性液体を含むキュベットを含む、請求項14記載の偏光変調光学素子。
【請求項16】
第1の平面平行部分の対が、前記偏光変調光学素子の中央素子軸の向かいあっている側に配置されており、第2の平面平行部分の対が前記素子軸の向かいあっている側に配置され、前記第1の平面平行部分に関連して前記素子軸の周りで円周方向にずらされており、
前記第1の部分はそれぞれ、前記各第2の部分の厚さまたは光学的有効厚さと異なる厚さまたは光学的有効厚さを有している、請求項14または15記載の偏光変調光学素子。
【請求項17】
偏光変調光学素子を通る直線偏光光の振動面は、第1の回転角度βで前記第1の平面平行部分の少なくとも1つ内で回転され、第2の回転角度βで前記第2の平面平行部分の少なくとも1つ内で回転され、
従ってβおよびβは実質的に式|β−β|=(2n+1)・90°に一致し、ここでnは整数をあらわす、請求項16記載の偏光変調光学素子。
【請求項18】
前記βおよびβは実質的に式β=90°+p・180°に一致し、ここでpは整数をあらわし、β=q・180°に一致し、ここでqは0とは異なる整数をあらわす、請求項17記載の偏光変調光学素子。
【請求項19】
前記第2の平面平行部分の対は、前記第1の平面平行部分の対に関して前記素子軸の周りでほぼ90°で円周方向にずらされている、請求項16から18までのいずれか1項記載の偏光変調光学素子。
【請求項20】
前記第1の平面平行部分の対と前記第2の平面平行部分の対は、前記偏光変調光学素子の中央開口部または中央掩蔽部の反対側に配置されている、請求項16から19までのいずれか1項記載の偏光変調光学素子。
【請求項21】
前記第1および第2の対の調整部分は、領域によって相互に離れて間隔が開けられており、
当該領域は、前記偏光変調光学素子に入射する直線偏光光に対して不透明である、または非旋光性である、請求項16から20までのいずれか1項記載の偏光変調光学素子。
【請求項22】
前記第1および第2のグループの前記部分は取り付け部分によって一緒に保持される、請求項16から21までのいずれか1項記載の偏光変調光学素子。
【請求項23】
前記取り付け部分は、前記偏光変調光学素子に入射する直線偏光光に対して不透明である、または非旋光性である、請求項22記載の偏光変調光学素子。
【請求項24】
前記取り付け部分は実質的にスポークホイール形状を有している、請求項22または23記載の偏光変調光学素子。
【請求項25】
実質的に平面平行部分の第1のグループを含み、通過する直線偏光光の振動面は第1の回転角度βによって回転され、
実質的に平面平行部分の第2のグループを含み、通過する直線偏光光の振動面は第2の回転角度によって回転され、
従ってβおよびβは実質的に式|β−β|=(2n+1)・90°と一致し、ここでnは整数をあらわす、請求項14から24までのいずれか1項記載の偏光変調光学素子。
【請求項26】
前記βおよびβは実質的に式β=90°+p・180°に一致し、ここでpは整数をあらわし、β=q・180°に一致し、ここでqは0とは異なる整数をあらわす、請求項25記載の偏光変調光学素子。
【請求項27】
前記厚さプロファイルまたは有効光学厚さのプロファイルは連続的な形状を有している、請求項1から8までのいずれか1項記載の偏光変調光学素子。
【請求項28】
素子直径Dおよび最小厚さdminを有しており、当該最小厚さdminは少なくとも、前記素子直径Dの0.002倍に等しい、請求項1から27までのいずれか1項記載の偏光変調光学素子。
【請求項29】
前記厚さプロファイルは最小厚さ
【数4】

を有しており、ここでαは旋光性結晶の比旋光度をあらわしており、Nは正の整数をあらわしている、請求項1から28までのいずれか1項記載の偏光変調光学素子。
【請求項30】
前記偏光変調光学素子は中央開口部または中央掩蔽部を有している、請求項1から29までのいずれか1項記載の偏光変調光学素子。
【請求項31】
前記偏光変調光学素子は、第1の直線偏光分布を有する入射光束を、第2の直線偏光分布を有する出射光束に変換し、前記入射光束は複数の光線から成り、当該光線は、旋光性結晶の光軸に対して相対的に角度分布を有しており、当該角度分布は100mradを超えない最大入射角度を有している、請求項1から30までのいずれか1項記載の偏光変調光学素子。
【請求項32】
偏光変調光学素子であって、
第1の直線偏光光線の振動面と、第2の直線偏光光線の振動面はそれぞれ第1の回転角度と第2の回転角度で回転され、
前記第1の回転角度は前記第2の回転角度は異なっており、
前記偏光変調光学素子は旋光性材料から成る、または旋光性材料を含む、
ことを特徴とする偏光変調光学素子。
【請求項33】
異なる厚さまたは異なる有効光学厚さの少なくとも2つの平面平行部分を有している、請求項32記載の偏光変調光学素子。
【請求項34】
前記部分は、円の扇形として、または六角形として、または正方形として、または長方形として、または台形状ラスタ素子として構成されている、または前記部分は、旋光性液体または非旋光性液体を含む少なくとも1つのキュベットを含む、請求項33記載の偏光変調光学素子。
【請求項35】
第1の平面平行部分の対が前記偏光変調光学素子の中央素子軸の反対側に配置されており、第2の平面平行部分の対が前記素子軸の反対側に配置されており、かつ前記第1の平面平行部分に関連して前記素子軸の周りで円周方向にずらされており、
前記第1の部分はそれぞれ、前記各第2の部分の厚さまたは有効光学厚さと異なる厚さまたは有効光学厚さを有している、請求項33または34記載の偏光変調光学素子。
【請求項36】
偏光変調光学素子を通る直線偏光光の振動面は、第1の回転角度βで前記第1の平面平行部分の少なくとも1つ内で回転され、第2の回転角度βで前記第2の平面平行部分の少なくとも1つ内で回転され、
従ってβおよびβは実質的に式|β−β|=(2n+1)・90°に一致し、ここでnは整数をあらわす、請求項35記載の偏光変調光学素子。
【請求項37】
前記βおよびβは実質的に式β=90°+p・180°に一致し、ここでpは整数をあらわし、β=q・180°に一致し、ここでqは0とは異なる整数をあらわす、請求項36記載の偏光変調光学素子。
【請求項38】
前記第2の平面平行部分の対は、前記第1の平面平行部分の対に関連して前記素子軸の周りでほぼ90°で円周方向にずらされている、請求項35から37までのいずれか1項記載の偏光変調光学素子。
【請求項39】
前記第1の平面平行部分の対と前記第2の平面平行部分の対は、前記偏光変調光学素子の中央開口部または中央掩蔽部の反対側に配置されている、請求項35から38までのいずれか1項記載の偏光変調光学素子。
【請求項40】
前記第1および第2の対の調整部分は領域によって相互に離れて間隔が開けられており、
当該領域は、前記偏光変調光学素子に入射する直線偏光光に対して不透明である、または非旋光性である、請求項35から39までのいずれか1項記載の偏光変調光学素子。
【請求項41】
前記第1および第2のグループの前記部分は取り付け部分によって一緒に保持される、請求項35から40記載の偏光変調光学素子。
【請求項42】
前記取り付け部分は、前記偏光変調光学素子に入射する直線偏光光に対して不透明である、または非旋光性である、請求項41記載の偏光変調光学素子。
【請求項43】
前記取り付け部分は実質的にスポークホイール形状を有している、請求項41または42記載の偏光変調光学素子。
【請求項44】
実質的に平面平行部分の第1のグループを含み、通過する直線偏光光の振動面は第1の回転角度βによって回転され、
実質的に平面平行部分の第2のグループを含み、通過する直線偏光光の振動面は第2の回転角度によって回転され、
従ってβおよびβは実質的に式|β−β|=(2n+1)・90°と一致し、ここでnは整数をあらわす、請求項33から43までのいずれか1項記載の偏光変調光学素子。
【請求項45】
前記βおよびβは実質的に式β=90°+p・180°に一致し、ここでpは整数をあらわし、β=q・180°に一致し、ここでqは0とは異なる整数をあらわす、請求項44記載の偏光変調光学素子。
【請求項46】
請求項1から45までのいずれか1項記載の偏光変調光学素子を有する光学装置であって、
前記光学装置が構成され、少なくとも1つのさらなる偏光変調光学素子が光路内に挿入される、
ことを特徴とする光学装置。
【請求項47】
前記さらなる偏光変調光学素子は、請求項1から45の少なくとも1項に記載された偏光変調光学素子を含む、請求項46記載の光学装置。
【請求項48】
前記さらなる偏光変調光学素子は、旋光性結晶の平面平行板および/または旋光性液体または非旋光性液体を伴うキュベットを含む、請求項46記載の光学装置。
【請求項49】
前記さらなる偏光変調光学素子は、相互に相対して45°回転されている2つの半波長板から成るロテータを含む、請求項46記載の光学装置。
【請求項50】
前記偏光変調光学素子は素子軸を有しており、当該素子軸を基準にして厚さプロファイルは変化し、当該変化は方位角θにのみ依存し、当該方位角θは基準軸から測定され、当該基準軸は前記素子軸に対して垂直に延在し、前記素子軸と交差し、
10°<θ<170°の第1方位角領域における前記厚さプロファイルは、前記方位角θの一次関数であり、ここで第1のスロープmを伴っており、
190°<θ<350°の第2方位角領域において、前記方位部分は前記方位角θの一次関数であり、ここで第2のスロープnを伴っており、
前記スロープmとnは同じ絶対値を有しているが、反対の符号を有しており、
前記さらなる偏光変調光学素子は平面平行板を含み、当該平面平行板は180°の方位角領域をカバーする半空間に対する半波長板として構成されている、請求項46記載の光学装置。
【請求項51】
さらなる偏光変調光学素子は、前記光学装置を通過する直線偏光光線の振動面を90°回転させる、請求項46記載の光学装置。
【請求項52】
補償板が光学システムの光路内に配置されており、当該補償板は厚さプロファイルを有しており、当該厚さプロファイルは、前記偏光変調光学素子によって生じた、透過された放射線の角度偏差を実質的に補償するように構成されている、請求項46から51までのいずれか1項記載の光学装置。
【請求項53】
投影システムであって、
当該投影システムは放射源と、構造化されたマスクを照明するように操作される照明システムと、前記マスク構造のイメージを感光性基板上に投影する投影対物レンズとを含み、
請求項1から45までのいずれか1項に記載された前記偏光変調光学素子が前記照明システム内に配置されている、
ことを特徴とする投影システム。
【請求項54】
請求46から52までのいずれか1項に記載された光学装置が前記照明システム内に配置されている、請求項53記載の投影システム。
【請求項55】
空気とは異なる屈折率を有する浸液が、前記基板と当該基板に最も近い光学素子との間に存在する、請求項53または54記載の投影システム。
【請求項56】
マイクロ構造化された半導体コンポーネントを製造する方法であって、
請求項53から55までのいずれか1項に記載された投影システムを使用するステップを含む、
ことを特徴とする、マイクロ構造化された半導体コンポーネントを製造する方法。
【請求項57】
光学システムであって、
当該光学システムは、光学システムを通って伝播する光ビームの方向によって与えられる光軸または優先方向を含み、
前記光学システムは、座標系の座標によってあらわされる偏光変調光学素子を含み、
前記座標系の優先座標は前記光軸に対して平行である、または前記優先方向に対して平行であり、
前記偏光変調光学素子は旋光性材料と有効光学厚さのプロファイルを含み、
前記有効光学厚さは少なくとも、前記座標系の優先座標と異なる1つの座標の関数として変化する、
ことを特徴とする光学システム。
【請求項58】
前記有効光学厚さは、前記偏光変調光学素子の比旋光度の変化によって変化する、請求項57記載の光学システム。
【請求項59】
前記有効光学厚さは、前記偏光変調光学素子の幾何学的形状厚さの変化によって変化する、請求項57記載の光学システム。
【請求項60】
前記偏光変調光学素子は、旋光性液体または非旋光性液体および/または旋光性結晶を含む、請求項57から59までのいずれか1項記載の光学システム。
【請求項61】
前記偏光変調光学素子は、時計まわりおよび逆時計まわりの旋光性材料を含む、請求項57から60までのいずれか1項記載の光学システム。
【請求項62】
異なる経路で前記光学システムを通って伝播し、前記偏光変調光学素子を通過する第1の直線偏光光線と第2の直線偏光光線の各振動面は、各第1の回転角度と各第2の回転角度によって回転され、
前記第1の角度は前記第2の角度と異なる、請求項57から61までのいずれか1項記載の光学システム。
【請求項63】
前記偏光変調光学素子は、当該偏光変調光学素子に入射する第1の直線偏光分布を有する光束を、前記偏光変調光学素子を出射し、第2の直線偏光分布を有する光束に変換し、前記第2の直線偏光分布は前記第1の直線偏光分布と異なる、請求項57から62までのいずれか1項記載の光学システム。
【請求項64】
偏光コントロールシステムを含み、当該偏光コントロールシステムは光学システムを通って伝播する光ビームの偏光分布を、光学システム内の予め定められた位置でコントロールし、
当該偏光コントロールシステムは、前記偏光変調光学素子の温度および/または温度分布を修正するために、少なくとも1つの加熱デバイスまたは冷却デバイスを含み、光学システム内の予め定められた位置で光ビームの偏光分布に影響を与える、請求項57から63までのいずれか1項記載の光学システム。
【請求項65】
光学システムであって、
当該光学システムは、光軸または、光学システムを通って伝播する光ビームの方向によって与えられる優先方向を含み、
前記光学システムは、座標系の座標によってあらわされる偏光変調光学素子を含み、
前記座標系の優先座標は前記光軸に対して平行である、または前記優先方向に対して平行であり、
前記偏光変調光学素子は固体および/または液体の旋光性材料を含み、
前記有効光学厚さは、前記座標系の優先座標とは異なる少なくとも1つの座標の関数として一定であり、
前記光学システムはさらに、当該光学システムを通って伝播する光ビームの偏光分布を光学システム内の予め定められた位置でコントロールする偏光コントロールシステムを含み、
当該偏光コントロールシステムは、前記偏光変調光学素子の温度および/または温度分布を修正するために、少なくとも1つの加熱デバイスまたは冷却デバイスを含み、光学システム内の予め定められた位置で光ビームの偏光分布に影響を与える、
ことを特徴とする光学システム。
【請求項66】
前記固体および/または液体の旋光性材料は平行板である、または平行板の形状を有しており、旋光性水晶を含み、当該旋光性水晶の光軸は前記光学システムの光軸に対して平行である、または前記光学システムの優先方向に対して平行である、請求項65記載の光学システム。
【請求項67】
前記偏光コントロールシステムは少なくとも1つの温度センサとコントロール回路を含み、前記温度センサは、前記偏光変調光学素子の温度および/または温度分布をあらわす、または前記偏光変調光学素子の温度および/または温度分布に等しい温度センサ値を提供し、
前記コントロール回路は、少なくとも1つの加熱または冷却デバイスを前記温度センサ値に依存して、開ループコントロールまたは閉ループコントロールによってコントロールする、請求項64から66までのいずれか1項記載の光学システム。
【請求項68】
前記偏光コントロールシステムは偏光測定デバイスとコントロール回路を含み、前記偏光測定デバイスは、前記光学システム内の予め定められた位置での光ビームの偏光または偏光分布をあらわす、または前記光学システム内の予め定められた位置での光ビームの偏光または偏光分布に等しい偏光値を提供し、
前記コントロール回路は、少なくとも1つの加熱または冷却デバイスを前記温度センサ値および/または前記偏光値に依存して、開ループコントロールまたは閉ループコントロールによってコントロールする、請求項67記載の光学システム。
【請求項69】
前記コントロール回路はコンピュータシステムを含む、またはコンピュータシステムと接続されている、請求項67から68までのいずれか1項記載の光学システム。
【請求項70】
前記偏光変調光学素子と、前記光学システム内の予め定められた位置との間に少なくとも1つの付加的な光学素子を含み、前記偏光変調光学素子から前記光学システム内の予め定められた位置へ伝播するときに、光ビームは少なくとも1つの付加的な光学素子と接触する、請求項64から69までのいずれか1項記載の光学システム。
【請求項71】
前記付加的な光学素子は、レンズ、プリズム、ミラー、屈折性または回折性の光学素子または線形複屈折材料を含む光学素子を含む、請求項70記載の光学システム。
【請求項72】
前記偏光変調光学素子は、請求項1から45までの少なくとも1項に記載された偏光変調光学素子を含む、請求項57から71までのいずれか1項記載の光学システム。
【請求項73】
前記偏光変調光学素子は平行板を含み、
当該平行板は旋光性水晶を含み、当該旋光性水晶の光軸は、前記光学システムの光軸に対して平行である、または前記光学システムの優先方向に対して平行である、請求項57から71までのいずれか1項記載の光学システム。
【請求項74】
前記加熱デバイスは、少なくとも1つの赤外線加熱器および/または少なくとも1つのペルチエデバイスを含み、
当該赤外線加熱器およびペルチエデバイスが前記光学システムを通って伝播する光ビームの光路内にないように配置される、請求項64から73までのいずれか1項記載の光学システム。
【請求項75】
光学システムであって、
当該光学システムは、光軸または、該光学システムを通って伝播する光ビームの方向によって与えられる優先方向を含み、
当該光学システムは、座標系の座標によってあらわされる温度補償された偏光変調光学素子を含み、
前記座標系の1つの優先座標は前記光軸に対して平行である、または前記優先方向に対して平行であり、
前記温度補償された偏光変調光学素子は、第1および第2の偏光変調光学素子を含み、
当該第1および/または第2の偏光変調光学素子は、固体および/または液体の旋光性材料および有効光学厚さを含み、
前記有効光学厚さは、少なくとも、前記座標系の優先座標とは異なる1つの座標の関数として変化し、
付加的または択一的に前記第1および/または第2の偏光変調光学素子は固体および/または液体の旋光性材料を含み、
前記有効光学厚さは、前記座標系の優先座標とは異なる少なくとも1つの座標の関数として一定であり、
前記第1および第2の偏光変調光学素子は、反対の符号の比旋光度を伴う旋光性材料を含み、または、前記第1の偏光変調光学素子は、前記第2の偏光変調光学素子の旋光性材料と比べて反対の符号の比旋光度を伴う旋光性材料を含む、
ことを特徴とする光学システム。
【請求項76】
前記第1および第2の偏光変調光学素子は、伝播光ビームの方向において第1および第2の厚さを有する平面板であって、当該板は、時計まわりおよび逆時計まわりの比旋光度を有する旋光性水晶から成る、請求項76記載の光学システム。
【請求項77】
前記第1および第2の厚さの差の絶対値は、より小さい板の厚さよりも小さい、請求項76記載の光学システム。
【請求項78】
少なくとも1つの偏光変調光学素子は旋光性材料または非旋光性材料を含み、当該旋光性材料または非旋光性材料は、当該偏光変調光学素子を通って伝播する光ビームの方向に平行な磁界成分を伴う磁界の影響を受ける、請求項57から77までのいずれか1項記載の光学システム。
【請求項79】
投影システムであって、
当該投影システムは放射源と、構造化されたマスクを照明するように操作される照明システムと、感光性基板上にマスク構造のイメージを投影する投影対物レンズと、請求項57から78までのいずれか1項記載の光学システムを含む、
ことを特徴とする投影システム。
【請求項80】
空気とは異なる屈折率を有する液浸媒体が、前記基板と当該基板に最も近い光学素子の間に存在する、請求項79記載の投影システム。
【請求項81】
請求項79または80のいずれか1項に記載された投影システムを使用するステップを含む、
ことを特徴とする、マイクロ構造化された半導体コンポーネントを製造する方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4a】
image rotate

【図4b】
image rotate

【図4c】
image rotate

【図4d】
image rotate

【図4e】
image rotate

【図4f】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7a】
image rotate

【図7b】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate


【公表番号】特表2007−527549(P2007−527549A)
【公表日】平成19年9月27日(2007.9.27)
【国際特許分類】
【出願番号】特願2006−548272(P2006−548272)
【出願日】平成17年1月14日(2005.1.14)
【国際出願番号】PCT/EP2005/000320
【国際公開番号】WO2005/069081
【国際公開日】平成17年7月28日(2005.7.28)
【出願人】(503226224)カール ツァイス エスエムテー アクチエンゲゼルシャフト (7)
【氏名又は名称原語表記】Carl Zeiss SMT AG
【住所又は居所原語表記】Carl Zeiss−Strasse 22,D−73447 Oberkochen,Germany
【Fターム(参考)】