説明

光ファイバーのシステムおよび方法

本発明の一実施形態は、光ファイバーを形成する方法を含む。該方法は、コア材料と該コア材料を取り巻くガラスクラッディング材料とを有する母材を提供することを含む。該方法はまた、線引きされたファイバーを形成するように、該コア材料の融解温度よりも高い温度で該母材を線引きすることを含む。該方法は、該線引きされたファイバーを冷却して、結晶性ファイバーコアと、該結晶性ファイバーコアを取り巻き、かつ、該結晶性ファイバーコアの長さに沿って軸方向に延びるクラッディングとを有する該光ファイバーを形成することをさらに含む。

【発明の詳細な説明】
【技術分野】
【0001】
(関連出願への相互参照)
本出願は、2008年2月29日の出願日を有する米国仮特許出願第61/032,659号明細書の出願時の利益を主張するものであり、その全体が参照により本明細書に援用される。
(技術分野)
本出願は一般に、光学に関し、より詳細には光ファイバーのシステムおよび方法に関する。
【背景技術】
【0002】
通常の光ファイバーは、コア材料およびクラッディング材料を含み、コアおよびクラッディングの各々は溶融石英から製造され、かつ、異種の屈折率を有する。ファイバーは母材を線引きすることによって形成され得、母材は、完成されたファイバーの横断面(across−section)と類似し得る形において配置されたコア材料およびクラッディング材料を含む大きな団塊であり得る。光ファイバーを形成するために、母材が加熱され、かつ、一端から引き伸ばされ得るように、母材は、ファイバー線引きタワー(fiber drawing tower)において線引きされ得る。完成されたファイバーは、物理的な要因および運用上の要因を含む様々な要因(例えば、ラマン利得および/または励起パワーに起因すること)によって規制され得る長さを有し得る。
【0003】
通常の光ファイバーのコア材料は、誘導ラマン散乱(SRS)と呼ばれる現象を介して光利得を発揮し得る。従って、光信号は、それらが光ファイバーを介して伝播するときに増幅され得る。SRSを介した光信号の増幅は、コア材料のラマン利得係数と光ファイバーの長さとの両方に依存する。所望のラマン利得係数を達成するために、光ファイバーコアは通常、ファイバーの光利得を増大させるために、さらなる材料を用いてドープされる。しかし、そのようなドープは、ラマン利得係数に寄与することにおいて制限を有する。結果として、所与の光信号の光増幅の実質的な量を達成するために、一部の光ファイバーは、数百メートル以上の長さで製造されなければならない。従って、一部の光システムは、光励起またはレーザーから提供される光信号の強度を最大化するために、物理的なスペースおよび/またはパワーの実質的な量を必要とする。
【発明の概要】
【課題を解決するための手段】
【0004】
本発明の一実施形態は、光ファイバーを形成する方法を含む。該方法は、コア材料と該コア材料を取り巻くガラスクラッディング材料とを有する母材を提供することを含む。該方法はまた、線引きされたファイバーを形成するように、該コア材料の融解温度よりも高い温度で該母材を線引きすることを含む。該方法は、該線引きされたファイバーを冷却して、結晶性ファイバーコアと、該結晶性ファイバーコアを取り巻き、かつ、該結晶性ファイバーコアの長さに沿って軸方向に延びるクラッディングとを有する該光ファイバーを形成することをさらに含む。
【0005】
本発明の別の実施形態は、光ファイバーを形成する方法を含む。該方法は、該光ファイバーを生成するように、第1の端からクラッディング材料およびコア材料を含む母材を該コア材料の融解温度よりも高い温度で線引きすることを含む。該方法はまた、線引きされたファイバーを冷却して、該線引きされたファイバーのコア材料を自然に結晶化することを含み得る。該方法は、該第1の端から始まる線引きされたファイバーを、おおよそ結晶温度において熱を提供する熱源を介して移動させることをさらに含む。
【0006】
本発明の別の実施形態は、光ファイバーデバイスを含む。該光ファイバーデバイスは、該光ファイバーデバイスの長さに沿って軸方向に延びる結晶性コアを含む。該光ファイバーデバイスはまた、該結晶性コアを取り巻き、かつ、該光ファイバーデバイスの長さに沿って軸方向に延びる光ファイバークラッディングを含む。該光ファイバーデバイスは、該光ファイバークラッディングの中に該結晶性コアのおよそ中心軸に対称に配置される一対の導体であって、該光ファイバーデバイスの長さに沿って軸方向に延びる一対の導体をさらに含む。該一対の導体は、電気信号に応答して該結晶性コアを通して電界を生成するように構成され得る。
【0007】
本発明の別の実施形態は、光ファイバーデバイスを含む。該光ファイバーデバイスは、該光ファイバーデバイスの長さに沿って軸方向に延びる結晶性コアを含む。該光ファイバーデバイスはまた、該結晶性コアを取り巻き、かつ、該光ファイバーデバイスの長さに沿って軸方向に延びる光ファイバークラッディングを含む。該光ファイバーデバイスは、該光ファイバークラッディングの中に配置される導体であって、該光ファイバーの長さに沿って該結晶性コアの周囲をらせん状に延びる導体をさらに含む。該導体は、該導体を通して提供される電流に応答して、該結晶性コアを通して該光ファイバーデバイスの長さに沿って磁界を生成するように構成され得る。
【図面の簡単な説明】
【0008】
【図1】図1は、本発明の一局面に従って、光ファイバーを形成するための母材の一実施例を説明する。
【図2】図2は、本発明の一局面に従って、光ファイバーを形成するためにコア材料ロッドをコア穿孔する一実施例を説明する。
【図3】図3は、本発明の一局面に従って、光ファイバーを形成するためのシステムの一実施例を説明する。
【図4】図4は、本発明の一局面に従って、光ファイバーの別の実施例を説明する。
【図5】図5は、本発明の一局面に従って、光ファイバーの別の実施例を説明する。
【図6】図6は、本発明の一局面に従って、光学システムの一実施例を説明する。
【図7】図7は、本発明の一局面に従って、光ファイバーを形成するための方法を説明する。
【図8】図8は、本発明の一局面に従って、光ファイバーを形成するためのシステムの別の実施例を説明する。
【図9】図9は、本発明の一局面に従って、光ファイバーの形成における再結晶化の一実施例を説明する。
【図10】図10は、本発明の一局面に従って、光ファイバーデバイスの形成のための母材の一実施例を説明する。
【図11】図11は、本発明の一局面に従って、光ファイバーデバイスの一実施例を説明する。
【図12】図12は、本発明の一局面に従って、光ファイバーデバイスを形成するためのシステムの一実施例を説明する。
【図13】図13は、本発明の一局面に従って、光学システムの別の実施例を説明する。
【図14】図14は、本発明の一局面に従って、光ファイバーデバイスを形成するための方法の一実施例を説明する。
【図15】図15は、本発明の一局面に従って、光ファイバーデバイスを形成するための母材の別の実施例を説明する。
【図16】図16は、本発明の一局面に従って、光ファイバーデバイスを形成するためのシステムの別の実施例を説明する。
【図17】図17は、本発明の一局面に従って、光学システムの別の実施例を説明する。
【図18】図18は、本発明の一局面に従って、光ファイバーデバイスを形成するための方法の別の実施例を説明する。
【図19】図19および20は、本発明の一局面に従って、結晶性シリコンコアおよび石英ガラスクラッドを含む、本明細書内で述べられる通りに形成された光ファイバーの断面のX線回折(XRD)およびラマン分析をグラフで示す。
【図20】図19および20は、本発明の一局面に従って、結晶性シリコンコアおよび石英ガラスクラッドを含む、本明細書内で述べられる通りに形成された光ファイバーの断面のX線回折(XRD)およびラマン分析をグラフで示す。
【図21】図21および22は、本発明の一局面に従って、図19および20において述べられる光ファイバーの断面の元素分析を示す。
【図22】図21および22は、本発明の一局面に従って、図19および20において述べられる光ファイバーの断面の元素分析を示す。
【図23】図23および24は、本発明の一局面に従って、結晶性ゲルマニウムコアおよびホウケイ酸(BS)ガラスクラッドを含む、本明細書内で述べられる通りに形成された光ファイバーのXRDおよびラマン分析を示す。
【図24】図23および24は、本発明の一局面に従って、結晶性ゲルマニウムコアおよびホウケイ酸(BS)ガラスクラッドを含む、本明細書内で述べられる通りに形成された光ファイバーのXRDおよびラマン分析を示す。
【図25】図25は、本発明の一局面に従って、図23および24において述べられるファイバーの断面の元素分析を示す。
【図26】図26および27は、本発明の一局面に従って、断面の分析について、図19および20のファイバーと図23および24のファイバーとの元素分析を比較する。
【図27】図26および27は、本発明の一局面に従って、断面の分析について、図19および20のファイバーと図23および24のファイバーとの元素分析を比較する。
【発明を実施するための形態】
【0009】
本開示は一般に、光学に関し、より詳細には、光ファイバーのシステムおよび方法に関する。光ファイバーは、結晶性コアを有するように形成され得る。結晶性コアは、非結晶溶融石英コアにおいて達成され得るラマン利得のおおよそ1,000倍から10,000倍までのラマン利得を発揮し得る。結果として、ファイバー増幅器は、溶融石英コアを有する通常のファイバー増幅器よりもはるかに短いファイバー長を用いて、有意なラマン利得を達成し得る。さらに、本明細書内に開示されるような増幅器の中に投光される(launched)光信号は、そのような有意な増幅を達成し得、光励起エネルギーは、有意に低減させられ、通常のファイバー増幅器を用いた同様の規模の光信号を達成し得る。
【0010】
本明細書内に述べられる通り、「結晶性」という用語は一般に、多結晶材料および単結晶材料に関することに理解されたい。従って、「結晶性」という用語の使用は、多結晶材料または単結晶材料のいずれかを除外することを、特にそのように述べられない限り、意図していない。さらに、「単結晶」という用語は一般に、材料内に結晶粒界を含まない結晶性材料に関する。例えば、単結晶コアは、「単結晶コア」と呼ばれるものを含むその長さのファイバー内に結晶粒界を実質的に全く含まないことがあり得る。
【0011】
結晶性コアファイバー増幅器は、例えば、コア材料が融解されるようになる温度条件下、かつ、クラッド材料が線引きされ得る温度条件下でクラッディング材料とコア材料とを含む母材を線引きすることによって形成され得る。冷却すると、コア材料は、自然に結晶化し得る。線引き処理は、単結晶コアファイバー増幅器および多結晶ファイバー増幅器を提供し得る。さらに、他の種類のファイバー増幅器および/または光ファイバーも形成され得る。一実施例として、光ファイバーデバイスは、ファイバーの長さに沿って軸方向に延びる1つ以上の導体を含むように形成され得る。例えば、導体に印加される電気信号がコアを通して電界を生成(例えば、電気光学位相変調)し得るように、光ファイバーデバイスは、2つの導体を用いて形成され得、2つの導体は、コアの中央に対して反対側にクラッディングの中に配置される。別の実施例として、単一導体が、クラッディングの中に配置され得、光ファイバーデバイスの長さに沿ってコアの周囲をらせん状に延びる。そのように、導体に提供される電流は、例えばコアの中の光信号の極の回転(polar rotation)を提供するために、コアを通して磁界を生成し得る。
【0012】
図1は、本発明の一局面に従って、光ファイバーを形成するための母材10の一実施例を説明する。母材10は、コア材料12およびクラッディング材料14を含む。従って、母材10は、光ファイバーを形成するように線引きされ得る。クラッディング材料14は、任意の様々なガラス材料であり得る。例えば、クラッディング材料14は、酸化物ガラス(例えば、珪酸塩ガラス、りん酸塩ガラス、ゲルマネートガラス(germanate glass)など)を含み得る。別の例として、クラッディング材料14は、ハロゲン化合物ガラス(例えば、フッ化物ガラス)を含み得る。さらに別の実施例として、クラッディング材料14は、カルコゲナイド(例えば、硫化物ガラス、セレン化物ガラス、テルル化合物ガラスなど)を含み得る。例として、石英ガラス、ホウケイ酸ガラスなどは、クラッディング材料14を形成するのに用いられ得る。従って、クラッディング材料14は、所望の屈折率を達成するために、任意の様々なドーパントを用いてドープされ得る。
【0013】
コア材料12は、融解状態から冷却すると結晶化し得る任意の様々な材料であり得る。例えば、コア材料12は、半導体材料であり得る。例として、コア材料12は、任意の様々なIV型(TypeIV)の元素または化合物(例えば、シリコン(Si)、ゲルマニウム(Ge)またはSiGe)であり得る。別の実施例として、コア材料12は、任意の様々なIII−V型(TypeIII−V)の化合物(例えば、ガリウム−ヒ化物(GaAs)もしくはりん化インジウム(InP))、または任意の様々なII−VI型(TypeII−VI)の化合物(例えば、硫化カドミウム(CdS)、セレン化カドミウム(CdSe)、硫化亜鉛(ZnS)もしくはセレン化亜鉛(ZnSe))であり得る。一実施形態において、コア材料12は、線形電気光学材料(linear electro−optic material)(例えば、限定するものではないが、ZnSe、ZnTe、Bi12SiO20、KHPO、KDPO、CsHAsO、BaTiO、SrTiO、KTa0.35Nb0.65、Ba0.25Sr0.75Nb、LiNbO、LiTaO、AgAsS、KNbOなど)であり得る。コア材料12は、限定するものではないが、ランタンガリウムガーネット(lanthanum gallium garnet)(LaGa12、LGG)、ガドリニウムガリウムガーネット(gadolinium gallium garnet)(GdGa12、GGG)、テルビウムガリウムガーネット(terbium gallium garnet)(TbGa12、TGG)ならびに磁気光学ガラスMOS−4および磁気光学ガラスMOS−10などを含む磁気光学材料であり得る。さらに、コア材料12はまた、1つ以上のドーパント材料(例えば、クロム(Cr)、ニッケル(Ni))、選択された希土類元素、遷移金属などを含み得る。例えば、コア材料12は、N−ドープ(N−doped)またはP−ドープ(P−doped)であり得る。
【0014】
コア材料12は、任意の適切な形態において提供され得る。例えば、コア材料12は、結晶性材料(即ち、単結晶材料または多結晶材料)であり得るか、または非結晶材料であり得る。一実施例として、コア材料12は、固体のロッドの形態で母材10の中に提供され得る。しかし、コア材料12は、他の手法においても母材10の中に提供され得る。例えば、コア材料12は、複数のチップとして母材10の中に提供され得、複数のチップの全ては、粉末としてか、または任意の他の形態において、同一または異なる組成を有し得る。
【0015】
下記にさらに詳述される通り、母材10は、線引きされ、単結晶または多結晶のコアを有する光ファイバーを形成し得る。結晶性である合成された光ファイバーのコアに基づいて、合成された光ファイバーは、溶融石英コアにおいて達成され得るラマン利得のおおよそ1,000倍から10,000倍までのラマン利得を発揮し得る。従って、合成された光ファイバーは、通常のファイバー増幅器に対して、同様の所望のラマン増幅を達成するために、有意により短い長さを用いて形成され得る。増大させられたラマン利得はまた、通常のファイバー増幅器に対して、同様の増幅のレベルを達成するのに必要な励起パワーにおいて実質的な低減をもたらし得る。さらに、合成された光ファイバーは、(例えば、調整可能な中波長域赤外線(MWIR)源からのような)光信号の実質的に狭いラマン線幅(Raman linewidth)、および実質的に広い波長帯を維持し得る。
【0016】
母材10は、所望の幾何学的形態を有するクラッディング材料14を最初に形成することによって形成され得る。図1の実施例において、クラッディング材料14は、実質的に円筒形であるとして説明される。しかし、クラッディング材料14が任意の様々な断面形(例えば、矩形の形状、楕円の形状、「D」の形状)を有し得ることは理解されたい。一実施例として、クラッディング材料14の中に(例えば、図1の実施例において示される通り、管状の形を形成するように、実質的にクラッディング材料14の中心軸か、または断面の図心かに)穴が穿孔され得る。
【0017】
コア材料12は、任意の適切な開始の構成(例えば、ブール(boule)、ウィンドウ(window)、あら金(slug)、複数のチップ、粉末など)であり得る。例えば、コア材料12は、ブールまたはウィンドウからコア穿孔され(core−drilled)得る。図2は、本発明の一局面に従って、光ファイバーを形成するためにロッドの形態でコア材料12をコア穿孔する一実施例を説明する。図2の実施例において、コア材料12のロッドは、ブール16からコア穿孔される。一実施例として、ブール16は、例えばシード(seed)から成長させられた(grown)単結晶材料または多結晶材料の団塊であり得る。別の実施例として、ブール16は、実質的に半導体材料の非結晶団塊であり得る。本明細書内に述べられる通り、「コア穿孔」という用語は、円筒形のコア穿孔の使用を意味するか、またはコア材料12のロッドを生成するための、ブール16のボーリング、加圧および/または打ち抜きを意味するかし得る。図2の実施例は、ブール16が立方体のような形態であることを説明するが、ブールが任意の様々な形(例えば、実質的に円筒形または球形)を有し得ることは理解されたい。
【0018】
図1の実施例に戻ると、コア材料12は、クラッディング材料14の中に穿孔された穴の中に挿入されるか、または「スリーブされ(sleaved)」得る。図2の実施例に説明されるようなコア材料12のロッドを得るためにコア穿孔することと、クラッディング材料14の中にコア材料12のロッドをスリーブすることとは、母材10を形成するための様々な異なる方法のうちの1つである。一実施例として、母材10は、クラッディング材料14の中に穿孔された穴におけるコア材料12の蒸着によって形成され得る。別の実施例として、クラッディング材料14内にコア材料12を配置するための粉末または複数のチップという形態で、その穴は、コア材料12で満たされ得る。従って、母材10は、任意の様々な方法で生成され得る。合成された母材10は、例えばファイバー線引きタワーを介して光ファイバーへと線引きされ得る。
【0019】
図3は、本発明の一局面に従って、光ファイバーを形成するためのシステム20の一実施例を説明する。システム20は、母材22を説明し、母材22は、例えば図1の実施例における母材10と同様に、クラッディング材料24およびコア材料26を含む。例えば、クラッディング材料24は、ガラスであり得、コア材料26は、結晶性半導体材料または非結晶性半導体材料であり得る。図3の実施例において、母材22は、光ファイバー28を形成するように線引きされる。
【0020】
システム20は、例えばファイバー線引きタワー炉(fiber drawing tower furnace)の中に含まれ得るホットゾーン(hot zone)30を含む。一実施例として、ホットゾーン30は、クラッディング材料24を軟化し、かつ、コア材料26を融解するのに十分である熱を加え得る。特に、ホットゾーン30は、コア材料26の融解点を超える温度に設定され得、クラッディング材料24は、その融解点において、所望の通りに線引きするために十分に軟らかい。線引き処理の間の熱ゾーン30に対する温度は、母材22の中に含まれる材料、母材22の大きさ、およびファイバー28の大きさなどに依存し得る。
【0021】
コア材料26が融解される線引き温度であって、クラッド材料24が、許容できる線引きを提供するための粘性である、線引き温度は、コア材料26の融解温度をごくわずかに超え得る。例えば、線引き温度は、コア材料26の融解温度を約1℃超え得る。例えば、コア材料26の融解温度と、クラッディング材料24の目標にされる線引き温度とは、互いにきわめて近くあり得る。しかし、代替の一実施例として、ホットゾーン30の線引き温度は、むしろコア材料26の融解温度よりもかなり高く(例えば、50℃以上の温度よりも高く)あり得る。さらに、コア材料26およびクラッディング24の膨張係数は、実質的に同様か、または実質的に同じでさえあり得る。しかし、コア材料26およびクラッディング材料26の膨張係数が大きく異なり得ることは理解されたい。
【0022】
図3の実施例に従って、母材22は、光ファイバー28を形成するように、第1の端32から線引きされ得る。線引き処理の間、軟らかいが融解されていないクラッディング材料24は、コア材料26が光ファイバー28へと線引きされ、かつ、冷却するとコア材料26が固体化されるように、るつぼ(crucible)のように作用し、融解されたコア材料26を閉じ込め得る。従って、合成された光ファイバー28は、結晶シードの使用を必要とせず、結晶性コア(即ち、単結晶コアまたは多結晶コア)を形成するために冷却し得る。合成された結晶性コアは、シングルモードまたはマルチモードであり得る。光ファイバー28は、冷却および固体化し得るように、ホットゾーン30を出るとき、巻取リール34に巻かれ得る。光ファイバー28はその後、外被材料が光ファイバー28上に塗布され得るように、ポリマー槽(示されていない)に通され得る。
【0023】
従って、合成された光ファイバー28は、異なる種類の様々な光信号を伝播(例えば、パッシブMWIR(passive MWIR)、長波長赤外線(LWIR)またはテラヘルツ(THz)の伝播)し得る。従って、光ファイバー28は、様々な用途においてインプリメントされ得る。一実施例として、光ファイバー28は、例えば通信システムまたは結像システム(imaging system)において、ラマン利得増幅器としてインプリメントされ得る。別の実施例として、光ファイバー28は、任意の様々なレーザー用途においてインプリメントされ得る。さらに、下記にさらに詳述される通り、光ファイバー28のバリエーションは、電気光学ファイバー変調器(electro−optic fiber modulator)またはファイバーファラデーアイソレーター(fiber Faraday isolator)においてインプリメントされ得る。
【0024】
従って、母材22からの光ファイバー28の製造が容易な方法で遂行され得ることは、図3の実施例において説明される。特に、母材22を形成すると、合成された光ファイバー28は、非結晶コア材料を有する通常のファイバー増幅器と同様の方法で形成され得る。しかし、上述された通り、光ファイバー28は、結晶性材料コアに起因する優れた光学性能を発揮し得る。図3の実施例におけるシステム20が単純に説明されていることと、合成された光ファイバー28の形成においてファイバー形成技術の任意の組み合わせがインプリメントされ得ることとは理解されたい。従って、システム20が図3の実施例に限定されることは意図されていない。
【0025】
所与の母材(例えば、図1の実施例における母材10)のコア材料が、円形の断面を有することに限定されないことは、理解されたい。図4は、本発明の一局面に従って、光ファイバー60の別の実施例を説明する。光ファイバー60は、図3の実施例における合成された光ファイバー28と同様の合成された光ファイバーであり得る。光ファイバー60は、クラッディング62およびコア64を含む。クラッディング62は、ガラス材料であり得る。コア64は、図1から図3までの実施例について上述されるような結晶性材料に類似する結晶性材料であり得る。しかし、図4の実施例において、コア64は、実質的に矩形(即ち、四角)の断面を有するように説明される。
【0026】
そのような矩形の断面のコア64は、光ファイバー60が大きなインデックスコントラスト(index contrast)を有するように、光ファイバー60の中にインプリメントされ得る。一実施例として、光ファイバー60は、非デプレッション型励起(non−depleted pump)をともなうトールボット自己結像長(Talbot self−imaging length)に対する小さな信号の像増幅器(image amplifier)としてインプリメントされ得る。別の実施例として、光ファイバー60は、高励起レベルにおける高パワービームコンバイナー(high power beam combiner)としてインプリメントされ得る。従って、結晶性材料からのコア64の形成は、非常に効率的な高パワービームコンバイナーをもたらし得る。
【0027】
図5は、本発明の一局面に従って、光ファイバー70の別の実施例を説明する。光ファイバー70は、合成された光ファイバー(例えば、図3の実施例における合成された光ファイバー28)であり得る。光ファイバー70は、クラッディング76、励起クラッディング(pump cladding)74およびコア72を含む。クラッディング76および励起クラッディング74は各々、ガラス材料(例えば、それぞれ異なるガラス材料、または異なるドーパントを有する同一のガラス材料)から形成され得、コア72は、図1から図3までの実施例について上述されるような結晶性材料と類似する結晶性材料から形成され得る。コア72は、マルチモードコアとして構成され得る。
【0028】
図5の実施例において、励起クラッディングコア74は、実質的に矩形(即ち、四角)の断面を有するように説明され、励起された光エネルギーを受容するように構成される。結果として、マルチモードコア72におけるラマン利得は、投入されるストークス波長信号(Stokes wavelength signal)によって効率的に飽和され得、投入されるストークス波長信号は、励起された光エネルギーにおいて提供される。従って、マルチモードコア72における自己結像は、回折限界ビームを生成し得る。さらに、光ファイバー70の構成は、励起クラッディング74が光ファイバー70の実用的な長さに対して実質的に長くなることを可能にする。
【0029】
図6は、本発明の一局面に従って、光学システム80の一実施例を説明する。光学システム80は、(例えば、光ネットワーク通信のためか、または光結像システムのための)任意の様々な光学用途においてインプリメントされ得る。光学システム80は、光ファイバー82(例えば、図3の実施例における合成された光ファイバー28)を含む。従って、光ファイバー82は、ガラスから形成され得るクラッディング84と、結晶性材料から形成され得るコア86とを含む。
【0030】
図6の実施例において、光ファイバー82は、ラマン利得増幅器として構成され得る。従って、レーザーダイオード励起アレイ88は、高輝度励起放射線(high brightness pump radiation)を集束ミラー90に提供するように構成される。従って、集束ミラー90は、励起放射線を焦点に集め、それを高反射率ミラー92を介して光ファイバー82へと投光する。部分透過出力ミラー(partially transmitting output mirror)94は、高反射率ミラー92からの光ファイバー82の反対端において、光ファイバー82に結合される。結果として、高輝度励起放射線は、高反射率ミラー92と部分透過出力ミラー94との間で振動する(oscillate)。従って、振動励起パワーは、部分透過出力ミラー94を介して出力ビーム96への励起パワーの高効率変換をもたらす。
【0031】
上述される通り、コア86は、結晶性材料から形成され得る。従って、光ファイバー82は、通常の光ファイバーのラマン利得のおおよそ1,000倍から10,000倍のラマン利得を発揮し得る。結果として、光学システム80は、直接的にダイオード励起されるラマン振動子(direct diode pumped Raman oscillator)としてインプリメントされる。溶融石英コアを含むような通常の光ファイバーは、利用可能な励起輝度を有する直接的にダイオード励起されるラマン振動子としてインプリメントされるための十分な利得を有さない。しかし、光ファイバー82によって発揮されるラマン利得であって、通常のファイバー増幅器に対して実質的により大きなラマン利得は、図6の実施例において説明されるような低閾値の直接的にダイオード励起されるラマンファイバー振動子を許容する。
【0032】
光学システム80が図6の実施例に限定されないことは理解されたい。一実施例として、光学システム80は、図6の実施例において単純に説明される。そのように、さらなる光学の構成要素(例えば、さらなるレンズおよび/またはミラー)は、光学システム80に含められ得る。従って、光学システム80は、任意の様々な方法で構成され得、任意の様々な光学用途においてインプリメントされ得る。
【0033】
前述の構造上の特徴および上述される機能上の特徴に照らして、本発明の様々な局面に従った方法体系は、図7に関連してより正しく認識され得る。説明の単純化の目的のために、順次的に実行するように図7の方法体系が示されかつ述べられているが、本発明に従った一部の局面が、異なる順序で生じ得るように、および/または本明細書内に示されかつ述べられる発明からの他の局面と並行して生じ得るように、本発明が示される順序によって限定されないことは理解されかつ正しく認識されたい。さらに、本発明の一局面に従った方法体系をインプリメントするために、示された全ての特徴が必ずしも必要とされなくあり得る。
【0034】
図7は、本発明の一局面に従って、光ファイバーを形成するための方法100を説明する。102において、管状形態においてクラッディング材料は提供される。クラッディング材料は、ガラスであり得、様々な断面形(例えば、円形の形状、楕円の形状、実質的に「D」の形状)へと形成され得る。104において、コア材料は、管状クラッドの穴の中に配置される。コア材料は、上述の通り、単一のロッドの形態であるか、または他の形態であるかし得る。例えば、コア材料は、単結晶、多結晶または非結晶の半導体ブールまたは半導体ウィンドウから形成され得、クラッディング材料の中に穿孔される穴にフィットするように形作られ得る。例えば、コア材料ロッドは、母材を形成するように、ブールまたはウィンドウからコア穿孔されることにより、クラッディング材料の中の穴にフィットし得、クラッディング材料の穴の中に挿入され得る。その挿入は、コア材料ロッドがクラッディング材料内にスリーブされるようになされ得る。コア材料はまた、他の様々な方法(例えば、蒸着か、またはその穴の中に配置され得る元素の材料の粉末もしくはチップか)でクラッディング材料の穴の中に形成され得る。106において、母材は、光ファイバーを形成するように、第1の端から線引きされ得る。母材の線引きは、ホットゾーンを通り、ホットゾーンは、クラッディング材料を軟化させるのに十分である温度、かつ、コア材料を融解するのに十分な温度を有し得る。108において、合成された光ファイバーが任意の様々な光学用途においてインプリメントされ得るように、冷却すると、合成された光ファイバーは、クラッディングによって取り巻かれる結晶性コアを有する。
【0035】
図8は、本発明の一局面に従って、光ファイバーを形成するためのシステム110の別の実施例を説明する。システム110は、クラッディング材料114およびコア材料116を含む母材112を説明する。そのように、母材112は、図1の実施例における母材10と実質的に同様に構成される。クラッディング材料114はガラスであり得、コア材料116は、例えば、単結晶、多結晶または非結晶の半導体材料であり得る。図8の実施例において、母材112は、第1の光ファイバーの一部118を形成するように線引きされる。
【0036】
システム110は、ファイバー線引きタワー炉に含まれ得るような第1のホットゾーン120を含む。一実施例として、第1のホットゾーン120は、クラッディング材料114を軟化するのに十分な熱であって、コア材料ロッド116を融解するのに十分な熱を加え得る。従って、母材112は、第1の光ファイバーの一部118を形成するように、第1の端122から引き伸ばされる。第1の光ファイバーの一部118は、冷却および固体化し得るように、第1のホットゾーン120を出るとき、第1の巻取リール124に巻かれ得る。冷却すると、第1の光ファイバーの一部118は、シングルモードまたはマルチモードであり得る結晶性コアを有し得る。
【0037】
上述される通り、コア材料116は、第1のホットゾーン120を通過するとき、融解し得る。従って、たとえコア材料116が単結晶材料から形成されていても、第1の光学ファイバーの一部118のうちの合成されたコアは、冷却するときに多結晶になり得る。従って、第1の光ファイバーの一部118は、第1の巻取リール124から解かれ、第2のホットゾーン126を通過させられ得る。第2のホットゾーン126は、第1のホットゾーン120よりも低い温度(例えば、第1の光ファイバーの一部118のコアの結晶性材料のおおよその結晶温度)を有し得る。一実施例として、その温度は、第1の光ファイバーの一部118の結晶性材料コアの融解点に実質的に近く(例えば、かろうじて低く)あり得る。
【0038】
第1の光ファイバーの一部118のコアは、第2のホットゾーン126を通過するときに、再結晶化する。従って、合成された光ファイバー128は、第2のホットゾーン126から出力され、単結晶コアを有し得る。合成された単結晶コアの光ファイバー128は、冷却し得るように、第2のホットゾーン126を出るとき、第2の巻取リール130に巻かれ得る。合成された光ファイバー128はその後、合成された光ファイバー128上に外被材料が塗布され得るように、ポリマー槽(示されていない)に通され得る。
【0039】
図9は、本発明の一局面に従って、合成された光ファイバー128の形成における再結晶化の一実施例を説明する。図9の実施例において、第1の光ファイバーの一部118は、クラッディング132および多結晶コア134を有するような長手方向の断面において説明される。第2のホットゾーン126は、合成された光ファイバー128を形成するように、動作の矢印136によって説明される通り第1の光ファイバーの一部118に対して移動するように図示される。第2のホットゾーン126の動作136は、第2のホットゾーン126を介した第1の光ファイバーの一部118の移動の結果として生じ得る。あるいは、第2のホットゾーン126は、静止した第1の光ファイバーの一部118に対して移動し得る。
【0040】
図9の実施例において、第1の光ファイバーの一部118のコア134の結晶性材料と同じ種類の単結晶シード138が、例えば、第1の光ファイバーの一部118が第2のホットゾーン126に入る前か、または入ると同時に、第1の光ファイバーの一部118の先端140に設置され得る。従って、シード138は、例えば異方性の結晶性材料に対するように、第1の光ファイバーの一部118のコア134の結晶性材料の向きをテンプレートにし(template)得る。従って、第1の光ファイバーの一部118が第2のホットゾーン126を通過するとき、第1の光ファイバーの一部118のコア134の格子構造の向きは、単結晶シード138の格子に実質的に整合させられるようになり得る。従って、第2のホットゾーン126に入る第1の光ファイバーの一部118のコア134の続く部分の格子構造は、新たに整合された部分と整合し得、第2のホットゾーン126に入るコア134の続く部分に対しても同様である。従って、冷却されると、合成された光ファイバー128は、例えば第2の巻取リール130上で、単結晶コア142を有する。図9の実施例が、コア134の結晶性材料の整合のための単結晶シード138の使用に限定されないが、シード138の使用が省かれるか、またはコア134の結晶性材料の整合が他の様々な方法でインプリメントされるかし得ることは理解されたい。
【0041】
結晶性である合成された光ファイバー128のコア142を有することは、実質的にコア142の比較的効率的な分極化を可能にする。結果として、下記に詳述される通り、様々な光デバイスは、合成された光ファイバー128を用いてインプリメントされ得る。一実施例として、Chi−2デバイス(周波数二倍器、光パラメトリック増幅器、電気光学変調器、ファラデーアイソレーター、干渉型マイクロウェーブセンサー(interferometric microwave sensor)および位相変調レーザー)は、合成された光ファイバー128を用いて製造され得る。そのようなデバイスは、Chi−2処理を光ファイバー内にインプリメントする場合に、バルク結晶(bulk crystal)内または平面の導波管(planar waveguide)内のインプリメンテーションとは対照的に実質的により効率的であり得る。
【0042】
さらに、合成された光ファイバー128のコア142内のそのような結晶性材料は、図1から図3までの実施例について上述される結晶性材料に類似して、通常の光ファイバーの中の利得よりも多くの利得を有意に提供し得る。また、システム110は、任意の様々な異なる種類の光ファイバー(例えば、図4および図5の実施例のそれぞれの光ファイバー60および光ファイバー70)を形成するようにインプリメントされ得る。さらに、システム110は、各々のファイバーが単結晶コアを有する複数のファイバーのバッチ処理を可能にするようにインプリメントされ得る。
【0043】
システム110が図8および9の実施例に限定されることが意図されていないことは理解されたい。特に、合成された光ファイバー128の形成において任意の様々なファイバー形成技術がインプリメントされ得るように、システム110は、図8および9の実施例において単純に説明される。さらに、第1のホットゾーン120および第2のホットゾーン126は、一緒にインプリメントされ得る。一実施例として、単結晶コア142の形成に対するコア融解温度から再結晶化温度までに第1の光ファイバーの一部118がすぐに冷却するように、一般的な炉は、第1のホットゾーン120および第2のホットゾーン126の各々に対応する別個の加熱素子を含み得る。従って、システム110は、任意の様々な方法で構成され得る。
【0044】
図10は、本発明の一局面に従って、光ファイバーデバイスの形成のための母材160の一実施例を説明する。母材160は、コア材料162およびクラッディング材料164を含む。母材160はまた、母材160の中の2つの別個の配置に形成される第1の導体材料166および第2の導体材料168を含む。図10の実施例において、第1の導体材料166および第2の導体材料168は、母材160の断面中心について対称に配置される。別の実施例として、導体材料166および168は、母材160の中心軸について対象に配置される必要はない。第1の導体材料166および第2の導体材料168は、任意の様々な導体材料(例えば、アルミニウム、銅、金、プラチナまたは銀)であり得る。
【0045】
母材160は、クラッディング材料164を最初に形成することによって形成され得る。図10の実施例において、クラッディング材料164は、実質的に円筒形として説明される。しかし、クラッディング材料164が任意の様々な断面形(例えば、矩形の形状、楕円の形状、「D」の形状)を有するように形成され得ることは理解されたい。クラッディング材料164において穴(例えば、クラッディング材料164の実質的に中心軸または断面図心における1つの穴、および中心の穴に対して対称に配置される2つの穴)が穿孔され得る。コア材料162は、クラッディング材料164の中に穿孔された中心の穴の中に形成されるか、挿入されるかまたはスリーブされ得、第1の導体材料166および第2の導体材料168は、対称に配置された穴の中に挿入され得る。合成された母材160は次いで、例えばファイバー線引きタワーを介して、合成されたファイバーへと線引きされ得る。
【0046】
図11は、本発明の一局面に従って、光ファイバーデバイス170の一実施例を説明する。光ファイバーデバイス170は、図10の実施例における母材160を線引きすることの結果として生じる光ファイバーデバイスであり得る。光ファイバーデバイス170は、クラッディング172、コア174、第1の導体176および第2の導体178を有することとして、図10の実施例において説明される。一実施例として、クラッディング172はガラスから形成され得、コア174は結晶性材料であり得、第1の導体176および第2の導体178は任意の様々な導体材料であり得る。図11の実施例において、コア174は、実質的に円形の断面を有するとして説明され得る。しかし、コア174が任意の様々な断面形(例えば、矩形の形状、楕円の形状)を有し得ることは理解されたい。さらに、コア174は、デュアルコア(例えば、図5の実施例におけるコア74)であり得る。さらに、光ファイバーデバイス170は2つの導体(第1の導体176および第2の導体178)を有することに限定されないが、代わりに単一の導体を有するか、または3つ以上の導体を含み得る。
【0047】
図11の実施例における第1の導体176および第2の導体178は、様々な目的のために電流を伝えるように構成され得る。一実施例として、第1の導体176および第2の導体178は、信号またはパワーを伝えるのに用いられ得る。別の実施例において、第1の導体176および第2の導体178は、コア174上で伝播される光信号上の電気光学効果をインプリメントするように構成され得る。一実施例において、コア174は、分極化処理を介して分極化される結晶性コア(例えば、下記に述べられる図12の実施例における単結晶コア186)であり得る。従って、第1の導体176および第2の導体178に印加される電気信号は、分極化された結晶性コア174を介して電界を生成し、その中の光信号の伝播速度を変化させ得る。従って、光信号の位相変調は、バルク光学素子(bulk optical element)または平面の導波管素子(planar waveguide element)とは対照的に、第1の導体176および第2の導体178を介してインプリメントされ得る電気光学影響に基づいて、光ファイバーの中で直接に達成され得る。
【0048】
図12は、本発明の一局面に従って、光ファイバーデバイスを形成するためのシステム180の一実施例を説明する。システム180は、クラッディング材料184、コア材料186、第1の導体材料188および第2の導体材料190を含む母材182を説明する。そのように、母材182は、図10の実施例における母材160と実質的に同様に構成される。クラッディング材料184はガラスであり得、コア材料ロッド186は結晶性半導体材料であり得る。図12の実施例において、母材182は、線引きされ、光ファイバーデバイス192を形成する。
【0049】
システム180は、ファイバー線引きタワー炉に含まれ得るようなホットゾーン194を含む。一実施例として、ホットゾーン194は、クラッディング材料184ならびに第1の導体材料188および第2の導体材料190を軟化し、かつ、コア材料186を融解するのに十分である熱を加え得る。従って、母材182は、光ファイバーデバイス192を形成するように、第1の端196から線引きされる。従って、合成された光ファイバーデバイス192は、シングルモードまたはマルチモードであり得る結晶性コアを有し得る。光ファイバーデバイス192は、冷却および固体化し得るように、ホットゾーン194を出るとき、巻取リール198に巻かれ得る。
【0050】
システム180はまた、分極化システム200を含む。分極化システム200は、第2のホットゾーン202を含み、第2のホットゾーン202は、おおよそキュリー温度における熱を光ファイバーデバイス192に加えるように構成される。結果として、光ファイバーデバイス192は、光ファイバーデバイス192の合成されたコアの結晶格子内の固有の分極化およびダイポール効果を失う。分極化システム200はまた、第1の転がり電極(rolling electrode)204および第2の転がり電極206を含む。図12の実施例に説明される通り、第1の転がり電極204は正の電圧電位を有し、第2の転がり電極206は負の電圧電位を有する。第1の転がり電極204および第2の転がり電極206は、第2のホットゾーン202を介して光ファイバーデバイス192を転がす(roll)。光ファイバーデバイス192が第2のホットゾーン202を抜けて冷却するとき、光ファイバーデバイス192の結晶性コアは、自然な分極化効果を受ける。従って、光ファイバーデバイス192は、電気光学用途(例えば、位相変調または周波数変換)のためにインプリメントされ得る。分極化された光ファイバー192は次いで、第2の巻取リール208に巻かれ得る。光ファイバーデバイス192はその後、光ファイバーデバイス192上に外被材料が塗布され得るように、ポリマー槽(示されていない)に通され得る。
【0051】
システム180が図12の実施例に限定されることが意図されないことは理解されたい。特に、合成された光ファイバーデバイス192の形成において任意の様々なファイバー形成技術がインプリメントされ得るように、システム180は、図12の実施例において単純に説明される。従って、光ファイバーデバイス192の分極化は、より効果的であり得、比較的効果的な電気光学効果をもたらす。従って、システム180は、任意の様々な方法で構成され得る。
【0052】
図13は、本発明の一局面に従って、光学システム210の別の実施例を説明する。光学システム210は、任意の様々な光学用途においてインプリメントされ得る。光学システム210は、光ファイバーデバイス212を含む。図13の実施例は、光ファイバーデバイス212の長手方向の断面を説明する。
【0053】
光ファイバーデバイス212は、コア214、クラッディング216、第1の導体218および第2の導体220を含む。クラッディング214はガラス材料であり得、コア214は結晶性材料であり得る。一実施例において、コア214は、単結晶材料であり得る。第1の導体218および第2の導体220は、任意の様々な導体材料(例えば、アルミニウム、銅、金、プラチナまたは銀)であり得る。従って、光ファイバーデバイス212は、図12の実施例において説明される合成された光ファイバーデバイス192と実質的に同様であり得る。
【0054】
光学システム210は、電気光学変調器222を含む。電気光学変調器222は、伝導性リード線224および226をそれぞれ介して第1の導体218および第2の導体220に結合される。従って、電気光学変調器222は、リード線224および226をそれぞれ介して第1の導体218および第2の導体220に電気信号を印加するように構成される。従って、電界は、コア214を介して生成され得る。図13の実施例において、電界は、第1の導体218上の正の電圧電位と第2の導体220上の負の電圧電位とに基づいて説明される。従って、電界は、結晶性コア214の格子構造の単位セルにおいてダイポールモーメントを生成し、ダイポールモーメントは、光入力信号についての電気光学効果の線形制御を可能にする。
【0055】
従って、電気光学変調器222を介して光入力信号の電気光学効果を制御することによって、位相変調された光信号または周波数変換された光信号を生成するように、光入力信号は位相変調され得る。光信号は、様々な波長スペクトル(例えば、可視光線、近赤外線(NIR)、アイセーフNIR(eye−safe NIR)およびMWIR)を有し得る。さらに、コア214が結晶性(例えば、無動原体結晶材料(acentric crystal material))であることに基づいて、電気光学変調または周波数変換が実質的に比較的低いパワーレベルで達成され得るような、有意に比較的高い電気光学係数が、ファイバーの中で達成され得る。さらに、電気光学効果が光ファイバーデバイス212の中でインプリメントされるため、バルク結晶素子または平面の導波管素子とは対照的に、電気光学効果は、長い伝播長においてインプリメントされ得る。
【0056】
前述の構造上の特徴および上述される機能上の特徴に照らして、本発明の様々な局面に従った方法体系は、図14に関連してより正しく認識され得る。説明の単純化の目的のために、順次的に実行するように図14の方法体系が示されかつ述べられているが、本発明に従った一部の局面が、異なる順序で生じ得るように、および/または本明細書内に示されかつ述べられる発明からの他の局面と並行して生じ得るように、本発明が示される順序によって限定されないことは理解されかつ正しく認識されたい。さらに、本発明の一局面に従った方法体系をインプリメントするために、示された全ての特徴が必ずしも必要とされなくあり得る。
【0057】
図14は、本発明の一局面に従って、光ファイバーデバイスを形成するための方法230の別の実施例を説明する。232において、母材は、クラッディング材料、コア材料および少なくとも1つの導体材料から形成される。クラッディング材料は、ガラスであり得、様々な断面形(例えば、円形の形状、楕円の形状または実質的に「D」の形状)へと形成され得る。コア材料は、非結晶または結晶性の材料ブールから形成され得る。少なくとも1つの導体材料は、任意の様々な導体材料(例えば、アルミニウム、銅、金、プラチナまたは銀)であり得る。コア材料および導体材料の挿入のために、クラッディング材料における特定の配置に穴が穿孔され得る。一実施例として、コア材料は、クラッディング材料のおおよそ図心または中心軸の中に挿入され得、導体材料は、クラッディング材料の特定の範囲に配置され得る。例えば、2つの導体材料ロッドは、クラッディング材料の中心軸に対して対称の配置に、クラッディング材料の中に配置され得る。
【0058】
234において、母材は、光ファイバーデバイスを形成するように、第1の端から線引きされる。母材の線引きは、ホットゾーンを介してあり得、ホットゾーンは、クラッディング材料および導体材料を軟化させるのに十分である温度であって、コア材料を融解するのに十分な温度を有する。236において、結晶コアファイバーを形成するように、光ファイバーデバイスは冷却され、融解したコア材料は自然に結晶化する。238において、光ファイバーデバイスは、おおよそキュリー温度まで加熱される。光ファイバーデバイスは、固有の分極化およびダイポール効果が除去されるように、おおよそキュリー温度まで光ファイバーデバイスを加熱する第2のホットゾーンを通過させられ得る。
【0059】
240において、光ファイバーデバイスは、反対に帯電した分極化電極を介して転がされる。光ファイバーデバイスが反対に帯電した分極化電極を介してキュリー温度で転がされ得るように、反対に帯電した分極化電極は、第2のホットゾーンに配置され得る。242において、光ファイバーデバイスは、冷却され、光ファイバーデバイスのコアを自然に分極化する。従って、光ファイバーデバイスは、導体に印加される電気信号に基づき、コアを介して電界を生成することによって、光ファイバーデバイスの中の光信号についての電気光学効果を生成し得る。
【0060】
図15は、本発明の一局面に従って、光ファイバーデバイスを形成するための母材250の別の実施例を説明する。母材250は、コア材料252およびクラッディング材料254を含む。クラッディング材料254は、所望の屈折率を有するためにドープされ得る石英ガラスであり得る。コア材料252は、任意の様々な磁気光学材料から形成され得る。一実施例として、コア材料252は、硫化物材料またはセレン化物材料のように反磁性であるか、鉄ベースの材料のように強磁性であるか、または1つ以上の希土類ドーパントを含むような常磁性であるかし得る。
【0061】
常磁性材料の実施例において、コア材料252は、希土類ドーパントを有する結晶性材料であり得る。そのように、希土類ドーパントのレベルは、ベルデ定数を最大化するように、通常のガラスコアファイバーに含まれ得るよりも有意に高くあり得、合成された光ファイバーデバイスは、より高いラマン利得を有し得、光損失は、実質的に最小化される。さらに、母材250はまた、クラッディング材料254の中に配置される導体材料256を含む。導体材料256は、任意の様々な導体材料(例えば、アルミニウム、銅、金、プラチナまたは銀)を含み得る。
【0062】
母材250は、クラッディング材料254を所望の幾何学的配置に最初に形成することによって形成され得る。クラッディング材料254において穴(例えば、クラッディング材料254の実質的に中心軸または断面図心における1つの穴、および導体材料256のためにクラッディング材料254の中に穿孔される別の穴)が穿孔され得る。コア材料252は次いで、クラッディング材料254の中に穿孔された中央の穴の中に形成されるか、挿入されるか、またはスリーブされるかし得、導体材料256は、さらなる穴の中に挿入され得る。合成された母材250は次いで、コア材料252の融解温度よりも高い温度において、例えばファイバー線引きタワーを介して、合成されたファイバーへと線引きされる。さらに、母材250が線引きされるとき、合成された光ファイバーデバイスのコアの周囲にらせん状に導体材料256が線引きされ得るように、母材250は、合成された光ファイバーデバイスに対して回転させられ得る。
【0063】
図16は、本発明の一局面に従って、光ファイバーデバイスを形成するためのシステム260の一実施例を説明する。システム260は、クラッディング材料264、コア材料ロッド266および導体材料268を含む母材262を説明する。そのように、母材262は、図15の実施例における母材250と実質的に類似するように構成される。クラッディング材料264はガラスから形成され得、コア材料266は、例えば磁気光学材料であり得る。図16の実施例において、母材262は、線引きされ、光ファイバーデバイス270を形成する。
【0064】
システム260は、ファイバー線引きタワー炉に含まれ得るような、ホットゾーン272を含む。一実施例として、ホットゾーン272は、クラッディング材料264を軟化するのに十分な熱であって、コア材料266を融解するのに十分な熱を加え得る。従って、母材262は、第1の端274から線引きされ、その中に一体化される導体材料268を有する光ファイバーデバイス270を形成する。さらに、母材262が第1の端274から引き伸ばされるとき、光ファイバーデバイス270が線引きされる間、母材262は、276における回転矢印によって説明される通り、コア材料266の周囲に導体材料268をらせん状に巻くように回転させられる。従って、合成された光ファイバーデバイス270は、シングルモードまたはマルチモードであり得る結晶性コアと、その結晶性コアの周囲にらせん状に延びる導体とを有し得る。光ファイバーデバイス270は、それが冷却および固体化し得るように、それがホットゾーン272を出るとき、巻取リール278に巻かれ得る。従って、合成された光ファイバーデバイス270は、磁気光学効果(例えば、合成された光ファイバーデバイス270の中の光信号のファラデー回転)をインプリメントするように構成され得る。従って、合成された光ファイバーデバイス270は、ファラデーアイソレーター、光分極器(optical polarizer)、および/またはフレネル損失(Fresnel loss)を低減するためのトランジションファイバー(transision fiber)を製造するのに用いられ得る。
【0065】
システム260が図16の実施例に限定されることが意図されていないことは理解されるべきである。特に、合成された光ファイバーデバイス270の形成において任意の様々なファイバー形成技術がインプリメントされ得るように、システム260は、図16の実施例において単純に説明される。
【0066】
図17は、本発明の一局面に従って、光学システム280の別の実施例を説明する。光学システム280は、任意の様々な光学用途においてインプリメントされ得る。光学システム280は、光ファイバーデバイス282を含む。特に、図17の実施例は、光ファイバーデバイス282の長手方向の断面を説明する。
【0067】
光ファイバーデバイス282は、コア284と、クラッディング286と、光ファイバーデバイス282の長さに沿ってコア284の周囲にらせん状に延びる導体288とを含む。クラッディング286はガラス材料であり得、コア284は、磁気光学材料(例えば、TGG)から形成され得る。導体288は、任意の様々な導体材料(例えば、アルミニウム、銅、金、プラチナまたは銀)であり得る。従って、光ファイバーデバイス282は、図16の実施例において説明される合成された光ファイバーデバイス270と実質的に同様であり得る。
【0068】
光学システム280は、電流源290を含む。電流源290は、伝導性リード線292および294をそれぞれ介して導体288の各々の端に結合され得る。従って、電流源290は、リード線292および294をそれぞれ介して導体288を通して電流を印加するように構成され得る。従って、磁界が、コア284を通して生成され得る。
【0069】
従って、電流源290を介して光入力信号の磁気光学効果を制御することによって、誘導された磁界は、その中に伝播する光入力信号のファラデー回転を制御し得る。結果として、光ファイバーデバイス282は、ファラデー回転された光信号の有害な後方反射を緩和するように、低損失段階間(low−loss interstage)ファラデーアイソレーターとしてインプリメントされ得る。さらに、ファラデーアイソレーターが長い光ファイバーの中にインプリメントされ得るため、光ファイバーデバイス282は、バルク結晶素子とは対照的に、相対的に低規模な磁界を用いて、光ファイバーデバイス282の中に光信号の大きなファラデー回転を提供し得る。従って、実質的な量のファラデー回転を提供することにおいて、通常のファラデーアイソレーターと比べて、パワーは節約され得る。
【0070】
光学システム280が図17の実施例に限定されることが意図されていないことは理解されたい。一実施例として、導体288は、永久磁石材料であり得、それゆえに電流源290を不要にする。従って、磁界の規模は、例えば光ファイバーデバイス282に外的な磁界を印加することによって、制御され得る。さらに、図17の実施例は、電流源290によって提供される電流に関する特定の極性を説明する。しかし、光ファイバーデバイス282の中の磁界を制御することにおいて、いずれかの方向において導体288を介して電流を提供するように電流源290が構成され得ることは理解されたい。
【0071】
前述の構造上の特徴および上述される機能上の特徴に照らして、本発明の様々な局面に従った方法体系は、図18に関連してより正しく認識され得る。説明の単純化の目的のために、順次的に実行するように図18の方法体系が示されかつ述べられているが、本発明に従った一部の局面が、異なる順序で生じ得るように、および/または本明細書内に示されかつ述べられる発明からの他の局面と並行して生じ得るように、本発明が示される順序によって限定されないことは理解されかつ正しく認識されたい。さらに、本発明の一局面に従った方法体系をインプリメントするために、示された全ての特徴が必ずしも必要とされなくあり得る。
【0072】
図18は、本発明の一局面に従って、光ファイバーを形成するための方法360の別の実施例を説明する。362において、母材は、クラッディング材料、磁気光学コア材料および導体材料から形成される。クラッディング材料は、ガラス材料であり得る。コア磁気光学材料は、希土類材料を用いてドープされ得る。導体材料は、任意の様々な導体材料(例えば、アルミニウム、銅、金、プラチナまたは銀)から形成され得る。
【0073】
コア材料ロッドおよび導体材料の挿入のために、クラッディング材料における特定の配置に穴が穿孔され得る。一実施例として、コア材料ロッドは、クラッディング材料のおおよそ中心軸の中に挿入され得、導体材料は、コア材料ロッドの外側のクラッディング材料の中に配置され得る。364において、母材は、光ファイバーを形成するように第1の端から線引きされ、回転させられる。母材を線引きすることは、ホットゾーンを介してあり得、ホットゾーンは、クラッディング材料および導体材料を軟化するのに十分な温度であって、コア材料を融解するのに十分な温度を有する。
【0074】
本開示は、実施例を参照することにより適切に説明され得る。第1の実施例として、結晶性コアを有する第1の光ファイバーが形成され得る。特に、第1の光ファイバーは、シリコン(Si)コアと石英ガラス(SiO)クラッドとを含み得る。第1の光ファイバーを形成するために、シリコンの単結晶ブールは、コア穿孔され、石英ガラスの毛細管(capillary tube)の中へスリーブされ得る。シリコンの融解温度(T)は、おおよそ1414℃であり、おおよそ2.6ppm/℃の熱膨張率(CTE)を有し、石英の通常の線引き温度は、約2000℃であり、おおよそ0.55ppm/℃のCTEを有する。おおよそ35メートルの約2mmガラス管(おおよそ185μmのコアの大きさ)は、おおよそ1950℃の線引き温度において線引きされ得る。
【0075】
図19は、本発明の一局面に従って、結晶性シリコンコアおよび石英ガラスクラッドを含む第1の光ファイバーの断面のX線回折(XRD)をグラフで示す。特に、断面のXRDは、強度(cps)およびシリコン標準に対してプロットされる第1の光ファイバーのコア角(an angle of core)を説明する。従って、図19は、シリコン標準(即ち、第1の光ファイバーのコアはシリコンである)への明白な適合を示す第1の実施例の粉砕された第1の光ファイバーの粉末のX線回折を示す。ブラッグ反射の偏狭は、コアの高い程度の結晶度を意味する。
【0076】
図20は、本発明の一局面に従って、結晶性シリコンコアおよび石英ガラスクラッドを含む第1の光ファイバーのラマン分析をグラフで示す。特に、図20は、波の強度(a.u.単位)に対してプロットされる波数(cm−1単位)を説明する。従って、単結晶シリコン標準に対するコアのマイクロラマン増幅(Micro−Raman amplification)は、優れた裏付けに基づいて、有意にすぐれているとして説明される。わずかにより広域、かつ、わずかにシフトされたスペクトルが、圧力、コアの多結晶度、および/または組成の不純物に起因し得ることは理解されたい。
【0077】
図21および22は、本発明の一局面に従って、第1の光ファイバーの断面の元素分析を示す。特に、図21は、第1の光ファイバーの断面の走査型電子顕微鏡写真(SEM)のイメージを説明する。図22は、濃度に対してプロットされた、第1の光ファイバーのコアおよびクラッドの相対距離のプロットを説明する。元素分析の結果は、コア/クラッドの界面の全体にわたっておおよそ1μmごとに行われたとして説明されている。見受けられ得る通り、クラッディングの中に化学量論的Si:O比が存在する。Si/SiO界面は、顕微鏡で視覚化された界面であることを表す。見受けられ得る通り、拡散はクラッディングに入り込んでいるが、融解に起因するコア材料の均質化が存在するコアには拡散が入り込まない。
【0078】
第2の実施例として、結晶性コアを有する第2の光ファイバーが形成され得る。特に、第2の光ファイバーはゲルマニウム(Ge)コアおよびホウケイ酸ガラス(BS)クラッドを含み得る。第2の光ファイバーを形成するために、Geの単結晶ブールは、コア穿孔され得、BSガラスの毛細管の中へスリーブされ得る。GeのTは、おおよそ937℃であり、おおよそ2.6ppm/℃のCTEを有し、BSの通常の線引き温度は、約1000℃であり、おおよそ5.9ppm/℃のCTEを有する。おおよそ2メートルの約3mmガラス管(おおよそ300μmのコアの大きさ)は、約1000℃の線引き温度において線引きされ得る。
【0079】
図23は、本発明の一局面に従って、結晶性ゲルマニウムコアおよび石英ガラスクラッドを含む第2の光ファイバーの断面のX線回折(XRD)をグラフで示す。特に、断面のXRDは、強度(cps)およびゲルマニウム標準に対してプロットされる第1の光ファイバーのコア角を説明する。従って、図23は、ゲルマニウム標準(即ち、第2の光ファイバーのコアはゲルマニウムである)への明白な適合を示す第1の実施例の粉砕された第2の光ファイバーの粉末のX線回折を示す。単結晶XRDに対するR因子は、0.0179であり、そのことは、双晶形成の無いコアの高い結晶度を強く意味する。
【0080】
図24は、本発明の一局面に従って、結晶性ゲルマニウムコアおよび石英ガラスクラッドを含む第2の光ファイバーのラマン分析をグラフで示す。特に、図24は、波の強度(a.u.単位)に対してプロットされる波数(cm−1単位)を説明する。従って、単結晶ゲルマニウム標準に対するコアのマイクロラマン増幅は、優れた裏付けに基づいて、有意に優れているとして同様に説明される。わずかにより広域、かつ、わずかにシフトされたスペクトルが、圧力、コアの多結晶度、および/または組成の不純物に起因し得ることは理解されたい。
【0081】
図25は、本発明の一局面に従って、第2の光ファイバーの断面の元素分析を示す。特に、図25は、濃度に対してプロットされた、第1の光ファイバーのコアおよびクラッドの相対距離のプロットを説明する。元素分析の結果は、コア/クラッドの界面の全体にわたっておおよそ1μmごとに行われたとして説明される。見受けられ得る通り、元素分析は、高い純度のGeコアを裏付ける(実験用の感度は約1wt.%であった)。
【0082】
図26は、本発明の一局面に従って、第1および第2の光ファイバーの断面の元素分析を示す。特に、図25は、元素の組成に対してプロットされた、第1および第2の光ファイバーのコアおよびクラッドの相対距離のプロットを説明する。図27は、本発明の一局面に従って、第1および第2の光ファイバーの別の断面の元素分析を示す。特に、図27は、濃度に対してプロットされた、第1および第2の光ファイバーのコア/クラッドの界面の相対距離のプロットを説明する。元素分析の結果は、コア/クラッドの界面の全体にわたっておおよそ1μmごとに行われたとして説明される。図26および27の実施例において説明される通り、クラッドにおいてより多くのグラデーションが存在し、ゲルマニウムコアファイバーは、従来の電気通信ファイバーより(that)多くの段階的なインデックスプロフィール(index profile)を有する。
【0083】
上述されたのは本発明の実施例である。本発明を述べる目的のために、構成要素または方法体系の予想される全ての組み合わせを述べることは当然不可能であるが、本発明の多くのさらなる組み合わせおよび置換が可能であることを当業者は認識し得る。従って、本発明は、添付の特許請求の範囲を含む本出願の範囲内に入るそのような全ての改変、改良および変更を含むことが意図されている。

【特許請求の範囲】
【請求項1】
光ファイバーを形成する方法であって、
該方法は、
コア材料と該コア材料を取り巻くガラスクラッディング材料とを有する母材を提供することと、
該コア材料の融解温度よりも高い温度で該母材を線引きして線引きされたファイバーを形成することと、
該線引きされたファイバーを冷却して該光ファイバーを形成することであって、該光ファイバーは、結晶性ファイバーコアと、該結晶性ファイバーコアを取り巻き、かつ、該結晶性ファイバーコアの長さに沿って軸方向に延びるクラッディングとを有する、ことと
を含む、方法。
【請求項2】
前記コア材料のブールおよびウィンドウのうちの1つを生成することと、
コア材料ロッドを生成するように該ブールおよびウィンドウのうちの1つをコア穿孔することと、
前記ガラスクラッディング材料内に該コア材料ロッドをスリーブすることと
をさらに含む、請求項1に記載の方法。
【請求項3】
前記母材を提供することは、前記コア材料から形成される複数のチップの粉末を前記ガラスクラッディング材料によって定義される空隙内に配置することと、該コア材料を該ガラスクラッディング材料によって定義される該空隙内に蒸着させることとのうちの1つによって該ガラスクラッディング材料内に該コア材料を配置することを含む、請求項1に記載の方法。
【請求項4】
前記コア材料は、単結晶材料、多結晶材料および非結晶材料のうちの1つである、請求項1に記載の方法。
【請求項5】
前記コア材料は、半導体材料である、請求項1に記載の方法。
【請求項6】
前記半導体材料は、IV型の半導体材料である、請求項5に記載の方法。
【請求項7】
前記半導体材料は、III−V型の半導体材料である、請求項5に記載の方法。
【請求項8】
前記半導体材料は、II−VI型の半導体材料である、請求項5に記載の方法。
【請求項9】
n−ドーパントおよびp−ドーパントのうちの1つを用いて前記半導体材料をドープすることをさらに含む、請求項5に記載の方法。
【請求項10】
前記母材を提供することは、定義された断面形を有する前記コア材料を提供することを含み、形成される光ファイバーのコアは、該母材のコア材料の形と実質的に同一の断面形を有する、請求項1に記載の方法。
【請求項11】
前記定義された断面形は、実質的に矩形である、請求項10に記載の方法。
【請求項12】
前記定義された断面形は、実質的に円形である、請求項10に記載の方法。
【請求項13】
前記母材を提供することは、同軸の複数のクラッディング材料を提供して前記光ファイバーがそれぞれの複数のクラッディングを有することをもたらすことを含み、該それぞれの複数のクラッディングのうちの所与の1つは、光励起クラッディングである、請求項1に記載の方法。
【請求項14】
前記光ファイバーは、多結晶コアを有し、前記方法は、該多結晶コアを単結晶コアに変換するために、第1の端から始まる該光ファイバーと、おおよそ結晶化温度において熱を提供する熱源との間で相対運動を設けることをさらに含む、請求項1に記載の方法。
【請求項15】
前記母材を提供することは、前記クラッディング材料の中に少なくとも1つの導体材料を挿入することを含み、該少なくとも1つの導体材料は、前記コア材料と実質的に平行して該クラッディング材料を軸方向に貫いて延びる、請求項1に記載の方法。
【請求項16】
前記少なくとも1つの導体材料を挿入することは、複数の導体材料ロッドが前記クラッディング材料の中に前記母材のおよそ中心軸に対称に配置されるように、一対の導体材料ロッドを挿入することを含む、請求項15に記載の方法。
【請求項17】
前記母材を線引きすることは、前記光ファイバーの長さに沿って軸方向に延びる一対の導体を有する前記線引きされたファイバーを形成するように該母材を線引きすることを含み、該一対の導体は、電気信号に応答して前記結晶性ファイバーコアを通して電界を生成するように構成される、請求項16に記載の方法。
【請求項18】
電気光学変調器を介して前記電気信号を生成することと、
前記電界に応答して、前記結晶性コアの中に投光される光入力信号を変調することと
をさらに含む、請求項17に記載の方法。
【請求項19】
前記少なくとも1つの導体材料を挿入することは、前記コア材料と実質的に平行して前記クラッディング材料の中に単一の導体材料を挿入することを含む、請求項15に記載の方法。
【請求項20】
前記母材を線引きすることは、該母材が線引きされる間に該母材を回転させることを含み、従って、前記光ファイバーは、該光ファイバーの長さに沿って前記結晶性ファイバーコアの周囲をらせん状に延びる単一の導体を有し、該単一の導体は、該単一の導体を通して提供される電流に応答して、該光ファイバーの結晶性ファイバーコアを通して該光ファイバーの長さに沿って磁界を生成するように構成される、請求項19に記載の方法。
【請求項21】
前記光ファイバーの長さに沿って生成される磁界に基づいて、ファラデーアイソレーターとして該光ファイバーをインプリメントすることをさらに含む、請求項20に記載の方法。
【請求項22】
光ファイバーを形成する方法であって、
該方法は、
該光ファイバーを生成するように、第1の端からクラッディング材料およびコア材料を含む母材を該コア材料の融解温度よりも高い温度で線引きすることと、
線引きされたファイバーを冷却して、該線引きされたファイバーのコア材料を自然に結晶化させることと、
該第1の端から始まる線引きされたファイバーを、おおよそ結晶化温度において熱を提供する熱源を介して移動させることと
を含む、方法。
【請求項23】
光ファイバーデバイスの長さに沿って軸方向に延びる結晶性コアと、
該結晶性コアを取り巻き、かつ、該光ファイバーデバイスの長さに沿って軸方向に延びる光ファイバークラッディングと、
該光ファイバークラッディングの中に該結晶性コアのおよそ中心軸に対称に配置される一対の導体であって、該一対の導体は、該光ファイバーデバイスの長さに沿って延び、電気信号に応答して該結晶性コアを通して電界を生成するように構成される、一対の導体と
を含む、光ファイバーデバイス。
【請求項24】
光ファイバーデバイスの長さに沿って軸方向に延びる結晶性コアと、
該結晶性コアを取り巻き、かつ、該光ファイバーデバイスの長さに沿って軸方向に延びる光ファイバークラッディングと、
該光ファイバークラッディングの中に配置される導体であって、該導体は、光ファイバーの長さに沿って該結晶性コアの周囲にらせん状に延び、該導体を通して提供される電流に応答して、該結晶性コアを通して該光ファイバーデバイスの長さに沿って磁界を生成するように構成される、導体と
を含む、光ファイバーデバイス。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate

【図26】
image rotate

【図27】
image rotate


【公表番号】特表2011−516372(P2011−516372A)
【公表日】平成23年5月26日(2011.5.26)
【国際特許分類】
【出願番号】特願2010−548911(P2010−548911)
【出願日】平成21年2月27日(2009.2.27)
【国際出願番号】PCT/US2009/035500
【国際公開番号】WO2009/108873
【国際公開日】平成21年9月3日(2009.9.3)
【出願人】(510028280)ノースロップ グルムマン システムズ コーポレイション (12)
【出願人】(507354655)クレムソン・ユニバーシティ (2)
【Fターム(参考)】