説明

光モジュールおよび分散補償装置

【課題】光フィルタとVIPA板に、同一の制御温度を印加して、VIPA板の透過特性を平坦化させる。
【解決手段】光モジュール10は、波長周期性の透過特性を持つ光フィルタ12と、光を高反射する反射面13aおよび反射面13aよりも低い反射率を持つ透過面13bを備え、反射面13aと透過面13bとで挟まれる内部領域で、光フィルタ12からの出射された光を多重反射させて、透過面13bを介して回折した出射光を出射する光学部品13と、光フィルタ12および光学部品13の温度制御を行う温度制御部15とを備える。温度制御部15は、光フィルタ12および光学部品13に対して、同一の制御温度を印加することで、透過面13bから出射した出射光の透過スペクトル形状を平坦化する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光モジュールおよび分散補償装置に関し、波長分波を行う光モジュールおよび光の波長分散の補償を行う分散補償装置に関する。
【背景技術】
【0002】
光ファイバ上で光パルスが伝播する速度(群速度)は、光の波長毎に異なるため、高速大容量の光伝送を行うと、伝送距離が伸びるにつれて、光のパルス波形が鈍る波長分散が生じる。波長分散は、波長が1nm異なるふたつの単色光を1km伝搬させたときの伝搬時間差、単位はps/nm/kmで定義される。
【0003】
WDM(Wavelength Division Multiplex)のような光伝送を行うシステムで、波長分散によるパルス広がりが生じると、受信レベルを著しく劣化させてシステムに有害な影響を及ぼすことになる。このため、波長分散を等価的にゼロに(キャンセル)する分散補償を行って、光伝送時に生じた波長分散を抑制する必要がある。
【0004】
分散補償を行う機器としては、分散補償ファイバ(DCF:Dispersion Compensation Fiber)や分散補償グレーティング(DCG:Dispersion Compensation Grating)等があるが、これらの多くは分散補償量(光ファイバ伝送路で生じた分散量とは逆符号の分散量)が固定である。
【0005】
一方、40Gbps以上の高速光通信システムでは、波長分散のトレランス(残留分散の許容耐力)が狭く、より正確な分散値で補償する必要があるため、分散補償量を任意に調整可能な可変分散補償器を用いることが不可欠である。可変分散補償器としては、近年、VIPA(Virtually Imaged Phased Array)と呼ばれる光学部品が注目されている。
【0006】
VIPAは、ガラスプレートの両面に反射率の高い膜を蒸着した波長分波素子(VIPA板)を有したデバイスであり、VIPA板に集光ビームを入力してガラスプレート内部で多重反射させることで、通常の回折格子を用いずに、波長分波を行うことを可能にする。以降、図8〜図11でVIPAの基本概念について説明する。
【0007】
図8はVIPAの基本構成を示す図である。VIPA50は、シリンドリカルレンズ51、VIPA板52から構成される。
シリンドリカルレンズ51は、入力光を集光するレンズである。VIPA板52は、反射率が100%または100%に近い反射膜5aがコーティングされた反射面52aと、反射率がおよそ95〜98%程度の反射膜5bがコーティングされた透過面52bと、窓(照射窓)52cとを有するガラスプレートである。
【0008】
図9はVIPA50の動作概要を説明するための図である。シリンドリカルレンズ51で集光されたビームB1は、VIPA板52の窓52cから入力する。このとき、ビームB1の光軸Zは、VIPA板52の法線Hに対して、小さな傾き角θを持っている。
【0009】
反射面52aの反射率を100%、透過面52bの反射率を98%とすると、ビームB1の2%の光は、透過面52bからガラスプレートの厚み分のビーム径を持って外部へ出射し(透過面52bから出射する光は、広がり角の少ない丸いビーム(コリメートビーム)であり、ビーム径はガラスプレートの厚み分となる)、残りの98%のビームB1aは、反射面52a側へ向かって反射する(ビームB1aは、ガラスプレート内部で、プレートの厚み分わずかに広がりながら反射面52aへ向かう)。
【0010】
また、反射面52aは反射率100%なので、ビームB1aは、透過面52bに向かって全反射する(ビームB1aは、ガラスプレート内部で、プレートの厚み分わずかに広がりながら透過面52bへ向かう)。そして、ビームB1aの2%の光は、ガラスプレートの厚み分のビーム径を持って透過面52bから外部へ出射する。このとき、ビームB1とビームB1aの出射光のスポット位置はdだけずれている。
【0011】
同様に、ビームB1aの残りの98%のビームB1bは、反射面52a側へ向かって反射する。このようなことが繰り返されることで、シリンドリカルレンズ51を介して、VIPA板52に入力したビームは、VIPA板52内で少しずつ広がりながら多重反射し、透過面52bから一定の間隔dだけ離れて光が少しずつ出射していくことになる。
【0012】
透過面52bから一定の間隔dだけ離れて出射する光は、あたかも階段状に配列された仮想出射スポットv1〜vn(図9ではv4まで示す)から出射しているとみなせ(これにより、バーチャリ・イメージ・フェーズド・アレイと呼ばれている)、この振る舞いは、エシェロン型(階段状)の回折格子の動作といえるので、出射光は分光されて出射することになる。
【0013】
また、これらの仮想出射スポットv1〜vnは、VIPA板52のガラスプレートの厚みをDとすれば、VIPA板52の法線Hに沿って、一定の間隔2Dで配置される。仮想出射スポットv1、v2について見ると、線分pq=線分qr=Dであるから、仮想出射スポットv1、v2の配置間隔は、VIPA板52の法線H上に2Dとなり、その他の仮想出射スポットの配置間隔も間隔2Dで配置することになる。
【0014】
図10はVIPA50の干渉条件を示す図である。出射スポットvaから出射される光に対し、ビームB2aでは、経路t0内にm個の波長(中波長とする)があるものとする。この場合、ビームB2aの上側のビームB2bで、光が強め合う方向に干渉条件が満たされる場合、経路t1<経路t0なので、ビームB2bにm個の波長が入るためには、ビームB2bの波長は、ビームB2aに含まれる波長よりも短波長となる必要がある。
【0015】
また、ビームB2aの下側のビームB2cで、光が強め合う方向に干渉条件が満たされる場合、経路t0<経路t2なので、ビームB2cにm個の波長が入るためには、ビームB2cの波長は、ビームB2aに含まれる波長よりも長波長となる必要がある。
【0016】
したがって、VIPA板52からの出射光に対して、光が強め合う干渉条件は、光軸を基準に上側が短波長、下側が長波長となることとなり、VIPA板52から光軸の上側には短波長の光が、下側には長波長の光が出射されることになる。
【0017】
図11はVIPA板52の回折光の次数を示す図である。VIPA板52の中間出射ポイントからは、回折次数(回折格子によって回折された光の方向を示す正または負の整数)がm次の光が出射する。
【0018】
また、中間出射ポイントの上側の出射ポイントからはm−1次、下側の出射ポイントからは、m+1次の光が出射される。このように、VIPA板52からは、さまざまな回折次数の光が出射するが、制御に必要な次数の回折光のみ着眼することになる。
【0019】
次に光ネットワーク上において、波長分散によって生じる受信劣化について説明する。図12は波長分散が生じて正常受信できない状態を説明するための図である。光ファイバF0を通じて、“0”、“1”のデータを持つ信号光が流れている。ここで、1ビットのパルスのスペクトルに着目すると、1ビットを構成するパルスのスペクトルには、複数の波長が含まれている。スペクトル中間の波長をλC、長波長側をλL、短波長側をλSとし、波長λCの速度をV(λC)、波長λLの速度をV(λL)、波長λSの速度をV(λS)とする。
【0020】
これらの波長λC、λL、λSが、光ファイバF0を通じて、同じ速度で伝送して受信機Rxに到達すれば(V(λC)=V(λL)=V(λS))、該当1ビットの波形には、歪みは生じておらず、正常にビット識別が可能である。
【0021】
ところが、高速光伝送時で伝送距離が伸びたりして波長分散が生じると、1ビットを構成しているスペクトルの波長が、V(λS)>V(λC)>V(λL)というように、速度差が生じてしまう。このような速度差が生じると、該当1ビットの伝送波形には歪みが生じることになり、受信機Rxにおいて正確なビット識別が行えなくなる。
【0022】
次にVIPA50を使用した分散補償について図13、図14を用いて説明する。図13、図14はVIPA型分散補償を説明するための図である。VIPA板52の出射側に、集光レンズ53と反射ミラー54が配置される。出射した回折光は、集光レンズ53によって反射ミラー54に集光される。
【0023】
反射ミラー54は、非球面形状をしており、反射位置によってさまざまな方向に光を反射させる。また、反射ミラー54のカーブによって反射方向を変えることができる。ここで、短波長λSのビーム(ビームλSとする)は、VIPA板52の中心より上側の箇所に到達するように反射させ、長波長λLのビーム(ビームλLとする)は、中心より下側の箇所に到達するように反射させる。
【0024】
すると図14に示すように、反射したビームλSは、VIPA板52の上側のポイントp1に到達してVIPA板52に再度入力するので、VIPA板52内部で多くの回数の反射を繰り返して窓52cから出射することになる。また、反射したビームλLは、VIPA板52の下側のポイントp2に到達して再度入力するので、VIPA板52内部で少ない回数の反射を繰り返して窓52cから出射することになる。
【0025】
このように、反射ミラー54で反射された光は、VIPA板52に到達し、VIPA板52の到達位置は各波長によって異なるので、VIPA板52内部で多重反射して窓52cに戻るまでに時間差が生じることになり、波長毎に時間差(分散)を発生させることができる(群遅延時間を発生させることができる)。
【0026】
上記の場合、波長分散によって、短波長λSが最も早く受信機Rxに到達し、長波長λLが最も遅く到達するので、短波長λSに対して多くの遅延時間を発生させ(短波長λSの光は、VIPA板52の窓52cから出射されるまでに遠回りさせているイメージである)、長波長λLの遅延時間は小さくすることで(長波長λLの光は、VIPA板52の窓52cから出射されるまでに近回りさせているイメージである)、光伝送路上で生じた波長分散の補償を行うものである。
【0027】
従来技術として、VIPAを使用した分散補償デバイスは、特許文献1に提案されている。また、VIPAの透過帯域特性をエタロンフィルタを用いて平坦化した技術が特許文献2に、空間フィルタを用いて平坦化する技術が特許文献3に提案されている。しかし、特許文献2に示されている方法では、エタロンフィルタの波長調整を行うための温度調整機構を追加する必要があり、装置構造が複雑になる、装置体積が大きくなるという問題ある。また、特許文献3に示されている空間フィルタは技術的に製造が難しいという問題がある。
【先行技術文献】
【特許文献】
【0028】
【特許文献1】特表2000−511655号公報
【特許文献2】特開2003−202515号公報
【特許文献3】特開2003−207618号公報
【発明の概要】
【発明が解決しようとする課題】
【0029】
光デバイスに光を透過させたときの透過特性は、一般に、透過光のスペクトルが広く、透過帯域が平坦性を持つことが要求される。なぜなら、透過帯域が平坦でないと、入射前にあった周波数成分のパワーが阻止されてしまい、波形歪みを生じさせるからである(さらに、透過帯域幅は隣接チャネルのクロストークの漏れ込みが生じない程度に狭いほうがよい、などといったことも要求される)。
【0030】
しかし、VIPA50を構成するVIPA板52は、透過特性が平坦性を有しておらず、このため、VIPA50をそのまま使用して分散補償を行うと、伝送品質の劣化を引き起こすといった問題があった。
【0031】
図15はVIPA板52の周期フィルタ特性を示す図である。縦軸は透過率、横軸は波長である。VIPA板52は、周期フィルタであり、VIPA板52から出射される光は、波長周期性を有している。
【0032】
VIPA板52に帯域の広い光(白色光)が入射すると、VIPA板52の出射光は、図に示すようなλ1、λ2、λ3・・・と順に透過出力するような波長周期性が現れる(特定の厚みを介して、表面と裏面に反射膜を設け、光を内部干渉するように多重反射させるVIPA板や、またはエタロンなどの光学部品による出射光では、このようなフィルタ特性が現れる)。
【0033】
なお、VIPA板52内部を通る光の光路長は、VIPA板52のガラスプレートの屈折率nとガラスプレートの厚みDに比例し(光路長∝n×D)、波長周期Tは光路長に依存する。
【0034】
図16はVIPA板52の出射光の単一波長における透過特性を示す図である。縦軸は透過率、横軸は波長である。VIPA板52の出射光は、各透過帯域内の中心波長付近にピークを持つラウンドトップ形状の特性を持っている。このように、VIPA板52の透過帯域は平坦ではないため、VIPA板52を透過した光は、実質的に帯域制限を受けることになる。
【0035】
VIPA板52の出射光では、透過特性がラウンドトップ形状なので、透過帯域内の単一波長において光レベル(透過率)に差が生じ、VIPA板52の通過前後で、信号光パルス波形が大きく異なることにより、顕著な波形歪みが生じてしまう。
【0036】
また、特に高速大容量・長距離の光通信システムにおいて、このようなVIPA板52を含む分散補償器を多段に用いて分散補償を行うと、波形歪みが蓄積することになるので、信号光パルスの劣化が非常に大きくなってしまう。
【0037】
一方、上記の従来技術(特許第3994737号公報)では、VIPA板52の透過特性に対して、相反する透過特性を持つエタロンフィルタを用いて、VIPA板52の透過スペクトルを平坦化する手法を採っている。
【0038】
この場合、透過光スペクトルのピークとボトムが互いに相殺されるように、VIPA板52の透過波長およびエタロンフィルタの透過波長を調整することが必要であり、このような波長調整を行うためには、温度制御が一般的に行われる。
【0039】
しかし、従来技術(特許第3994737号公報)には、温度制御による波長調整および温度制御機構については何ら考慮されていない。また、温度制御を行うとしても、通常は、VIPA板52の透過波長とエタロンフィルタの透過波長は一致しておらず、温度変化1℃あたりの波長変化量を示す波長温度係数も、VIPA板52とエタロンフィルタでは互いに異なるため、各々を異なる温度で制御することが考えられる。
【0040】
しかし、VIPA板52およびエタロンフィルタそれぞれに対して、別個の温度制御機構で温度調整を行ってしまうと、装置構成が複雑となり、回路規模、消費電力およびコストの増大を引き起こすといった問題があった。
【0041】
本発明はこのような点に鑑みてなされたものであり、同一の温度制御機構による温度制御によって、VIPA板の透過特性を平坦化して、伝送品質の向上、回路規模および消費電力の低減化を図った光モジュールを提供することを目的とする。
【0042】
また、本発明の他の目的は、同一の温度制御機構による温度制御によって、VIPA板の透過特性を平坦化して、伝送品質の向上、回路規模および消費電力の低減化を図った分散補償装置を提供することである。
【課題を解決するための手段】
【0043】
上記課題を解決するために、波長分波を行う光モジュールが提供される。この光モジュールは、波長周期性の透過特性を持つ光フィルタと、光を高反射する反射面および前記反射面よりも低い反射率を持つ透過面を備え、前記反射面と前記透過面とで挟まれる内部領域で、前記光フィルタからの出射された光を多重反射させて、前記透過面を介して回折した光を出射する光学部品と、前記光フィルタおよび前記光学部品の温度制御を行う温度制御部とを備える。
【0044】
ここで、温度制御部は、光フィルタおよび光学部品に対して、同一の制御温度を印加することで、透過面からの出射光の透過スペクトル形状を平坦化する。
【発明の効果】
【0045】
光フィルタとVIPA板に対して、同一の制御温度を印加して、VIPA板の透過特性を平坦化することにより、伝送品質の向上、回路規模および消費電力の低減化を図ることが可能になる。
【図面の簡単な説明】
【0046】
【図1】光モジュールの原理図である。
【図2】VIPA板の透過スペクトル形状を示す図である。
【図3】透過スペクトル形状を示す図である。
【図4】透過波長の調整動作を示す図である。
【図5】透過波長の調整動作を示す図である。
【図6】透過波長の調整動作を示す図である。
【図7】分散補償装置の構成を示す図である。
【図8】VIPAの基本構成を示す図である。
【図9】VIPAの動作概要を説明するための図である。
【図10】VIPAの干渉条件を示す図である。
【図11】VIPA板の回折光の次数を示す図である。
【図12】波長分散が生じて正常受信できない状態を説明するための図である。
【図13】VIPA型分散補償を説明するための図である。
【図14】VIPA型分散補償を説明するための図である。
【図15】VIPA板の周期フィルタ特性を示す図である。
【図16】VIPA板の出射光の単一波長における透過特性を示す図である。
【発明を実施するための形態】
【0047】
以下、本発明の実施の形態を図面を参照して説明する。図1は光モジュールの原理図である。光モジュール10は、レンズ11、光フィルタ12、光学部品13(以下、VIPA板13)から構成され、波長分波を行う光モジュールである。
【0048】
レンズ11は、入力光を集光して集光ビームを生成する。光フィルタ12は、波長周期性の透過特性を持つフィルタであり、集光ビームをフィルタリングして出射する。
なお、光フィルタ12は、具体的にはエタロンフィルタ(2枚のミラーが平行に向かい合わさった構造で、特定の周波数の整数倍の光だけを選択的に透過させ、それ以外の光は通さない光共振器)を用いるので、以降ではエタロンフィルタ12と呼ぶ。
【0049】
VIPA板13は、光を高反射する反射面13a(反射率100%または100%に近い反射膜13−1がコーティングされた面である)および反射面13aよりも低い反射率を持つ反射膜13−2がコーティングされた透過面13bを備える。
【0050】
エタロンフィルタ12から出射された光ビームが窓13cへ入射すると、反射面13aと透過面13bとで挟まれる内部領域で、窓13cから入射された光ビームを多重反射させて、透過面13bを介して回折した光を出射する。なお、エタロンフィルタ12とVIPA板13は、接着剤14で貼り合わせる。
【0051】
温度制御部15は、エタロンフィルタ12およびVIPA板13の温度制御を行い、エタロンフィルタ12およびVIPA板13に対して、同一の制御温度を印加することで、VIPA板13の透過面13bから出射した出射光の透過スペクトル形状を平坦化する。
【0052】
図2はVIPA板13の透過スペクトル形状を示す図である。縦軸は透過率、横軸は波長である。光モジュール10の構成によって、VIPA板13の透過面13bから出射される光の透過スペクトル形状は、平坦な形状となる。
【0053】
次にVIPA板13からの透過スペクトルを平坦化するための光モジュール10の動作について詳しく説明する。図3は透過スペクトル形状を示す図である。縦軸は透過率、横軸は波長である。VIPA板13単体の透過スペクトル形状1aと、エタロンフィルタ12単体の透過スペクトル形状1bと、これらを足し合わせたときのVIPA板13の出射光の透過スペクトル形状1cとを示している。
【0054】
温度制御部15は、VIPA板13に制御温度を印加して、VIPA板13の光路長を可変に調節して、VIPA板13の透過波長を左方向または右方向にずらす。また、エタロンフィルタ12に制御温度を印加して、エタロンフィルタ12の光路長を可変に調節して、エタロンフィルタ12の透過波長を左方向または右方向にずらす。
【0055】
このような温度制御を行うことにより、VIPA板13のラウンドトップのスペクトル形状のピーク波長λ1、λ2と、エタロンフィルタ12のスペクトル形状のボトム波長λ1、λ2とをそれぞれ一致させる。
【0056】
すると、VIPA板13のピーク波長λ1の透過率と、エタロンフィルタ12のボトム波長λ1の透過率とが足し合わされることにより、VIPA板13の透過面13bからの出射光の波長λ1の透過率は平坦化する。
【0057】
同様に、VIPA板13のピーク波長λ2の透過率と、エタロンフィルタ12のボトム波長λ2の透過率とが足し合わされることにより、VIPA板13の透過面13bからの出射光の波長λ2の透過率は平坦化する。
【0058】
ここで、通常は、VIPA板13とエタロンフィルタ12の透過波長は一致しておらず、温度変化1℃あたりの波長変化量(波長温度係数)も異なるため、温度制御によって波長をシフトさせる場合は、各々を異なる温度で制御することが考えられるが、上述したように、VIPA板13およびエタロンフィルタ12それぞれに対して、別個の温度制御機構を設けると、回路規模、消費電力およびコストの増大を引き起こしてしまう。
【0059】
そこで、光モジュール10では、VIPA板13の材質と比べて波長温度係数が数倍大きな材質をエタロンフィルタ12に用いることで、VIPA板13とエタロンフィルタ12に対して、同一温度で制御することにより、VIPA板13の波長調整と、エタロンフィルタ12の波長調整とを同時に行って、両者の波長を調整する。
【0060】
図4は透過波長の調整動作を示す図である。縦軸は透過率、横軸は波長である。グラフg1において、ある温度でVIPA板13の透過波長(ピーク波長λp)がグリッド波長λg(信号光の波長)と完全に一致しており、同一温度で制御されたエタロンフィルタ12のボトム波長λbが、VIPA板13のピーク波長λpと一致していないとする(この状態では、VIPA板13の透過スペクトル形状は平坦化されていない)。
【0061】
なお、グリッド波長とは、ITU−T(International Telecommunications Union−Telecommunications)で標準化された、WDMネットワークで使用される波長のことである。WDMネットワークでは、互いに異なる複数の波長を多重化して伝送するので、隣接チャネルからの影響を避けるべく、信号波長がITU−Tで勧告されている。具体的には、周波数193.1THz(1,552.525nm)を基準に、100GHz(0.8nm)間隔で並んだ周波数グリッド上に波長を設定することが決定されている。
【0062】
グラフg2において、エタロンフィルタ12のボトム波長λbをグリッド波長λg付近に合わせるために、制御温度を変更する。この場合、VIPA板13のピーク波長λpは、先に調整していたグリッド波長λgからずれる(右方向へのずれが生じる)ことになるが、波長温度係数がエタロンフィルタ12の基板材質と比べて数分の1であるため、波長ずれは実質的にほとんど影響の無い範囲に抑えることができる。
【0063】
そして、グラフg3のように、グリッド波長λgとエタロンフィルタ12のボトム波長λbとVIPA板13のピーク波長λpとが互いに略一致することによって、VIPA板13の透過光におけるグリッド波長λgの透過スペクトルは、平坦化した形状となる。
【0064】
このように、VIPA板13とエタロンフィルタ12の基板材質の波長温度係数の差を大きくして、両者を同一の温度制御機構により温度調整することにより、実質的に影響の無い波長誤差の範囲内で、VIPA板13の透過スペクトル特性を平坦化することが可能となる。
【0065】
次に具体的な数値を用いて透過波長の調整動作について説明する。VIPA板13の基板材質には、代表的な光学ガラスであるBK7ボロシリケート・クラウン・ガラス(Borosilicate Crown Glass:光学ガラスの中では一番多く製造されており、組成の分類では硼珪酸ガラスに入る光学用ガラス材料)を使用し、エタロンフィルタ12の基板材質としては、シリコン(Si)を用いる。また、BK7は、波長1550nmでの波長温度係数が約16pm/℃であり、シリコンは、波長1550nmでの波長温度係数が約82pm/℃である(エタロンフィルタ12の材質の波長温度係数は、VIPA板13の材質の波長温度係数よりも約5倍大きい)。
【0066】
図5は透過波長の調整動作を示す図である。縦軸は透過率、横軸は波長であり、エタロンフィルタ12のボトム波長とVIPA板13のピーク波長にずれがある状態を示している。平坦化のための温度制御を行う前の、VIPA板13のピーク波長をλV、エタロンフィルタ12のボトム波長をλEとする。
【0067】
温度制御部15は、最初に、VIPA板13のピーク波長λVがグリッド波長λgに完全に一致するように温度調整を行う(λV=λg)。このとき、通常はエタロンフィルタ12のボトム波長λEは、VIPA板13のピーク波長λVと一致しない。VIPA板13のピーク波長λVと、エタロンフィルタ12のボトム波長λEとの間にずれがあり、ずれdλが80pmであったとする(λg−λE=dλ=80pm)。
【0068】
図6は透過波長の調整動作を示す図である。縦軸は透過率、横軸は波長であり、エタロンフィルタ12のボトム波長λEとVIPA板13のピーク波長λVとを一致させた状態を示している(波長シフト前を細実線、波長シフト後を太実線で示す)。
【0069】
温度制御部15は、エタロンフィルタ12およびVIPA板13に対して、同じ制御温度を印加して、エタロンフィルタ12のボトム波長λEとVIPA板13のピーク波長λVとを一致させる。
【0070】
この場合、VIPA板13の材質の波長温度係数をαV、エタロンフィルタ12の材質の波長温度係数をαE(αE>αV)、制御温度の変化量をΔT、制御温度変化量ΔTを印加したときのVIPA板13のピーク波長λVの変化量をΔλV、制御温度変化量ΔTを印加したときのエタロンフィルタ12のボトム波長λEの変化量をΔλEとすると、以下の式(1)、(2)が成り立つ。
【0071】
ΔλE=ΔλV+dλ・・・(1)
ΔT=ΔλE/αE=ΔλV/αV・・・(2)
式(1)、(2)に対して、dλ=80pm、αE=82pm/℃、αV=16pm/℃を代入して、制御温度変化量ΔTを求めると、ΔT=1.2℃となる。したがって、温度制御部15は、VIPA板13のピーク波長λVをグリッド波長λgに一致させたときの制御温度から1.2℃さらに上昇させることにより、エタロンフィルタ12のボトム波長λEとVIPA板13のピーク波長λVとを一致させることができる。
【0072】
このとき、VIPA板13のピーク波長λVが、グリッド波長λgより約19pm(=Δ=1.2×16)長波長側にシフトするが、VIPA板13の出射光の透過スペクトル形状は平坦化されるために、この程度の波長ずれは実用上問題ない。
【0073】
次に光モジュール10を適用した分散補償装置について説明する。図7は分散補償装置の構成を示す図である。分散補償装置20は、光入出力処理部21、シリンドリカルレンズ11a(前段レンズ)、エタロンフィルタ12、VIPA板13、集光レンズ22(後段レンズ)、反射ミラー23、温度制御部15から構成される。なお、上述した構成要素には同じ符号を付けてそれらの構成の説明は省略する。また、VIPA板13の透過スペクトル形状の平坦化制御は上述したので、ここでは分散補償動作について説明する。
【0074】
光入出力処理部21は、入力してきた入力光と、内部で処理された後の出力光(分散補償されてVIPA板13から戻ってきた出力光)とが重ならないように光路の切り分けを行う。すなわち、VIPA板13に到達するまでの入力光と、VIPA板13から戻ってきた出力光とがオーバラップしないように分離する。
【0075】
光入出力処理部21は、具体的には、サーキュレータ21aとコリメートレンズ21bから構成される。サーキュレータ21aは、3つのポートP1〜P3を有し、ポートP1から入力した光は、ポートP2から出力させ、ポートP2から入力した光は、ポートP3から出力させるものである。
【0076】
サーキュレータ21aのポートP1に入力した光は、ポートP2から出力して、光ファイバFへ入力する。光ファイバFから出力された光は、コリメートレンズ21bによって平行光となって、シリンドリカルレンズ11aに向かう。
【0077】
シリンドリカルレンズ11aは、光入出力処理部21から出力された光(入力光)を集光して、エタロンフィルタ12へ入射し、エタロンフィルタ12からの出射光は、VIPA板13の窓13cに入射する。
【0078】
VIPA板13の内部で多重反射して出射した回折光は、集光レンズ22によって反射ミラー23に集光される。反射ミラー23は、透過面13bから出射された出射光を反射し、戻り光を生成する。反射された戻り光は、集光レンズ22を介して、波長毎に遅延時間差を付けるために必要な透過面13bの所定の箇所に到達する。
【0079】
なお、反射ミラー23には、3D(3Dimensional)ミラーが使用される。3Dミラー23は、例えば、x軸方向に沿って、y軸方向の形状が凹から凸に連続的に変化するような形状を有する。
【0080】
したがって、光の波長毎にミラー表面の集光位置(y軸方向の位置)でのミラーの傾きが異なるために、反射方向を波長毎に異ならせることができ、光の波長毎に光路長を変化させ、透過面13bに対する戻り光の入射時間に差を設けることができる。また、x軸方向について3Dミラー23の設置位置を調整することにより、波長間の光路長差(時間差)を変化させることができる。このように、3Dミラー23を駆動することにより、適切に波長分散量を変化させることができる。
【0081】
VIPA板13の内部で多重反射して窓13cから出射する光は、図13、図14で上述した制御によって分散補償されており、シリンドリカルレンズ11aは、分散補償後の光(出力光)を平行光にして、コリメートレンズ21bへ入力する。コリメートレンズ21bは、平行光を集光して光ファイバFに入力する。そして、光ファイバFからの出力光は、サーキュレータのポートP2に入力し、ポートP3へドロップして出力パス側へ伝送される。
【0082】
以上説明したように、VIPA板13の基板材質と比べて波長温度係数(単位温度変化あたりの波長シフト量)の大きい材質でできたエタロンフィルタ12を、VIPA板13の反射面13a側に貼り付け、VIPA板13とエタロンフィルタ12を同一温度にて温度制御することにより、VIPA板13の透過光波長ずれが許容可能な範囲内で、エタロンフィルタ12の波長を所望の波長に調整することができ、VIPA板13の透過スペクトル特性を平坦化することが可能になる。
【符号の説明】
【0083】
10 光モジュール
11 レンズ
12 光フィルタ(エタロンフィルタ)
13 光学部品(VIPA板)
13−1、13−2 反射膜
13a 反射面
13b 透過面
13c 窓
14 接着剤
15 温度制御部

【特許請求の範囲】
【請求項1】
波長分波を行う光モジュールにおいて、
波長周期性の透過特性を持つ光フィルタと、
光を高反射する反射面および前記反射面よりも低い反射率を持つ透過面を備え、前記反射面と前記透過面とで挟まれる内部領域で、前記光フィルタからの出射された光を多重反射させて、前記透過面を介して回折した光を出射する光学部品と、
前記光フィルタおよび前記光学部品の温度制御を行う温度制御部と、
を備え、
前記温度制御部は、前記光フィルタおよび前記光学部品に対して、同一の制御温度を印加することで、前記透過面からの出射光の透過スペクトル形状を平坦化する、
ことを特徴とする光モジュール。
【請求項2】
前記温度制御部は、
前記制御温度を印加して、前記光フィルタの光路長および前記光学部品の光路長を変化させて、それぞれの透過波長をシフトし、
前記光学部品の透過スペクトル形状のピークに位置する波長であるピーク波長と、前記光フィルタの透過スペクトル形状のボトムに位置する波長であるボトム波長とを一致させて、前記出射光の透過スペクトル形状を平坦化する、
ことを特徴とする請求項1記載の光モジュール。
【請求項3】
単一温度変化当たりの波長変化量を示す波長温度係数に対して、前記光フィルタの材質の前記波長温度係数は、前記光学部品の材質の前記波長温度係数よりも大きいことを特徴とする請求項2記載の光モジュール。
【請求項4】
前記温度制御部は、
前記ピーク波長が信号光波長に一致するように前記制御温度を印加し、
前記制御温度が前記光学部品および前記光フィルタと共に印加されて、前記ピーク波長と前記信号光波長が一致した状態のときに、前記ピーク波長と前記ボトム波長との差分がdλであった場合に、
前記光学部品の材質の前記波長温度係数をαV、前記光フィルタの材質の前記波長温度係数をαE(αE>αV)、制御温度変化量をΔT、制御温度変化量ΔTを印加したときの前記ピーク波長の変化量をΔλV、制御温度変化量ΔTを印加したときの前記ボトム波長の変化量をΔλEとした際に、
ΔλE=ΔλV+dλ
ΔT=ΔλE/αE=ΔλV/αV
から制御温度変化量ΔTを求め、現在印加している前記制御温度をΔTだけ変化させることを特徴とする請求項3記載の光モジュール。
【請求項5】
光の波長分散の補償を行う分散補償装置において、
入力してきた入力光と、内部で処理された後の出力光との光路の切り分けを行う光入出力処理部と、
波長周期性の透過特性を持つ光フィルタと、
光を高反射する反射面および前記反射面よりも低い反射率を持つ透過面を備え、光が入出力する窓が前記反射面側に設けられた光学部品と、
前記透過面から出射された出射光を反射し、戻り光を生成して前記透過面の所定の箇所に再び到達させる可動型の反射ミラーと、
前記光入出力処理部と前記光フィルタとの間に配置して、前記入力光を集光して前記光フィルタへ入射させる前段レンズと、
前記光学部品と前記反射ミラーとの間に配置して、前記出射光を前記反射ミラーに集光する後段レンズと、
前記光フィルタおよび前記光学部品の温度制御を行う温度制御部と、
を備え、
前記光学部品は、前記光フィルタから出射され、前記窓に入射した光ビームを、前記反射面と前記透過面とで挟まれる内部領域で多重反射させて、前記透過面を介して回折した前記出射光を出射し、前記透過面に到達した前記戻り光を、前記内部領域で多重反射させて、分散補償した光を前記出力光として前記窓から出射し、
前記温度制御部は、前記光フィルタおよび前記光学部品に対して、同一の制御温度を印加することで、前記透過面からの出射光の透過スペクトル形状を平坦化する、
ことを特徴とする分散補償装置。
【請求項6】
前記温度制御部は、
前記制御温度を印加して、前記光フィルタの光路長および前記光学部品の光路長を変化させて、それぞれの透過波長をシフトし、
前記光学部品の透過スペクトル形状のピークに位置する波長であるピーク波長と、前記光フィルタの透過スペクトル形状のボトムに位置する波長であるボトム波長とを一致させて、前記出射光の透過スペクトル形状を平坦化する、
ことを特徴とする請求項5記載の分散補償装置。
【請求項7】
単一温度変化当たりの波長変化量を示す波長温度係数に対して、前記光フィルタの材質の前記波長温度係数は、前記光学部品の材質の前記波長温度係数よりも大きいことを特徴とする請求項6記載の分散補償装置。
【請求項8】
前記温度制御部は、
前記ピーク波長が信号光波長に一致するように前記制御温度を印加し、
前記制御温度が前記光学部品および前記光フィルタと共に印加されて、前記ピーク波長と前記信号光波長が一致した状態のときに、前記ピーク波長と前記ボトム波長との差分がdλであった場合に、
前記光学部品の材質の前記波長温度係数をαV、前記光フィルタの材質の前記波長温度係数をαE(αE>αV)、制御温度変化量をΔT、制御温度変化量ΔTを印加したときの前記ピーク波長の変化量をΔλV、制御温度変化量ΔTを印加したときの前記ボトム波長の変化量をΔλEとした際に、
ΔλE=ΔλV+dλ
ΔT=ΔλE/αE=ΔλV/αV
から制御温度変化量ΔTを求め、現在印加している前記制御温度をΔTだけ変化させることを特徴とする請求項7記載の分散補償装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate


【公開番号】特開2010−231126(P2010−231126A)
【公開日】平成22年10月14日(2010.10.14)
【国際特許分類】
【出願番号】特願2009−81029(P2009−81029)
【出願日】平成21年3月30日(2009.3.30)
【出願人】(000005223)富士通株式会社 (25,993)
【Fターム(参考)】