説明

光触媒反応を利用した薄膜電気化学素子及びその製造方法

【課題】光触媒機能と電力発生機能をあわせもつ薄膜電気化学素子と、電解質膜や電極膜を安定な状態で薄膜化することが可能な当該薄膜電気化学素子製造方法を提供する。
【解決手段】薄膜電気化学素子100は、バイコールガラス1と、バイコールガラス1の表面にそれぞれ形成された電子伝導層である第一伝導層2と、プライマー層3と、光触媒機能を有する第一の電極4と、電解質層5と、酸素を還元する機能を有する第二の電極6と、電子伝導層である第二伝導層7から構成されている。そして、プライマー層3、第一伝導層4、第一の電極4、電解質層6、第二の電極6、第二伝導層7は、カチオン性物質とアニオン性物質とが交互に積層した構造を有している。本構成とすることにより、欠損部がなく平滑であり、且つ、層間に作用する静電気力により強固に密着した層を形成させることが可能となる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は光触媒反応を利用した薄膜電気化学素子及びその製造方法に関する。そしてより詳細には、積層構造を有する電解質層、電極層、及び電子伝導層を備えた薄膜電気化学素子、及びこれらの構造を形成させ薄膜電気化学素子を作成する製造方法に関する。
【背景技術】
【0002】
従来から光触媒によって有機物を酸化、分解することが可能であることは知られているが、光触媒により有機物を分解するとともに、当該反応により生成する電子もしくはプロトンを利用して発電を行う、いわゆる薄膜電気化学素子は知られていない。すなわち、このような薄膜電気化学素子を実現すれば、例えば太陽光を利用して工業排水や家庭排水などを分解無害化するとともに反応により生成する電子もしくはプロトンを利用して発電することも可能になる。
【0003】
光触媒活性を有する材料としては、酸化チタンが知られている。酸化チタンは紫外光を照射することで、電子が伝導体から価電子帯に励起され、ホールが生成する。このホールは酸化力が強く、有機物から電子を引き抜く(すなわち、有機物を酸化・分解する)作用がある。しかしながら、この際生成する電子もしくはプロトンを利用して発電を行うためには、光触媒に作用光が到達してホールが生成し、作用対象の有機物が前記ホールと接触して酸化、分解し、かつその際生成する電子ならびにプロトンを輸送する手段を備えていなければならない。このような条件をすべて満たすためには、プロトンの輸送を行う電解質膜を、光触媒に光が到達できるほどに薄くする必要があるが、このような薄膜電気化学素子は知られていない。また、電解質基材(アニオン性物質)とポリカチオン(カチオン性物質)を交互に積層して得られる極めて薄い膜から構成される電解質層を構成要素とする薄膜電気化学素子も知られていない。
【発明の開示】
【発明が解決しようとする課題】
【0004】
しかしながら、均一の膜厚を保持しつつ電解質膜や電極膜を光が透過できるほどに薄膜化することは非常に難易度が高い。また、電解質膜や電極膜の薄膜化により、これらの膜が基材基板や他層から剥がれ易くなってしまう。これらの要因で、有機物を分解し、かつ発電する薄膜電気化学素子は実現されていなかった。
【0005】
本発明は上述の問題点を解決するためになされたものであり、電解質や電極を安定な状態で薄膜化した薄膜電気化学素子、及び電解質層や電極層を安定な状態で薄膜化することが可能な薄膜電気化学素子製造方法を提供することを目的とする。
【課題を解決するための手段】
【0006】
上述の課題を解決するために、請求項1に係る発明の薄膜電気化学素子は、光触媒活性を有している第一の電極と、酸素を還元する機能を有している第二の電極と、イオン伝導性を有する電解質層とを少なくとも備えており、前記第一の電極と前記第二の電極とが前記電解質層を介して対向配置された構成を有する。
【0007】
また、請求項2に係る発明の薄膜電気化学素子は、請求項1に記載の発明の構成に加えて、前記電解質層はアニオン性物質とカチオン性物質とが交互に積層した構造を有していることを特徴とする。
【0008】
また、請求項3に係る発明の薄膜電気化学素子は、請求項2に記載の発明の構成に加えて、前記電解質層を構成する前記アニオン性物質はアニオン性高分子であることを特徴とする。
【0009】
また、請求項4に係る発明の薄膜電気化学素子は、請求項2乃至3のいずれかに記載の発明の構成に加えて、前記電解質層を構成する前記カチオン性物質はカチオン性高分子であることを特徴とする。
【0010】
また、請求項5に係る発明の薄膜電気化学素子は、請求項3乃至4のいずれかに記載の発明の構成に加えて、前記アニオン性高分子は、スルホ基(−SOH)もしくはホスホ基(−PO(OH))のうち、少なくとも一方を備えた高分子電解質であることを特徴とする。
【0011】
また、請求項6に係る発明の薄膜電気化学素子は、請求項4乃至5のいずれかに記載の発明の構成に加えて、前記カチオン性高分子は、第1級アミン塩、第2級アミン塩、第3級アミン塩、及び第4級アンモニウム塩のうちいずれかであることを特徴とする。
【0012】
また、請求項7に係る発明の薄膜電気化学素子は、請求項1乃至6のいずれかに記載の発明の構成に加えて、前記第一の電極は、アニオン性物質と、光触媒活性を有しているカチオン性物質とが交互に積層した構造を有していることを特徴とする。
【0013】
また、請求項8に係る発明の薄膜電気化学素子は、請求項7に記載の発明の構成に加えて、前記第一の電極を構成する前記光触媒活性を有しているカチオン性物質は、酸化チタンもしくは酸化チタンを含む基材であることを特徴とする。
【0014】
また、請求項9に係る発明の薄膜電気化学素子は、請求項7又は8の発明の構成に加えて、前記第一の電極を構成する前記アニオン性物質は、オキシチオフェン系の高分子であることを特徴とする。
【0015】
また、請求項10に係る発明の薄膜電気化学素子は、請求項1乃至9のいずれかに記載の発明の構成に加えて、前記第二の電極は、酸素を還元する機能を有しているアニオン性物質と、カチオン性物質とが交互に積層した構造を有していることを特徴とする。
【0016】
また、請求項11に係る発明の薄膜電気化学素子は、請求項10に記載の発明の構成に加えて、前記第二の電極を構成する酸素を還元する機能を有しているアニオン性物質は、白金微粒子もしくは白金微粒子を含む基材であることを特徴とする請求項10に記載の薄膜電気化学素子。
【0017】
また、請求項12に係る発明の薄膜電気化学素子は、請求項10又は11のいずれかに記載の発明の構成に加えて、前記第二の電極を構成するカチオン性物質は、請求項6に記載のカチオン性高分子であることを特徴とする。
【0018】
また、請求項13に係る発明の薄膜電気化学素子は、請求項1乃至12のいずれかに記載の発明の構成に加えて、前記第一の電極における前記電解質層と接する面の反対側の面に、電子伝導層である第一伝導層が積層されていることを特徴とする。
【0019】
また、請求項14に係る発明の薄膜電気化学素子は、請求項13に記載の発明の構成に加えて、前記第一伝導層は、オキシチオフェン系の高分子もしくは金属の薄膜で構成されていることを特徴とする。
【0020】
また、請求項15に係る発明の薄膜電気化学素子は、請求項1乃至14のいずれかに記載の発明の構成に加えて、前記第二の電極における前記電解質層と接する面の反対側の面に、電子伝導層である第二伝導層が積層されていることを特徴とする。
【0021】
また、請求項16に係る発明の薄膜電気化学素子は、請求項15に記載の発明の構成に加えて、前記第二伝導層は、オキシチオフェン系の高分子で構成されていることを特徴とする。
【0022】
また、請求項17に係る発明の薄膜電気化学素子は、請求項13乃至16のいずれかに記載の発明の構成に加えて、前記第一伝導層は、多孔質性基材基板の表面に積層されており、前記第一伝導層における前記第一の電極と接する面の反対側の面にて、当該第一伝導層と前記基材基板とが接していることを特徴とする。
【0023】
また、請求項18に係る発明の薄膜電気化学素子製造方法は、多孔質性基材基板上に電子伝導層である第一伝導層を形成させる工程と、当該電子伝導層である第一伝導層を形成させる工程にて形成された第一伝導層面に前記第一の電極を形成する工程と、当該第一の電極を形成する工程にて形成された第一の電極面上に電解質層を形成する工程と、当該電解質層を形成する工程にて形成された電解質層面上に前記第二の電極を形成する工程と、当該第二の電極を形成する工程にて形成された第二の電極面上に電子伝導層である第二伝導層を形成させる工程を備えている。
【0024】
また、請求項19に係る発明の薄膜電気化学素子製造方法は、請求項18に記載の発明の構成に加えて、前記第一の電極を形成する工程がアニオン性物質と、光触媒活性を有しているカチオン性物質とを交互に積層する工程を備えている。
【0025】
また、請求項20に係る発明の薄膜電気化学素子製造方法は、請求項18又は19のいずれかに記載の発明の構成に加えて、前記電解質層を形成する工程がアニオン性物質とカチオン性物質とを交互に積層する工程を備えている。
【0026】
また、請求項21に係る発明の薄膜電気化学素子製造方法は、請求項18乃至20のいずれかに記載の発明の構成に加えて、前記第二の電極を形成する工程が酸素を還元する機能を有しているアニオン性物質と、カチオン性物質とを交互に積層する工程備えている。
【発明の効果】
【0027】
請求項1に記載の薄膜電気化学素子では、イオン伝導性を有する電解質層を挟んで、電極を対抗配置し、一方の電極が光触媒活性を有する電極、他方が酸素を還元する機能を有している電極とすることで、光の作用を利用して有機物を酸化、分解するとともに、当該反応により生成する電子もしくはプロトンを利用して発電を行う、いわゆる、薄膜電気化学素子を構成することが可能となる。
【0028】
また、請求項2に係る発明の薄膜電気化学素子では、電解質層を積層構造とすることにより、膜厚が均一で薄い層を形成させることが可能となる。これにより、プロトンが電解質内を拡散する場合における拡散抵抗率を小さくすることが可能となり、出力の大きな電気化学素子を作成することが可能となる。また、相互に親和性の高いアニオン性物質とカチオン性物質とを積層した構造とすることにより、剥離しにくく安定な電解質層を形成させることが可能となる。また薄膜化により、作用光の透過が容易になり、かつ電解質層に使用される材料の使用量を抑制することができるので、安価に電気化学素子を作成することが可能となる。さらに、電気化学素子全体の構成を小型化することが可能となる。
【0029】
また、請求項3に係る発明の薄膜電気化学素子では、アニオン性物質としてアニオン性高分子を採用することにより、水分とか溶剤成分のある環境でも溶け出さない、より安定な薄膜を形成することが可能となる。
【0030】
また、請求項4に係る発明の薄膜電気化学素子では、カチオン性物質としてカチオン性高分子を採用することにより、水分とか溶剤成分のある環境でも溶け出さない、より安定な薄膜を形成することが可能となる。さらに、相互に親和性の高いアニオン性高分子とカチオン性高分子とを積層した構造とすることにより、剥離しにくく安定な電解質層を形成させることが可能となる。
【0031】
また、請求項5に係る発明の薄膜電気化学素子では、スルホ基(SOH)やホスホ基(PO(OH))を備えた高分子は負に帯電するアニオン性であるので、積層構造とした状態にてカチオン性物質との親和性が強く、カチオン性物質と良好に吸着する。これにより、請求項1乃至4のいずれかに記載の発明の効果に加えて、さらに均一膜厚で安定な薄膜電解層とすることが可能となる。
【0032】
また、請求項6に係る発明の薄膜電気化学素子では、アミン塩もしくはアンモニウム塩を有する高分子は正に帯電するカチオン性であるので、積層構造とした状態にてアニオン性物質との親和性が強く、アニオン性物質と良好に吸着する。これにより、請求項4又は5のいずれかに記載の発明の効果に加えて、さらに均一膜厚で安定な電解質層薄膜とすることが可能となる。
【0033】
また、請求項7に係る発明の薄膜電気化学素子では、第一の電極を積層構造とすることにより、膜厚が均一で薄い電極を形成させることが可能となる。また、相互に親和性の高いアニオン性物質とカチオン性物質とを積層した構造とすることにより、剥離しにくく安定な電極層を形成させることが可能となる。また薄膜化により、電極層に使用される高分子の使用量を抑制することが可能となるので、安価に電気化学素子を作成することが可能となる。さらに、電気化学素子全体の構成を薄膜化することが可能となる。
【0034】
また、請求項8に係る発明の薄膜電気化学素子では、第一の電極を構成する前記カチオン性物質を、酸化チタンもしくは酸化チタンを含む基材とすることでさらに好ましい光触媒活性を有する電極が構成され、光の作用を利用して有機物を酸化、分解するとともに、反応により生成する電子もしくはプロトンを利用して発電を行ういわゆる薄膜電気化学素子が構成することが可能となる。
【0035】
また、請求項9に係る発明の薄膜電気化学素子では、第一の電極を構成するアニオン性物質をオキシチオフェン系の高分子とすることで、請求項7又は8のいずれかに記載の発明の効果に加えて、さらに安定な前記第一の電極を有する薄膜電気化学素子を構成することができる。
【0036】
また、請求項10に係る発明の薄膜電気化学素子は、第二の電極を積層構造とすることにより、膜厚が均一で薄い第二の電極を形成させることが可能となる。また、相互に親和性の高いアニオン性物質とカチオン性物質とを積層した構造とすることにより、剥離しにくく安定な電極層を形成させることが可能となるとともに、第二の電極の薄膜化により、作用光の透過が可能となるとともに、電極層に使用される電極物質の使用量を抑制することができるので、安価に電気化学素子を作成することが可能となる。さらに、電気化学素子全体の構成を薄膜化することが可能となる。
【0037】
また、請求項11に係る発明の薄膜電気化学素子では、第二の電極を構成する前記アニオン性物質を、白金微粒子もしくは白金微粒子を含む基材とすることでさらに好ましい酸素を還元する機能を有している電極が構成され、光の作用を利用して有機物を酸化、分解するとともに、反応により生成する電子もしくはプロトンを利用して発電を行ういわゆる薄膜電気化学素子を構成することが可能となる。
【0038】
また、請求項12に係る発明の薄膜電気化学素子では、アミン塩もしくはアンモニウム塩高分子は正に帯電するカチオン性であるので、積層構造とした状態にてアニオン性物質との親和性が強く、アニオン性物質と良好に吸着する。これにより、請求項10又は11のいずれかに記載の発明の効果に加えて、さらに均一膜厚で安定な第二の電極を構成することが可能となる。
【0039】
また、請求項13に係る発明の薄膜電気化学素子では、第一の電極に電子伝導層(第一伝導層)を隣接させて配置することにより、第一の電極と電子伝導層(第一伝導層)との間の電子の授受を促進させる。これにより、請求項1乃至12に記載の発明の効果に加えて、薄膜電気化学素子の発電効率をさらに高めることが可能となる。
【0040】
また、請求項14に係る発明の薄膜電気化学素子では、電子伝導層である第一伝導層をオキシチオフェン系の高分子もしくは金属の薄膜で構成することにより、請求項13に記載の発明の効果の中でも、とくに好ましい薄膜電気化学素子を構成することが可能となる。
【0041】
また、請求項15に係る発明の薄膜電気化学素子では、第二の電極に電子伝導層(第二伝導層)を隣接させて配置することにより、第二の電極と電子伝導層(第二伝導層)との間の電子の授受を促進させる。これにより、請求項1又は14に記載の発明の効果に加えて、さらに薄膜電気化学素子の発電効率を高めることが可能となる。
【0042】
また、請求項16に係る発明の薄膜電気化学素子では、電子伝導層である第二伝導層をオキシチオフェン系の高分子で構成することにより、請求項15に記載の発明の効果の中でも、とくに好ましい薄膜電気化学素子を構成することが可能となる。
【0043】
また、請求項17に係る発明の薄膜電気化学素子では、前記第一伝導層は、多孔質性基材基板の表面に積層されており、前記第一伝導層における前記第一の電極と接する面の反対側の面にて、当該第一伝導層と前記基材基板とが接している。この工夫により、請求項13乃至16のいずれかに記載の発明の構成に加えて、第一の電極及び電解質層を基材基板上に積層した状態で、基材基板を透して第一の電極に有機物を供給して酸化、分解反応を生じさせることが可能となり、かつその際生成する電子ならびにプロトンの働きのより電極(第一の電極、第二の電極)間に電圧を発生させることが可能となる。
【0044】
また、請求項18に係る発明の薄膜電気化学素子製造方法では、多孔質性基材基板上に電子伝導層である第一伝導層と、光触媒活性を有している第一の電極と、電解質層と、酸素を還元する機能を有している第二の電極と、第二伝導層とを形成させることにより、光の作用を利用して、当該多孔質性基材基板を透過して供給された有機物の酸化、分解反応を生じさせることが可能となり、かつその際生成する電子ならびにプロトンの働きにより電極(第一の電極、第二の電極)間に電圧を発生させることが可能となる。すなわち、電気化学素子の作成が可能となる。
【0045】
また、請求項19に係る発明の薄膜電気化学素子では、請求項18に記載の発明の構成に加えて、アニオン性物質と、光触媒機能を有するカチオン性物質とを積層させて第一の電極を形成させる。このように、第一の電極を積層構造とすることにより、膜厚が均一で薄い電極層を形成させることが可能となる。これにより、有機物の酸化、分解機能を有し、かつ電極自体の薄膜化が計られることとなり、出力の大きな薄膜電気化学素子を作成することが可能となる。また、第一の電極を相互に親和性の高いアニオン性物質とカチオン性物質とを積層した構造とすることにより、剥離しにくく安定な電極を形成させることが可能となる。また薄膜化により、第一の電極に使用される材料の使用量を抑制することが可能となるので、安価に電気化学素子を作成することが可能となる。さらに、電気化学素子全体の構成を小型化することが可能となる。
【0046】
また、請求項20に係る発明の薄膜電気化学素子では、アニオン性物質とカチオン性物質とを積層させて電解質層を形成させる。このように、電解質層を積層構造とすることにより、膜厚が均一で薄い層を形成させることが可能となる。これにより、プロトンが電解質内を拡散する場合における拡散抵抗率を小さくすることが可能となり、出力の大きな電気化学素子を作成することが可能となる。また、相互に親和性の高いアニオン性物質とカチオン性物質とを積層した構造とすることにより、剥離しにくく安定な電解質層を形成させることが可能となる。また薄膜化により、電解質層に使用される材料の使用量を抑制することが可能となるので、安価に燃料電池を作成することが可能となる。さらに、電気化学素子全体の構成を小型化することが可能となる。
【0047】
また、請求項21に係る発明の薄膜電気化学素子では、酸素を還元する機能を有しているアニオン性物質と、カチオン性物質とを積層させて第二の電極を形成させる。このように、第二の電極を積層構造とすることにより、膜厚が均一で薄い電極を形成させることが可能となる。また薄膜化により、作用光の透過が可能となるとともに、第二の電極に使用される材料の使用量を抑制することができるので、安価に電気化学素子を作成することが可能となる。さらに電気化学素子全体の構成を小型化することが可能となる。
【発明を実施するための最良の形態】
【0048】
以下、本発明を具体化した薄膜電気化学素子100、及び、薄膜電気化学素子製造方法の実施の形態について、図面を参照して説明する。なお、これらの図面は、本発明が採用しうる技術的特徴を説明するために用いられるものであり、記載されている内容は、特に特定的な記載がない限り、それのみに限定する趣旨ではなく、単なる説明例である。
【0049】
はじめに、図1を参照し、薄膜電気化学素子100の構成について説明する。図1は、薄膜電気化学素子100の構成を示す模式図である。
【0050】
図1に示すように、薄膜電気化学素子100は、バイコールガラス1と、バイコールガラス1の表面に形成された電子伝導層である第一伝導層2と、プライマー層3と、第一の電極4と、電解質層5と、第二の電極6と、電子伝導層である第二伝導層7から構成されている。そしてこれらは、バイコールガラス1の表面に形成された第一伝導層2における、バイコールガラス1と接する面の反対側面にプライマー層3が積層され、プライマー層3における第一伝導層2と接する面の反対側面に第一の電極4が積層され、第一の電極4におけるプライマー層3と接する面の反対側面に電解質層5が積層され、電解質層5における第一の電極4と接する面の反対側面に第二の電極6が積層され、第二の電極6における電解質層5と接する面の反対側面に第二伝導層7が積層された状態となっている。
【0051】
また、第一伝導層2と第二伝導層7には、電極リード線21及び22がそれぞれ接続されている。そして、電極リード線21における第一伝導層2と接続する側の反対側端、及び電極リード線22における第二伝導層7と接続する側の反対側端には、負荷23が接続される。そして、薄膜電気化学素子100にて電気化学反応を生じさせることにより、電極リード線21及び22を介し、第一伝導層2から第二伝導層7に向けて電子を流すことが可能となる。これにより、負荷23に電流を通流させることが可能となっている。
【0052】
バイコールガラス1は、各層(第一伝導層2、プライマー層3、第一の電極4、電解質層5、第二の電極6、第二伝導層7)を支持するとともに、薄膜電気化学素子100本体に強度を持たせるための基材基板として使用される。また、バイコールガラス1は、多孔質性を備えており、気体や液体を透過させることが可能となっている。外部から有機物を、矢印32方向からバイコールガラス1を透過させて供給するとともに、矢印31方向から太陽光もしくは紫外光を照射し、第一の電極4、電解質層5、及び第二の電極6において当該有機物の酸化、分解とそれに伴う電気化学反応を生じさせることが可能となっている(詳細は後述する)。
【0053】
なお、本実施の形態では、上述の各層(第一伝導層2、プライマー層3、第一の電極4、電解質層5、第二の電極6)を構成する材料としてカチオン性物質及びアニオン性物質を使用する(詳細は後述する)。ここでカチオン性物質とは、正電荷を有する物質を示し、アニオン性物質とは、負電荷を有する物質を示している。そして、アニオン性物質とカチオン性物質とを交互に積層させることにより、バイコールガラス1上に安定的に上述の各層を形成させることを可能としている。また、バイコールガラス1をプラス又はマイナスに帯電させた状態で各層を積層させることにより、各層をバイコールガラス1に対して強固に密着させることが可能としている。
【0054】
バイコールガラス1としては、多孔質性を有し、気体や液体を透過させることが可能な材料であれば特に限定されず、従来周知の材料が使用可能である。例えば、炭素微粒子(カーボンブラック)に疎水性バインダー粒子(フッ素樹脂粉末)を混合し、これをホットプレスして多孔質状に作製された基材基板が使用される。なおこのように作製された材料基板はマイナイスに帯電しやすい特性を有する。
【0055】
また、バイコールガラス1として、多孔質ステンレスや多孔質ステンレス管を使用することが可能である。なおこれらの材料を使用することにより、第一伝導層2を省略することが可能となる。
【0056】
バイコールガラス1の表面には、第一伝導層2が形成される。第一伝導層2は、電気化学反応により第一の電極4より発生する電流を集電し、外部に取り出し易くするために設けられる電子伝導層である。第一伝導層2は、外部に電子を取り出す場合における電子の通流障壁を下げる働きを有するため、電子を取り出すための電極が接続された場合に、効率よく電子を電極に受け渡すことができる。また、第二伝導層7は、第二の電極6において電気化学反応を生じさせるために外部から電子が供給される場合において、電子を供給し易くするために設けられる電子伝導層である。第二伝導層7は、外部から電子が供給される場合における電子の通流障壁を下げる働きを有するため、電子を供給する為の電極が接続された場合に、効率よく電子を第二の電極6に受け渡すことができる。
【0057】
第一伝導層2を構成する材料については、電子伝導性を有している材料であれば特に限定されず、従来周知の材料が使用可能である。例えば、金やBaytron(登録商標)が使用可能である。また、第一伝導層2の積層方法としては、使用する電子伝導性材料を薄膜化して積層することが可能であれば特に限定されず、従来周知の方法が使用可能である。例えば、スパッタリング、イオンプレーティングなどの真空蒸着法やディップコート法、スピンコート法が使用可能である。
【0058】
なお図1においては、電極リード線21及び22は第一伝導層2及び第二伝導層7に接続された構成となっているが、本発明はこの構成に限定されない。上述の多孔質ステンレスや多孔質ステンレス管ように、バイコールガラス1の材質が電子伝導性を有している場合には、バイコールガラス1に電極リード線21を接続した構成であっても、効率よく電子を通流させ、負荷に電流を流すことが可能となる。
【0059】
プライマー層3は、第一伝導層2と第一の電極4の密着性が良くない場合に設けられ、両層のつなぎ役を果たすとともに、隣接して積層される第一の電極4を均一層厚にて平滑に交互積層させることを可能とするための下地として設けられている。プライマー層3は電子伝導性を有しており、前述のように、アニオン性物質とカチオン性物質とを交互に積層させた構成となっている。
【0060】
プライマー層3を構成する材料については、第一伝導層2と第一の電極4との両層との密着性がよく、電子伝導性があり、表面に積層されることにより平滑な表面を形成させることが可能な材料が使用可能である。例えば、カチオン性物質であるポリジアリルジメチルアンモニウムクロリド(PDDA)や、アニオン性物質であるポリスチレンスルホン酸(PSS)が使用可能である。なお、隣接する層(第一伝導層2、第一の電極4)の有する帯電極性と反対極性を有する物質をプライマー層3として使用することにより、双方の間には引き合う方向に静電気的な力が作用する。このため、隣接層と強固に密着したプライマー層3を形成させることが可能となる。また、上述の物質を複数使用し、アニオン性物質とカチオン性物質とを交互に積層させてもよい。カチオン性物質とアニオン性物質とを交互に積層することにより、双方の層の間には引き合う方向に静電気的な力が作用するため、層間が強固に密着し、且つ欠損部のないプライマー層3を形成させることが可能となる。また、プライマー層3の積層方法としては、プライマー層3として使用する材料を薄膜化して積層することが可能であれば特に限定されず、従来周知の方法が使用可能である。例えば、ディップコート法やスピンコート法が使用可能である。
【0061】
第一伝導層2は、隣接する第一の電極4で発生する電子が流れる場合における通流障壁を下げる役割を担う層である。第一の電極4において発生する電子を、プライマー3を介して集電し、接続する電極リード線21経由で外部に取り出し易くするために設けられる。図1に示す構成では、第一の電極4にて発生し、第一伝導層2にて集電された電子は、第一伝導層2に取り付けられた電極リード線21を介して外部に流れ、負荷23に供給される。
【0062】
第一伝導層2を構成する材料については、電子伝導性を有している材料であれば特に限定されず、従来周知の材料が使用可能である。金属、例えば金をスパッタリングで蒸着したものとか、カチオン性物質であるPDDAや、アニオン性物質であるBaytron(登録商標)が使用可能である。なお、隣接する層(バイコールガラス1、プライマー層3など)の有する帯電極性と反対極性を有する物質を使用することにより、双方の間には引き合う方向に静電気的な力が作用する。このため、隣接層と強固に密着した第一伝導層4を形成させることが可能となる。またこれらの物質を複数使用し、カチオン性物質とアニオン性物質とを交互に積層させてもよい。アニオン性物質とカチオン性物質とを交互に積層することにより、双方の層の間には引き合う方向に静電気的な力が作用するため、層間が強固に密着、且つ欠損部のない第一伝導層2を形成させることが可能となる。また、第一伝導層2の積層方法としては、第一伝導層2として使用する材料を薄膜化して積層することが可能であれば特に限定されず、従来周知の方法が使用される。例えば、ディップコート法やスピンコート法が使用可能である。
【0063】
第一の電極4は光触媒活性を有しており、上部から(矢印31の方向)照射される光の作用により発現する光触媒機能を利用して、バイコールガラス1を透過して供給される有機物もしくは水素を酸化、分解し、プロトンならびに電子とを生成するために設けられる。図1に示す構成では、生成した電子は、第一伝導層2にて集電され、電極リード線21を介して外部に取り出される。また、生成したプロトンは、電解質層5を透過して第二の電極6に伝達される。
【0064】
第一の電極4を構成する材料としては、光触媒活性を有している従来周知の材料が使用可能である。例えば、チタン化合物、好ましくは酸化チタンが使われるが、酸化チタンの形態としては無機チタン化合物でも有機チタン化合物でもよい。また、酸化チタンはカチオン性物質であるので、従来周知のアニオン性物質と組み合わせることで積層構造とするが可能である。カチオン性物質としてはオキシチオフェン系の高分子、例えば、Baytron(登録商標)が使用可能である。なお、隣接する層(プライマー3、電解質層5など)の有する帯電極性と反対極性を有する物質を使用することにより、双方の間には引き合う方向に静電気的な力が作用する。このため、隣接層と強固に密着した第一の電極4を形成させることが可能となる。また、酸化チタン(カチオン性物質)とアニオン性物質とを交互に積層させることにより、双方の層の間には引き合う方向に力が作用するため、層間が強固に密着し、且つ欠損部の第一の電極4を形成させることが可能となる。また、第一の電極4の積層方法としては、第一の電極4として使用する材料を薄膜化して積層することが可能であれば特に限定されず、従来周知の方法が使用される。例えば、ディップコート法やスピンコート法が使用可能である。
【0065】
電解質層5は、第一の電極4にて生成したプロトンを第二の電極に伝達させるとともに、有機物と酸化剤(例えば、酸素)とが混ざり合わないように隔離するために設けられる。なお、電解質層5の一部に欠損等が存在していると、第一の電極4と第二の電極6との間で短絡現象が発生し、電池として作用しなくなってしまう。ここで本実施の形態では、電解質層5はカチオン性物質とアニオン性物質とを積層させた積層構造を有している。これにより、電解質層5を薄膜化させた場合であっても、欠損部の発生を防止することが可能となり、薄膜電気化学素子100の短絡発生を防止することが可能となる。
【0066】
電解質層5を構成する材料については、カチオン性物質とアニオン性物質とが使用される。例えば、カチオン性物質としてはポリアリルアミンハイドロクロリド(PAH)が使用可能であり、アニオン性物質としてはNafion(登録商標)が使用可能である。カチオン性物質とアニオン性物質とを交互に積層することにより、双方の層の間には引き合う方向に静電気的な力が作用するため、強固に密着し、且つ、欠損部のない電解質層5を形成させることが可能となる。なお、カチオン性物質としては、第1級アミン塩、第2級アミン塩、第3級アミン塩、及び第4級アンモニウム塩のいずれかであることが好ましい。これらの基は、正に帯電するカチオン性を有しているので、積層構造とした場合にアニオン性物質との親和性が強いためである。また、アニオン性物質としては、スルホ基(SOH)やホスホ基(PO(OH))を有していることが好ましい。これらの基は、負に帯電するアニオン性を有しているので、積層構造とした場合にカチオン性物質との親和性が強いためである。これらの物質を使用することにより、より強固に密着し、欠損部のない電解質層5を形成させることが可能となる。
【0067】
また、カチオン性物質とアニオン性物質とを交互に積層する場合における積層方法は、電解質層5として使用する材料を薄膜化して積層することが可能であれば特に限定されず、従来周知の積層方法が使用可能である。例えば、ディップコート法やスピンコート法が使用可能である。
【0068】
第二の電極6は、第一の電極4にて生成し、電解質層5を透過することにより第二の電極6の近傍に到達したプロトンと、外部より供給される酸化剤(例えば、酸素)と、電極リード線22より供給される電子とから水を生成させるために設けられている。生成された水は外部に排出される。
【0069】
第二の電極6を構成する材料としては、電気化学素子の電極触媒として使用される従来周知の材料が使用可能である。例えば、白金や、カーボンブラックに白金粒子を担持させたカーボン担持白金が使用可能である。また、積層構造とする際のカチオン性物質及びアニオン性物質として従来周知の材料が使用可能である。例えば、カチオン性物質としてはPDDAが使用可能であり、アニオン性物質としては白金コロイドが使用可能である。なお、隣接する層(電解質層5、第二伝導層7など)の有する帯電極性と反対極性を有する物質を使用することにより、双方の間には引き合う方向に静電気的な力が作用する。このため、隣接層と強固に密着した第二の電極6を形成させることが可能となる。また、これらの物質を複数使用し、カチオン性物質とアニオン性物質とを交互に積層させることにより、双方の層の間には引き合う方向に力が作用するため、層間が強固に密着し、且つ欠損部のない第二の電極6を形成させることが可能となる。また、第二の電極6の積層方法としては、第二の電極6として使用する材料を薄膜化して積層することが可能であれば特に限定されず、従来周知の方法が使用される。例えば、ディップコート法やスピンコート法が使用可能である。
【0070】
第二伝導層7は、電極リード線22を介して流れ込む電子を、第二伝導層7に隣接する第二の電極6へ流す場合における電子の通流障壁を下げる役割を担う層であり、電子の第二の電極6への流入を促進するために設けられている。これにより、電極リード線21より負荷23を経由して電極リード線22に流れ込む電子は、第二伝導層7を経由して第二の電極6に供給される。
【0071】
第二伝導層7を構成する材料については、電子伝導性を有している材料であれば特に限定されず、従来周知の材料が使用可能である。例えば、カチオン性物質であるPDDAや、アニオン性物質であるオキシチオフェン系の高分子、例えばBaytron(登録商標)が使用可能である。なお、隣接する層(第二の電極6)の有する帯電極性と反対極性を有する物質を使用することにより、双方の間には引き合う方向に静電気的な力が作用する。このため、隣接層と強固に密着した第二伝導層7を形成させることが可能となる。またこれらの物質を複数使用し、カチオン性物質とアニオン性物質とを交互に積層させてもよい。アニオン性物質とカチオン性物質とを交互に積層することにより、双方の層の間には引き合う方向に静電気的な力が作用するため、層間が強固に密着し、且つ欠損部のない第二伝導層7を形成させることが可能となる。また、第二伝導層7の積層方法としては、第二伝導層7として使用する材料を薄膜化して積層することが可能であれば特に限定されず、従来周知の方法が使用される。例えば、ディップコート法やスピンコート法が使用可能である。
【0072】
次に、上述にて説明した薄膜電気化学素子100の駆動原理について、図1を参照して概説する。薄膜電気化学素子100にて電気化学反応を生じさせ、起電力を生じさせるために、はじめに、バイコールガラス1における上述の各層(第一伝導層2、プライマー層3、第一の電極4、電解質層5、第二の電極6、第二伝導層7)が積層される側と反対側面(矢印32の方向)より、有機物が供給される。また、矢印31の方向から太陽光もしくは紫外光と、酸化剤(例えば、酸素)が供給される。
【0073】
すると、バイコールガラス1に供給された有機物は、バイコールガラス1を透過し、さらに第一伝導層2、プライマー層3をも浸透し、第一の電極4に到達する。そして、第一の電極4にて有機物は、上方(矢印31の方向)から到達する光の作用と、光触媒活性を有している第一の電極4の光触媒機能により酸化、分解され、プロトンと電子とが生成する。
【0074】
生成した電子は、第一伝導層2を経由し、第一伝導層2に接続された状態の電極リード線21を介して外部に取り出される。取り出された電子は、接続された状態の負荷23に供給された後、電極リード線22へと流れ込む。また、生成したプロトンは、電解質層5を浸透し、第二の電極6に到達する。
【0075】
第二の電極6には、電極リード線22より流れ込んだ電子が、第二伝導層7を経由して供給される。また、酸化剤(例えば、酸素)が、第二伝導層7を透過して、第二の電極6に到達する。そして、第二の電極6において、プロトンと電子と酸化剤とが反応し、水が生成する。生成した水は、第二伝導層7を経由し、外部に排出される。
【0076】
以上のような光触媒機能と電気化学反応とを組み合わせたプロセスを薄膜電気化学素子100内にて生じさせることにより、薄膜電気化学素子100は、有機物を酸化、分解して電気を発生する「電気化学リアクター」として作用し、負荷23に電流を通流させることが可能となる。なお、図1に示す構成では、取り出せる電圧は理論上約1.2V程度であるので、本構成を多段とし、直列に接続することにより、大きな電圧を取り出すことが可能となる。
【0077】
ここで、プロトンが電解質層5を透過する場合における拡散抵抗成分が小さいほど、プロトンの透過により生ずる電圧降下のレベルが小さくなり、より大きな電圧を取り出すことができるため、発電効率が向上する。この拡散抵抗成分は、電解質層5の層厚を薄くすることにより小さくすることが可能となる。ところが、電解質層5の薄膜層を形成させた場合、部分的に欠損部分が発生する可能性が高くなるという問題点がある。ここで電解質層5に欠損部が生じている場合、第一の電極4にて発生した電子が電解質層5を経由して直接第二の電極6に到達してしまう現象が発生し、外部に取り出せる電流が減少して発電効率が減少してしまう。
【0078】
ところが本発明の薄膜電気化学素子100は、電解質層5をカチオン性物質とアニオン性物質とを積層させて形成させることにより、従来の電解質層形成方法と比較して層の欠損部の発生を抑制することが可能となる。これにより、第一の電極4と第二の電極6との間の短絡の発生を抑制しつつ、層を薄化することが可能となっている。これにより、プロトンが電解質層5を透過する場合における抵抗成分を小さくすることが可能となるので、電圧降下量を小さく抑え、発電効率を向上させることが可能となっている。
【0079】
また本発明の薄膜電気化学素子100では、作用光が第一の電極4へ到達する必要があるが、作用光である太陽光もしくは紫外光が第一の電極4へ到達することができるほどに各層(電解質層5、第二の電極6、第二伝導層7)を薄膜化する必要がある。本発明では、各層(電解質層5、第二の電極6、第二伝導層7)を積層構造とすることで各層(電解質層5、第二の電極6、第二伝導層7)の積算厚みを、光透過が可能である10乃至1000ナノメートルとすることによりこの条件をクリアした。
【0080】
本発明では、カチオン性物質とアニオン性物質とを交互に積層させることにより、層間に発生する引き合う方向の静電気力により強固に層間を密着させ、剥離しにくい電解質層5を形成させる。これにより、層厚を作用光が透過できるほどまで薄化した状態でも強度的に優れた電解質層5を形成させることが可能となっている。
【0081】
また本発明は、各層(第一伝導層2、プライマー層3、第一の電極4、電解質層5、第二の電極6、第二伝導層7)をカチオン性物質とアニオン性物質とを積層させて形成させることにより、電解質層5と同様、層の欠損部の発生を抑制しつつ全体の層厚を薄化することが可能となっている。このため、薄膜電気化学素子100全体の積層方向の厚さを抑制することが可能となり、小型化が可能となっている。さらに、カチオン性物質とアニオン性物質とを交互に積層させ、層間に引き合う方向の静電気力を生じさせることにより、強度に優れた各層(第一伝導層2、プライマー層3、第一の電極4、電解質層5、第二の電極6、第二伝導層7)を形成させることが可能となっている。
【0082】
次に、薄膜電気化学素子100の製造方法について、図2を参照して説明する。図2は、薄膜電気化学素子100の製造方法を示すフローチャートである。なお、以下の実施形態においては、マイナスに帯電する特性を有するバイコールガラス1を使用して薄膜電気化学素子100を製造する場合を想定して説明する。しかしながら、バイコールガラス1の帯電特性はこのような場合に限定されず、プラスに帯電する特性を有するバイコールガラス1を使用して薄膜電気化学素子100を作成してもかまわない。また、以下の説明においては、図1におけるバイコールガラス1に積層する各層(第一伝導層2、プライマー層3、第一の電極4、電解質層5、第二の電極6、第二伝導層7)が形成される側を上側と定義する。
【0083】
図2に示すように、薄膜電気化学素子100を製造する工程では、はじめに、バイコールガラス1の上側に第一伝導層2を形成させる(S11)。以下、第一伝導層2をバイコールガラス1の表面に形成させる工程を、「第一伝導層形成工程」という。
【0084】
次いで、第一伝導層形成工程にてバイコールガラス1の上側に形成させた第一伝導層2の上側に、プライマー層3を積層させる(S13、S15)。プライマー層3を構成する材料として、カチオン性物質(以下、「プライマーカチオン」という。)とアニオン性物質(以下「プライマーアニオン」という。)との2種類を準備し、其々の物質を交互に積層することによって、プライマー層3を形成させる。以下、プライマー層3を第一伝導層2上に形成させる工程を、「プライマー層形成工程」という。
【0085】
プライマー層形成工程では、はじめに、バイコールガラス1の帯電極性(マイナス)と反対の極性を有するプライマーカチオンを、第一伝導層2の上側に積層させる(S13)。この場合、電子伝導性を有する第一伝導層2の帯電極性はバイコールガラス1と同じになるので、第一伝導層2とプライマーカチオンとの間には引き合う方向に静電気的な力が作用するため、双方は強固に密着する。次いで、積層されたプライマーカチオンの上側に、プライマーカチオンの極性(プラス)と反対の極性を有するプライマーアニオンを積層させる(S15)。この場合、プライマーカチオンとプライマーアニオンとの間には引き合う方向に静電気的な力が作用するため、双方は強固に密着する。
【0086】
次いで、S13及びS15にて積層させたプライマーカチオンとプライマーアニオンとが、所定の層数分積層されたか否かを判断する(S17)。ここで、所定の層数分積層されていない場合には(S17:NO)、S13に戻って、プライマーアニオンの上側にプライマーカチオンを積層させる(S13)。この場合、プライマーアニオンとプライマーカチオンとの間には引き合う方向に静電気的な力が作用するため、双方は強固に密着する。そして上述の処理を繰り返し、プライマーカチオンとプライマーアニオンとが交互に積層される(S13、S15)。一方、プライマーカチオンとプライマーアニオンとが所定の層数分積層された場合には(S17:YES)、プライマー層形成工程を終了し、次いで、第一の電極4の形成工程を実行する。
【0087】
プライマー層形成工程が終了すると、次いで、プライマー層形成工程にて形成させたプライマー層3の上側に、第一の電極4を積層させる(S19、S21)。第一の電極4を構成する材料として、カチオン性物質(以下、「第一の電極カチオン」という。)とアニオン性物質(以下、「第一の電極アニオン」という。)との2種類を準備し、其々の物質を交互に積層することによって、第一の電極4を形成させる。以下、第一の電極4をプライマー層3上に形成させる工程を、「第一の電極形成工程」という。
【0088】
第一の電極形成工程では、はじめに、プライマー層3の最上層の帯電極性(最上層にはプライマーアニオンが積層されており、帯電極性はマイナスである。S15参照)と反対の極性を有する第一伝導カチオンを、プライマー層3の上側に積層させる(S19)。この場合、第一伝導カチオンとプライマー層3との間には引き合う方向に静電気的な力が作用するため、双方は強固に密着する。次いで、積層された第一の電極カチオンと反対の極性を有する第一の電極アニオンが、第一の電極カチオンの上側に積層される(S21)。この場合、第一の電極カチオンと第一の電極アニオンとの間には引き合う方向に静電気的な力が作用するため、双方は強固に密着する。
【0089】
次いで、S19及びS21にて積層された第一の電極カチオンと第一の電極アニオンとが、所定の層数分積層されたか否かを判断する(S23)。ここで、所定の層数分積層されていない場合には(S23:NO)、S19に戻って、第一の電極アニオンの上側に第一の電極カチオンを積層させる(S19)。この場合、第一の電極アニオンと第一の電極カチオンとの間には引き合う方向に静電気的な力が作用するため、双方は強固に密着する。そして上述の処理を繰り返し、第一の電極カチオンと第一の電極アニオンとが交互に積層される(S19、S21)。一方、第一の電極カチオンと第一の電極アニオンとが所定の層数分積層された場合には(S23:YES)、第一の電極形成工程を終了し、次いで、電解層5の形成工程を実行する。
【0090】
第一の電極形成工程が終了すると、次いで、第一の電極形成工程にて形成させた第一の電極4の上側に、電解質層5を積層させる(S25、S27)。電解質層5を構成する材料として、カチオン性物質(以下、「電解質カチオン」という。)とアニオン性物質(以下、「電解質アニオン」という。)との2種類を準備し、其々の物質を交互に積層することによって、電解質層5を形成させる。以下、電解質層5を第一の電極上に形成させる工程を、「電解質層形成工程」という。
【0091】
電解質層形成工程では、はじめに、第一の電極4の最上層の帯電極性(最上層にはアノードアニオンが積層されており、帯電極性はマイナスである。S21参照)と反対の極性を有する電解質カチオンを、第一の電極4の上側に積層させる(S25)。この場合、電解質カチオンと第一の電極4との間には引き合う方向に静電気的な力が作用するため、双方は強固に密着する。次いで、積層された電解質カチオンと反対の極性を有する電解質アニオンが、電解質カチオンの上側に積層される(S27)。この場合、電解質カチオンと電解質アニオンとの間には引き合う方向に静電気的な力が作用するため、双方は強固に密着する。
【0092】
次いで、S25及びS27にて積層された電解質カチオンと電解質アニオンとが、所定の層数分積層されたか否かを判断する(S29)。ここで、所定の層数分積層されていない場合には(S29:NO)、S25に戻って、電解質アニオンの上側に電解質カチオンを積層させる(S25)。この場合、電解質アニオンと電解質カチオンとの間には引きあう方向に静電気的な力が作用するため、双方は強固に密着する。そして上述の処理を繰り返し、電解質カチオンと電解質アニオンとが交互に積層される(S25、S27)。一方、電解質カチオンと電解質アニオンとが所定の層数分積層された場合には(S29:YES)、電解質層形成工程を終了し、次いで、第二の電極6の形成工程を実行する。
【0093】
電解質層形成工程が終了すると、次いで、電解質層形成工程にて形成させた電解質層5の上側に、第二の電極6を積層させる(S31、S33)。第二の電極6を構成する材料として、カチオン性物質(以下、「第二の電極カチオン」という。)とアニオン性物質(以下、「第二の電極アニオン」という。)との2種類を準備し、其々の物質を交互に積層することによって、第二の電極6を形成させる。以下、第二の電極6を電解質層5上に形成させる工程を、「第二の電極形成工程」という。
【0094】
第二の電極形成工程では、はじめに、電解質層5の最上層の帯電極性(最上層には電解質アニオンが積層されており、帯電極性はマイナスである。S27参照)と反対の極性を有する第二の電極カチオンを、電解質層5の上側に積層させる(S31)。この場合、第二の電極カチオンと電解質層5との間には引き合う方向に静電気的な力が作用するため、双方は強固に密着する。次いで、積層された第二の電極カチオンと反対の極性を有する第二の電極アニオンが、第二の電極カチオンの上側に積層される(S33)。この場合、第二の電極カチオンと第二の電極アニオンとの間には引き合う方向に静電気的な力が作用するため、双方は強固に密着する。
【0095】
次いで、S31及びS33にて積層された第二の電極カチオンと第二の電極アニオンとが、所定の層数分積層されたか否かを判断する(S35)。ここで、所定の層数分積層されていない場合には(S35:NO)、S31に戻って、第二の電極アニオンの上側に第二の電極カチオンを積層させる(S37)。この場合、第二の電極アニオンと第二の電極カチオンとの間には引き合う方向に静電気的な力が作用するため、双方は強固に密着する。そして上述の処理を繰り返し、第二の電極カチオンと第二の電極アニオンとが交互に積層される(S31、S33)。一方、第二の電極カチオンと第二の電極アニオンとが所定の層数分積層された場合には(S35:YES)、第二の電極形成工程を終了し、次いで、第二伝導層7の形成工程を実行する。
【0096】
第二の電極形成工程が終了すると、次いで、第二の電極形成工程にて形成させた第二の電極6の上側に、第二伝導層7を積層させる(S37、S39)。第二伝導層7を構成する材料として、カチオン性物質(以下、「第二伝導カチオン」という。)とアニオン性物質(以下、「第二伝導アニオン」という。)との2種類を準備し、其々の物質を交互に積層することによって、第二伝導層7を形成させる。以下、第二伝導層7を第二の電極6上に形成させる工程を、「第二伝導層形成工程」という。ただし、第二伝導層が単一層からなる場合は、以下の積層工程は省略することができる。
【0097】
第二伝導層形成工程では、はじめに、第二の電極6の最上層の帯電極性(最上層にはカソードアニオンが積層されており、帯電極性はマイナスである。S31参照)と反対の極性を有する第二伝導カチオンを、第二の電極6の上側に積層させる(S37)。この場合、第二伝導カチオンと第二の電極6との間には引き合う方向に静電気的な力が作用するため、双方は強固に密着する。
【0098】
次いで、積層された第二伝導カチオンと反対の極性を有する第二伝導アニオンが、第二伝導カチオンの上側に積層される(S39)。この場合、第二伝導カチオンと第二伝導アニオンとの間には引き合う方向に静電気的な力が作用するため、双方は強固に密着する。
【0099】
次いで、S37及びS39にて積層された第二伝導カチオンと第二伝導アニオンとが、所定の層数分積層されたか否かを判断する(S41)。ここで、所定の層数分積層されていない場合には(S41:NO)、S37に戻って、第二伝導アニオンの上側に第二伝導カチオンを積層させる(S37)。この場合、第二伝導アニオンと第二伝導カチオンとの間には引き合う方向に静電気的な力が作用するため、双方は強固に密着する。そして上述の処理を繰り返し、第二伝導カチオンと第二伝導アニオンとが交互に積層される(S37、S39)。一方、第二伝導カチオンと第二伝導アニオンとが所定の層数分積層された場合には(S41:YES)、第二伝導層形成工程を終了する。以上の工程を遂行することにより薄膜電気化学素子製造工程が終了する。
【0100】
本発明の薄膜電気化学素子の製造方法は前述の工程に限らず、第二伝導層の保護が必要な場合は、第二伝導層形成工程が終了すると(S41:YES)、形成された第二伝導層7の上側に、バイコールガラスが貼付される。

【0101】
以上説明した工程を経ることにより、欠損部のない薄層から構成される薄膜電気化学素子100が製造される。本製造方法では、電解質層5をカチオン性物質とアニオン性物質とを積層させて形成させることにより、薄層化した場合であっても欠損部のない電解質層5を形成させることが可能となる。これにより、第一の電極4と第二の電極6との短絡発生を防止しつつ、電解質層5の薄膜化により電圧降下を抑制することが可能となるので、発電効率の高い電気化学素子を製造することが可能となる。また、カチオン性物質とアニオン性物質との間に作用する静電気力により、層間が強固に密着するので、層の剥離の発生を防止することが可能となり、安定で耐久性のある電気化学素子を製造することが可能となる。また、薄層化により電解質層5を構成する材料の使用量を抑制することが可能となるので、電気化学素子の低コスト化が可能となる。さらに、薄層化により、薄膜電気化学素子100の積層方向の厚さを小さくすることが可能となるので、光の透過が可能になり、光触媒機能の発現とそれに続く電気化学反応を生じせしめ、有機物を酸化、分解して電気を発生する電気化学リアクター、すなわち、薄型電気化学素子を実現することが可能となる。
【0102】
また、プライマー層3、第一の電極4、電解質層5、第二の電極6、第二伝導層7について、カチオン性物質とアニオン性物質とを積層させて形成させることにより、薄層化した場合であっても欠損部の発生を防止することが可能となる。これにより、層間の短絡の発生を防止しつつ、電気化学素子を小型化することが可能となる。また、カチオン性物質とアニオン性物質との間に作用する静電気力により、層間が強固に密着するので、層の剥離の発生を防止することが可能となり、安定で耐久性のある電気化学素子を製造することが可能となる。さらに、構成材料の使用量を抑制することが可能となるので、電気化学素子の低コスト化が可能となる。
【0103】
なお、本発明は上記実施の形態に限定されるものではなく、種々の変更が可能である。
【0104】
上述の薄膜電気化学素子100では、第一伝導層2及び第二伝導層7を含む構成を有していたが、本発明はこの構成に限定されず、第一伝導層2及び第二伝導層7を含まない構成であっても上述の説明と同様の原理にて駆動し、起電力を発生させることが可能である。なおこのような構成の場合には、第一の電極4や第二の電極に電極リード線21及び22を接続することにより、発生した起電力を外部に取り出すことが可能となる。
【0105】
上述の薄膜電気化学素子100では、プライマー層3を含む構成を有していたが、本発明はこの構成に限定されず、プライマー層3を含まない構成であっても上述の説明と同様の原理にて駆動し、起電力を発生させることが可能である。
【0106】
上述の薄膜電気化学素子100において、プライマー層3を構成する材料として電子伝導性を有する材料を使用することにより、プライマー層3に電極リード線21及び22接続することにより、発生した起電力を外部に取り出すことが可能となる。
【0107】
上述の薄膜電気化学素子100では、バイコールガラス1を含む構成を有していたが、本発明はこの構成に限定されず、バイコールガラス1を含まない構成であっても上述の説明と同様の原理にて駆動し、起電力を発生させることが可能である。
【0108】
本発明の薄膜電気化学素子製造方法では、第一伝導層形成工程、プライマー層形成工程、及び第二伝導層形成工程を省略した製造方法とし、第一伝導層2、プライマー層3、及び第二伝導層7を形成させない方法であってもよい。
【0109】
上述の薄膜電気化学素子製造方法では、プライマー層形成工程、第一の電極形成工程、電解質層形成工程、第二の電極形成工程、及び第二伝導層形成工程において、カチオン性物質をはじめに積層し、次いで、アニオン性物質を積層していた。しかしながら本発明はこの方法限定されない。従って、積層する場合における下地層の帯電極性がプラスである場合には、マイナスの極性を有するアニオン性物質をはじめに積層してもかまわない。
【0110】
上述の薄膜電気化学素子製造方法では、プライマー層形成工程、第一の電極形成工程、電解質層形成工程、第二の電極形成工程、及び第二伝導層形成工程において、アニオン性物質を積層させた後、所定の層数分積層されたか否かを判断していた。しかしながら本発明はこの判断方法に限定されない。従って、カチオン性物質が積層された後も同様に、所定の層数分積層されたか否かを判断してもよい。
【0111】
上述の薄膜電気化学素子製造方法では、プライマー層形成工程、第一の電極形成工程、電解質層形成工程、第二の電極形成工程、及び第二伝導層形成工程において、カチオン性物質とアニオン性物質とを交互に積層させることによって、各層を形成させていた。しかしながら本発明はこの積層方法に限定されない。従って、唯一の物質を積層させることにより、各層を形成させてもかまわない。
【実施例】
【0112】
次に、本発明の実施例について説明する。以下「1.薄膜電気化学素子100の構成」「2.使用した材料について」「3.薄膜電気化学素子100作成手順概略」「4.評価方法及び評価条件」「5.評価結果」の順に説明する。
1.薄膜電気化学素子100の構成
【0113】
はじめに、作成した薄膜電気化学素子100の構成について、図3を参照して説明する。図3は、作成した薄膜電気化学素子100の断面構成を示す模式図である。なお、図3における紙面上側を薄膜電気化学素子100の上側と定義する。
【0114】
図3に示すように、本実施例では、バイコールガラス1上に、第一伝導層2、プライマー層3、第一の電極4、電解質層5、第二の電極6、第二伝導層7を順に積層させた。また、第一伝導層2及び第二伝導層7にそれぞれ電極リード線21及び22を接続した。
【0115】
そして、バイコールガラス1の下側(矢印32の方向)から有機物を供給し、光触媒作用ならびに電気化学反応を、第一の電極4、電解質層5及び第二の電極6にて生じさせることにより、接続した電極リード線21及び電極リード線22より電流を取り出した。また、電気化学反応時において供給されるべき酸化剤(例えば、酸素)は、作成した薄膜電気化学素子100内への強制的な供給は行わず、第二伝導層7の上側に空気を接触させることにより自然供給させた。また作用光として紫外光(中心波長:365nm、強度:0.1〜100mW/cm)を上部(矢印31の方向)から照射した。
2.使用した材料について
【0116】
バイコールガラス1として、USA Corning社製「製品名」を使用し、2cm×3cmの大きさにカットして使用し、バイコールガラスに第一伝導層2として金をスパッタリングで蒸着した。さらに、プライマー層3、第一の電極4、電解質層5、および第二の電極6は、それぞれ、プライマーカチオンとプライマーアニオン、第一の電極カチオンと第一の電極アニオン、電解質カチオンと電解質アニオン、及び、第二の電極カチオンと第二の電極アニオンを交互に積層させることにより形成させた。それぞれの層の積層数は、プライマーカチオン及びプライマーアニオンとを4層ずつ、第一の電極カチオンと第一の電極アニオンとを4層ずつ、電解質カチオンと電解質アニオンとを10層ずつ、第二の電極カチオンと第二の電極アニオンとを4層ずつ、とした。また、第二伝導層7は第二伝導アニオン(Baytron(登録商標))の単層とした。
【0117】
プライマー層3を構成するプライマーカチオンとしてPDDAを使用し、プライマーアニオンとしてPSSを使用した。また、第一の電極4を構成する第一の電極カチオンとして酸化チタンコロイドを使用し、第一の電極アニオンとしてBaytron(登録商標)を使用した。また、電解質層5を構成する電解質カチオンとしてPAHを使用し、電解質アニオンとしてNafion(登録商標)を使用した。また、第二の電極6を構成する第二の電極カチオンとしてPDDAを使用し、第二の電極アニオンとして白金コロイドを使用した。また、第二伝導層7を構成する第二伝導アニオンとしてBaytron(登録商標)を使用した。上述の内容をまとめて表1に示す。

【表1】

【0118】
PDDAはAldrich社製「製品名」を使用した。そして、0.5mol/lの塩化ナトリウム水溶液を加え、PDDAの含有量が1mg/mlとなるように濃度を調整して使用した。また、PSSはAldrich社製「製品名」を使用した。そして、PDDAと同様、0.5mol/lの塩化ナトリウム水溶液を加え、PSSの含有量が1mg/mlとなるように濃度を調整して使用した。
【0119】
また、白金コロイドは、1重量部のヘキサクロロ白金(IV)酸(6水和物)水溶液(「試薬A」という。)、メタノール(「試薬B」という。)、0.04mol/lのクエン酸3ナトリウム水溶液(「試薬C」という。)を準備し、試薬A(100μl)、試薬B(9000μl)、及び試薬C(200μl)を混合した後、紫外光(中心波長:365nm、強度:10mW/cm)を10分間照射し、光還元法を生じさせることにより生成される、白金ナノ粒子が分散したコロイド溶液を使用した。
【0120】
また、PAHはAldrich社製「製品名」を使用した。そして、0.5mol/lの塩化ナトリウム水溶液を加え、PAHの含有量が1mg/mlとなるように濃度を調整して使用した。また、Nafion(登録商標)はAldrich社製「製品名」を使用した。そして、90体積%のメタノール水溶液を加え、Nafion(登録商標)の含有量が1mg/mlとなるように濃度を調整して使用した。
【0121】
また、Baytron(登録商標)はティーエーケミカル株式会社製「製品名」を使用した。そして0.5mol/lの塩化ナトリウム水溶液を加え、Baytron(登録商標)の含有量が1mg/mlとなるように濃度を調整して使用した。
【0122】
3.薄膜電気化学素子100作成手順概略
【0123】
次に、薄膜電気化学素子100の作成手順の概略について、図4〜図7を参照して説明する。図4は、バイコールガラス1に第一伝導層形成する際の前処理工程を示す模式図であり、図5は、第一伝導層形成工程終了後、各層(プライマー層3〜第二伝導層7)を積層する際の前処理工程を示す模式図であり、図6はプライマー層3〜第二伝導層7を積層させる積層工程を示す模式図であり、図7は電極リード線21及び22を接続する工程を示す模式図である。
【0124】
はじめに、図4を参照して、バイコールガラス1に対する前処理工程について説明する。図4に示すように、はじめに、電極リード線22を接続する場合に電極リード線21と短絡してしまうことを防止するために、バイコールガラス1の一部分にマスキングテープ41(日東電工社製熱剥離シート「リバアルファ」)を貼付し、貼付部分に第一伝導層2が積層されないようにした。
【0125】
図4に示すように、第一伝導層形成工程では、一部分にマスキングテープ41が貼付された状態のバイコールガラス1に第一伝導層2を形成させた。積層方法としてスパッタリング法を採用し、金からなる第一伝導層2をバイコールガラス1の表面に形成させた。
【0126】
次いで図5に示すように、前処理工程にて貼付したマスキングテープ41を剥離した。次いで、形成させた第一伝導層2に電極リード線21を接続するため、第一伝導層2の一部分にマスキングテープ42(日東電工社製熱剥離シート「リバアルファ」)を貼付し、貼付部分に他の層が積層されないようにした。
【0127】
次に、図6を参照し、プライマー層3〜第二伝導層7を積層させる積層工程について説明する。図6に示すように、積層工程では、上述したプライマー層3、第一の電極4、電解質層5、第二の電極6、及び第二伝導層7を、第一伝導層2の上側に順次積層させた。
【0128】
プライマー層3、第一の電極4、電解質層5、第二の電極6、及び第二伝導層7の積層方法としては、スピンコート法を採用した。スピンコーターに第一伝導層2が積層された状態のバイコールガラス1をセットし、回転数を2000〜3000rpmに設定してバイコールガラス1を回転させた状態で、上方から上述の調整試薬を順次滴下することにより、各層を形成させた。
【0129】
調整試薬の滴下は1滴ずつ行った。また滴下後、直ぐにイオン交換水を数滴滴下することにより余分な試薬を除去した。そしてイオン交換水滴下後、直ぐに次層を構成する試薬を1滴滴下した。この工程を、所望の層数分繰り返すことにより、プライマー3(プライマーカチオン(PDDA)とプライマーアニオン(PSS)とを交互に4層ずつ)、第一の電極4(第一の電極カチオン(酸化チタンコロイド)と第一の電極アニオン(Baytron(登録商標))とを交互に4層ずつ)、電解質層5(電解質カチオン(PAH)と電解質アニオン(Nafion(登録商標))とを交互に10層ずつ)、第二の電極6(第二の電極カチオン(PDDA)と第二の電極アニオン(白金コロイド)とを交互に4層ずつ)を順次積層させた。さらに、その上に第二伝導層7(Baytron(登録商標)の単層)を積層した。
【0130】
これにより、カチオン性物質及びアニオン性物質からなる層厚が100〜150nm程度の透明な層を形成させた。ちなみに、構成物質1分子は、PDDA、PSS、PAH:約1nm、Nafion(登録商標):約5〜10nm程度の層厚をそれぞれ有する。
【0131】
次に、図7を参照して、電極リード線21及び22の接続工程について説明する。この工程では、図7に示すように、第一伝導層2上に貼付された状態のマスキングテープ42を剥離し、第一伝導層2の剥離部分に銅製のワイヤーを銀ペーストにより固定し、電極リード線21とした。また、最上層の第二伝導層7における、前処理工程においてマスキングテープを貼付した部分に相当する部分(マスキングテープ41の貼付け部分)に、同様に銅製のワイヤーを銀ペーストにより固定し、電極リード線22とした。以上の工程を経て、薄膜電気化学素子100を作成した。作成した薄膜電気化学素子100の積層方向の厚さは100〜150nmのオーダーとなり、従来の電気化学素子の積層方向の厚さ(数百μm)と比較して非常に薄い電気化学素子を作成することが可能であることがわかった。
4.評価方法及び評価条件
【0132】
次に、作成した薄膜電気化学素子100の評価方法について説明する。作成した薄膜電気化学素子100について、開回路電圧測定を行い、作成した薄膜電気化学素子100における負荷をかけていない状態での電極リード線21と電極リード線22との間の電圧を測定した。
【0133】
開回路電圧を測定する測定器としては、Solartron社製ポテンショ・ガルバノスタット「1287」を使用した。そして、有機物としてメタノールを供給した条件で開回路電圧を測定し、さらに、負荷をかけた場合の起電力を測定して薄膜電気化学素子100の電池特性を評価した。有機物としてメタノールを供給する場合には、20体積%のメタノール水溶液を調整し、調整したメタノール水溶液を、シリンジを使用してバイコールガラス1の下側に供給した。いずれの測定の際にも、第一の電極4の光触媒機能を発現させるための作用光としては、紫外光(中心波長:365nm)を上部(図7の矢印31の方向)から照射した。
【0134】
また、作用光としては紫外光を用い、紫外光強度を種々変化させて薄膜電気化学素子100の出力を測定した。
5.評価結果
【0135】
はじめに、開回路電圧の測定結果について、図8及び図9を参照して説明する。図8は、メタノールを供給した場合における電極リード線21と電極リード線22との間に発生する開回路電圧の経時変化特性を現わしており、紫外光(中心波長:365nm、強度:3.4mW/cm)を照射すると電圧が発生し、照射を止めると起電力がなくなることを示している。図8中、UV ONは紫外光の照射を開始したことを示し、UV OFFは紫外光の照射を停止したことを示す。図8の横軸は経過時間を示すが、例えば、110秒時点で紫外光の照射を開始するとただちに起電力の発生があり、120秒の時点で紫外光の照射を停止すると起電力は元のレベルまで低下する。さらに、130秒時点で再度紫外光を照射すると起電力が発生し、10秒後に停止すると起電力は降下する。本発明の光触媒機能の発現と電気化学反応による起電力発生を示している。この結果から作成した薄膜電気化学素子100が電気化学リアクター(有機物の酸化、分解を行うとともに電力を発生する反応器)として使用可能であることが明らかとなった。
【0136】
図9は、紫外光の強度を20mW/cmとした場合(中心波長:365nm、強度:20mW/cm)の、図8と同様な起電力発生の様子を示す。横軸は経過時間を示すが、経過時間10秒時点で紫外光を照射開始するとともに起電力が発生し、20秒時点で紫外光の照射を停止すると、速やかに起電力が失われることを示している。
【0137】
図10は、開回路ではなく、外部負荷を0.08Vかけた場合の本発明による薄膜電気化学素子の発生電力の結果を示している。
【0138】
図11は、図10を得た際と同様に外部負荷をかけた条件で、紫外光の強度を変化させ場合の発生電力の変化を示している。

【図面の簡単な説明】
【0139】
【図1】薄膜電気化学素子100の断面構成を示す模式図である。
【図2】薄膜電気化学素子100の製造方法を示すフローチャートである。
【図3】作成した薄膜電気化学素子100の断面構成を示す模式図である。
【図4】バイコールガラス1に対する前処理工程を示す模式図である。
【図5】第一伝導層2に対する前処理工程を示す模式図である。
【図6】プライマー層3〜第二伝導層7を積層させる積層工程を示す模式図である。
【図7】電極リード線21及び22を接続する工程を示す模式図である。
【図8】薄膜電気化学素子100にメタノールを供給した場合における開回路電圧の経時変化特性(その1)である。
【図9】薄膜電気化学素子100にメタノールを供給した場合における開回路電圧の経時変化特性(その2)である。
【図10】外部負荷をかけた条件での電力発生を示す。
【図11】作用光(紫外光)の強度変化に伴う電力発生特性を示す。
【符号の説明】
【0140】
1 バイコールガラス
2 第一伝導層
3 プライマー層
4 第一の電極
5 電解質層
6 第二の電極
7 第二伝導層

【特許請求の範囲】
【請求項1】
光触媒活性を有している第一の電極と、酸素を還元する機能を有している第二の電極と、イオン伝導性を有する電解質層とを少なくとも備えており、前記第一の電極と前記第二の電極とが前記電解質層を介して対向配置された構成を有する薄膜電気化学素子。
【請求項2】
前記電解質層はアニオン性物質とカチオン性物質とが交互に積層した構造を有していることを特徴とする請求項1に記載の薄膜電気化学素子。
【請求項3】
前記電解質層を構成する前記アニオン性物質はアニオン性高分子であることを特徴とする請求項2に記載の薄膜電気化学素子。
【請求項4】
前記電解質層を構成する前記カチオン性物質はカチオン性高分子であることを特徴とする請求項2又は3のいずれかに記載の薄膜電気化学素子。
【請求項5】
前記アニオン性高分子は、スルホ基(−SOH)もしくはホスホ基(−PO(OH))のうち、少なくとも一方を備えた高分子電解質であることを特徴とする請求項3又は4のいずれかに記載の薄膜電気化学素子。
【請求項6】
前記カチオン性高分子は、第1級アミン塩、第2級アミン塩、第3級アミン塩、及び第4級アンモニウム塩のうちいずれかであることを特徴とする請求項4又は5のいずれかに記載の薄膜電気化学素子。
【請求項7】
前記第一の電極は、アニオン性物質と、光触媒活性を有しているカチオン性物質とが交互に積層した構造を有していることを特徴とする請求項1乃至6のいずれかに記載の薄膜電気化学素子。
【請求項8】
前記第一の電極を構成する前記光触媒活性を有しているカチオン性物質は、酸化チタンもしくは酸化チタンを含む基材であることを特徴とする請求項7に記載の薄膜電気化学素子。
【請求項9】
前記第一の電極を構成する前記アニオン性物質は、オキシチオフェン系の高分子であることを特徴とする請求項7又は8のいずれかに記載の薄膜電気化学素子。
【請求項10】
前記第二の電極は、酸素を還元する機能を有しているアニオン性物質と、カチオン性物質とが交互に積層した構造を有していることを特徴とする請求項1乃至9のいずれかに記載の薄膜電気化学素子。
【請求項11】
前記第二の電極を構成する酸素を還元する機能を有しているアニオン性物質は、白金微粒子もしくは白金微粒子を含む基材であることを特徴とする請求項10に記載の薄膜電気化学素子。
【請求項12】
前記第二の電極を構成するカチオン性物質は、請求項6に記載のカチオン性高分子であることを特徴とする請求項10又は11のいずれかに記載の薄膜電気化学素子。
【請求項13】
前記第一の電極における前記電解質層と接する面の反対側の面に、電子伝導層である第一伝導層が積層されていることを特徴とする請求項1乃至12のいずれかに記載の薄膜電気化学素子。
【請求項14】
前記第一伝導層は、オキシチオフェン系の高分子もしくは金属の薄膜で構成されていることを特徴とする請求項13に記載の薄膜電気化学素子。
【請求項15】
前記第二の電極における前記電解質層と接する面の反対側の面に、電子伝導層である第二伝導層が積層されていることを特徴とする請求項1乃至14のいずれかに記載の薄膜電気化学素子。
【請求項16】
前記第二伝導層は、オキシチオフェン系の高分子で構成されていることを特徴とする請求項15に記載の薄膜電気化学素子。
【請求項17】
前記第一伝導層は、多孔質性基材基板の表面に積層されており、前記第一伝導層における前記第一の電極と接する面の反対側の面にて、当該第一伝導層と前記基材基板とが接していることを特徴とする請求項13乃至16のいずれかに記載の薄膜電気化学素子。
【請求項18】
多孔質性基材基板上に電子伝導層である第一伝導層を形成させる工程と、当該電子伝導層である第一伝導層を形成させる工程にて形成された第一伝導層面に前記第一の電極を形成する工程と、当該第一の電極を形成する工程にて形成された第一の電極面上に電解質層を形成する工程と、当該電解質層を形成する工程にて形成された電解質層面上に前記第二の電極を形成する工程と、当該第二の電極を形成する工程にて形成された第二の電極面上に電子伝導層である第二伝導層を形成させる工程を備えている薄膜電気化学素子製造方法。
【請求項19】
前記第一の電極を形成する工程がアニオン性物質と、光触媒活性を有しているカチオン性物質とを交互に積層する工程を備えている請求項18に記載の薄膜電気化学素子製造方法。
【請求項20】
前記電解質層を形成する工程がアニオン性物質とカチオン性物質とを交互に積層する工程を備えている請求項18又は19のいずれかに記載の薄膜電気化学素子製造方法。
【請求項21】
前記第二の電極を形成する工程が酸素を還元する機能を有しているアニオン性物質と、カチオン性物質とを交互に積層する工程を備えている請求項18乃至20のいずれかに記載の薄膜電気化学素子製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate


【公開番号】特開2010−15769(P2010−15769A)
【公開日】平成22年1月21日(2010.1.21)
【国際特許分類】
【出願番号】特願2008−173491(P2008−173491)
【出願日】平成20年7月2日(2008.7.2)
【出願人】(304027349)国立大学法人豊橋技術科学大学 (391)
【Fターム(参考)】