説明

分析用チップ、分析用チップユニット及び分析装置ならびに分析用チップの作製方法

【課題】 流路中の気泡発生や分析用チップの変形を抑制し、また、使用する液体検体の量を少なくして、液体検体についての分析を効率的に且つ精度良く行なえるようにした、分析用チップを提供する。
【解決手段】 閉断面構造を有する流路に液体検体Fsを流通させて、所定物質と、流路に面して固定される特定物質との相互作用に基づいて液体検体Fsに関する分析を行なうのに使用される、分析用チップにおいて、流路に凸状部材9bを有する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、流路に液体検体を流通させることにより液体検体の分析を行なうためのチップ、チップユニット、及びそれを用いた分析装置、並びに当該チップの作製方法を固定する方法に関する。
【背景技術】
【0002】
従来、液体検体と、チップに固定化された物質との反応あるいは結合の検出を行ない、一定時間に複数の分析を迅速に行なう技術が種々提案され、また、ハイスループット分析システムとして実用化されている。
このような技術としては、近年、DNAチップやプロテインチップ等のような流通型の分析用チップ(マイクロチャンネルチップ)が注目されている。
【0003】
マイクロチャンネルチップの中には、チップ本体に微小な横断面の流路が形成され、この流路を形成する壁面に上記の所定の化学物質と結合や反応などの相互作用をする物質(特定物質)が固定されているものがある。この流路に液体検体を流通させて、流路壁面の特定物質上を通過させたり、特定物質上で一旦停止させたりして液体検体と特定物質とを接触させることにより、液体検体中に所定の化学物質(測定対象物)が含まれていれば、これを特定物質の相互作用として検出することができるようになっている。
【0004】
なお、DNAチップやプロテインチップにおいて特定物質をチップに高密度に固定化するための技術としては、例えば、ピン先に固定化対象物(特定物質)を保持させてスポッティングするスポッター〔Affymetrix417(登録商標)Arrayer等〕や、インクジェット又はディスペンサーによりチップに固定化対象物を吹付けるものが知られている〔Tango(登録商標)Liquid Handling System等〕。
【0005】
また、このようなマイクロチャンネルチップに、SPR(サーフェスプラズモン共鳴)に基づく分析手法〔例えばBiacore(登録商標)がある〕を組み合わせれば、測定対象物と特定物質とが結合−解離する過程をオンラインで検出することが可能である。
【0006】
さて、マイクロチャンネルチップを使用して分析される液体検体中は、使用量が限られているものも多い。例えば、DNAチップやプロテインチップでは、液体検体は種々の生物から採取される物質、又は、生化学的に合成される各種の物質(DNA,RNA,PNA,ペプチド,タンパク等)であり、採取できる量が限定されたり、採取するのに大きな労力を必要とされることが多いため、その使用量をできるだけ少量にとどめたいという要望が強い。
【0007】
上記のようなDNAチップやプロテインチップをはじめとした分析用チップは、通常、多数の特定物質を流路の底面に平面状に配置させ、その後、液体検体を流路に流して、これと接触させる構成になっている。このような分析用チップを用いて効率的に分析を行なうためには、一つの分析用チップに多くの特定物質を固定化することになるため、特定物質が固定された反応領域は局所的なものとはならず、比較的大きな面積を占めることになる。
【0008】
したがって通常は、多くの特定物質を固定するためには、流路の底面は広い面積を有するように形成される。また、この際特定物質と接触しない液体検体は、いずれ時間の経過と共に濃度分布などによって拡散し、結果として特定物質と接触しうるが、その場合接触までに長時間を要する虞がある。したがって、流路を流れる液体検体が流路の底面に固定された特定物質と効率的に接触するようにするため、つまり、流路の底面に固定された特定物質と接触しない液体検体の体積を少なくするために、一般に流路の高さ(若しくは、深さ)は小さくされる。したがって、流路の幅と高さの比である寸法比率(長辺寸法/短辺寸法)が非常に大きくなり、分析用チップの流路の形状は、幅方向に大きく高さ方向に小さいシート状の形状となる。このように流路をシート状にすることで、液体流体が少量であっても一度の流通により多数の特定物質と接触させて分析のスループットを向上させ、分析を効率的に行なうことができるようにしているのである。
【0009】
このような流通型の分析用チップについての技術は、近年数多く提案されている。例えば、非特許文献1には、基板と、複数のスリットが並列に設けられたシート部材とをそなえて構成されたチップが開示されている。この技術では、シート部材を基板にセットすると、上記の並列に配設されたスリットが基板上において並列流路として機能することとなる。
【0010】
そして、この並列流路にそれぞれ異なる流体を流通させて、流路底面、即ち、基板に、これらの流体を固定化し、次に、シート部材の向きを変え、基板にセットし直して、今度は先ほどの並列流路と交差するように基板上に並列流路を形成する。この流路にそれぞれ異なる流体を流通させ、先に基板に固定した流体と接触させる。つまり、1つのチップ上に多数の流体の組み合わせによりなる結合部をマトリックス状に形成して、分析の高密度化(集積化)を実現しようとしているのである。
【0011】
さらに、特許文献1には、並列に配置された流路にそれぞれ異なる液体検体を流通させ、1つのマイクロリアクタチップにより同時に複数種の液体検体について分析を行なうためのチップが開示されている。
【0012】
【特許文献1】WO00/04390号公報
【非特許文献1】Anal.Chem.73,22,pp.5525,2001
【発明の開示】
【発明が解決しようとする課題】
【0013】
さて、上述した従来のマイクロチャンネルチップでは、一般的に、流路に初期の気体(主に空気)が充ちた状態から液体検体を流通させることとなるため、流路内を固−気−液三相境界線が移動することとなる。その際、流路横断面が流路幅方向に長いことから、流路壁面の濡れ性の不均一性や、装置の振動や流路表面へのごみの付着等により、図36(a)に示すように、固−気−液三相境界線(液体検体Fsの先端)Sの形状が、流れ方向Aと垂直な方向である上記流路幅方向Bの向きに直線的でない不均一な形状になってしまうのである。
【0014】
そして、図36(a)に示す状態から液体検体Fsの流通に伴い固−気−液三相境界線Sの先行部が矢印Fで示すように周り込んで、図36(b)に示すように気体200の一部を完全に取り囲んでしまい、液体検体Fs中に気泡201が形成されてしまう。加えて、シート形状の流路では、このような気泡201と流路壁面との接触界面積が大きくなってしまうため、引き続き送液を続けても、この気泡201を下流方向に押し流して排除することが困難であり、気泡201がそのまま滞留してしまうことが多い。
【0015】
流路に高い圧力をかけてこの気泡201を強制的に流路から押し出すことも考えられるが、分析用チップの構造、材料、及び接合方法などによっては、圧力の急激な上昇により流路が損傷する等の虞がある。このとき、流路を構成する物質が硬ければ、流路に高い圧力がかけられてもその圧力の影響は少ない。また、流路構造が複数の材料の組み合わせにより構成されている場合には、各材料同士の結合の強度が高ければ、流路に高い圧力がかけられてもその圧力の影響は少なくなる。さらに、流路に配管(チューブ)やコネクタなどが連結されている場合には、配管(チューブ)やコネクタなどと流路との結合の強度が高ければ、流路に高い圧力がかけられてもその圧力の影響は小さくなる。しかし、分析用チップに採用される材料、接合方法、配管の結合などが何らかの理由によって限定されている場合には、流路に高い圧力をかけることで気泡201を流路から強制的に排除することが好ましくない場合が想定される。例えば、複数の材料群の組み合わせにより分析用チップを構成している場合(例えば、金属とガラス、あるいは、樹脂とガラス等による組み合わせ)には、廃棄処理の観点から、同一の材料群により分析用チップを構成することが好ましい。また、分析用チップを軽量化するためには、樹脂などの軽い材料により分析用チップを構成することが好ましく、あるいは成形性の観点から射出成型や圧縮成型などの精度の高い加工方法を行なう場合には、樹脂により分析用チップを構成することが好ましい。さらに、分析用チップの製造、分析用チップを用いた分析の前段階、分析用チップを用いた分析時に高温の環境にさらされることが想定されている場合にはガラスや金属などにより分析用チップを構成することが好ましい。このように、分析用チップを構成する材料は、設計者、製造者、使用者などの要求に合わせて任意に材料が選択される。
【0016】
このように気泡201が滞留してしまうと、図37〜図39に示すような不具合が生じる。
例えば、図39(a)に示すように、気泡201が反応領域204内に滞留してしまうと反応領域204に固定化された特定物質と液体検体との接触が阻害されてしまう。
また、図39(b)に示すように、気泡201が測定領域205内に滞留してしまうと、分析を正確に行なうことができない。特に、光学的に測定する場合に、このように測定領域205に気泡201が滞留してしまうと測定が不可能になるため、液体検体を流路から除去した後、再び、前準備を行って計測を再開しなければならず、分析作業の効率を極端に低下させてしまう虞がある。
【0017】
また、図37に示すように、液体検体Fs中の粒子状物質202が気泡201の上流側周辺に特異的に凝集・蓄積してしまい、その後の流通プロセスや混合プロセスや反応プロセスに影響を与えてしまう。
【0018】
また、気泡201の滞留によりその周囲の流れが不均一になると、極端な場合、図38(a)に矢印G1で示すように、気泡201の上流側と流路壁面との間で逆流が発生してしまい、分析に影響を与えてしまうようなこともある。また、一定流速、一定圧力下では、図38(b)に矢印G2で示すように気泡201の近辺では液体検体Fsが気泡201の周面に沿って流れ、他よりも速く流れる。
【0019】
このため、特定物質が固定された反応領域204の内、気泡201の近辺204aでは、他の領域よりも、液体検体分子との接触数が多くなる(通過する液体検体の総量が多くなる)。つまり、反応領域204内ではその位置によって異なる条件下で相互作用が進むこととなり、この反応領域204での結合あるいは解離などの相互作用に基づいて正確な液体検体の分析を行なえなくなってしまう。
【0020】
この他、液体検体中に気泡201が滞留すると、液体検体Fsと気泡201との熱伝達率の差異により、測定系に温度の不均一が生じ、分析結果に影響を与える虞もある。
【0021】
このような液体検体Fs中の気泡の抑制に関連する技術は、例えば以下の特許文献2,3に開示されている。
特許文献2には、インクジェットヘッドに記録液体(インク)を供給するための記録液体供給管が開示されており、この技術では、上記供給管の内面に親液性を付与することにより、気泡の供給管内面への付着を抑制し、さらに、供給管内面に気泡が付着したとしても、この気泡が供給管内面から直ぐに脱離して供給管内の液体の流通により除去できるようにしている。
しかしながら、この技術は、断面が微小であって且つシート形状の流路を対象としたものではなく、流路内での液体検体の周り込みを防止できるものではない。
【0022】
特許文献3には、液体検体を流通させる流路の角部に丸みをつけることにより、気泡の上記角部に対する付着を抑制できるようにしたフロースルーサンプリングセルが開示されている。
しかしながら、この技術も、液体検体の周り込みによる気泡の発生そのものを抑制するものではなく、また、気泡の付着の抑制も角部に限定され、効果は少ない。
【0023】
【特許文献2】特開2001−162817号公報
【特許文献3】特表平11−508360号公報
【0024】
また、非特許文献1記載の技術は、液体検体のシート状の流れを形成し、液体検体を一度の流通により多数の特定物質と結合させるようなものではなく、固−気−液三相境界線の周り込みによる気泡の発生については、何ら着目していない。
【0025】
さらに、特許文献1記載の技術は、上記非特許文献1記載の技術と同様に、液体検体によりシート形状の流れを形成して1種類の液体検体に対して多数の特定物質を接触させるような技術ではなく、液体検体の周り込みによる気泡の発生に何ら着目していない。
【0026】
また、上述したようにDNAチップやプロテインチップなどの分析用チップでは、多数の特定物質を平面状に配置させ、その後、液体検体と接触させる配置になっているため、反応領域が局所的なものではなく比較的大きな面積となる。また、分析用チップでは一般に、液体検体の少量化の要請により、流路が幅方向に大きく高さが小さいシート状の形状となる。このような場合には、分析用チップの保持のために働く、チップの厚み方向からの押さえつけあるいは引っ張り、又は、分析用チップ内の流路を流通する液体検体の圧力による圧縮応力や引張応力のために、分析用チップの形状が理想的な初期の形状(通常は、直方体形状またはそれに近い形状)から変形してしまい、流路の高さに関する幅方向の分布が生じてしまう虞がある。なお、前記の理想的な初期の形状は、通常は直方体が代表的なものであるが、その一部に部分的な湾曲部があったり、傾斜をなした直線部があったりしても構わない。
【0027】
この形状変形は上記の寸法比率(=長辺寸法/短辺寸法)が大きい場合、また、分析用チップの材料の強度(各種弾力係数)が弱い場合に顕著である。
分析用チップが理想的な初期の形状から変形した際には、分析用チップが理想的な初期の形状を保っている場合と比較して、流路の幅方向に対して流路の高さの分布が変わってしまうために、流路を流れる液体検体の流速分布が初期の流速分布から変更されてしまう。また、光学的な分析を行なう場合には、分析用チップの変形により、流路を透過する光の光路長が初期の光路長から変わってしまったり、分析用チップの光が透過する部分の微量な変位により光軸の向きが変わってしまったりする。また、光学的な分析を行なう場合のなかでも分析用チップの表面や流路表面で光を反射させて分析を行なう際には、初期の理想的な形状と比べ光軸の位置が変化してしまう。このように、液体検体の流速、光の光路長、光軸の向きや位置などが変わると正確な分析を行なうことができない虞がある。
さらに、検体液体の種類、流速、圧力などが時間的に変化したり、分析用チップの保持力が時間的に変化したり、若しくは湿度や温度などが変動した結果分析用チップの保持力や液体検体の粘度などの特性が時間的に変わったりするなどにより、分析用チップの形状変形が時間的な変動を伴う場合には、正確な分析の障害となる虞がある。
【0028】
本発明は、このような課題に鑑み創案されたもので、液体検体についての分析を効率的に且つ精度良く行なえるようにした、分析用チップ、分析用チップユニット及び分析装置並びに分析用チップの作製方法を提供することを目的とする。
【課題を解決するための手段】
【0029】
本発明の発明者は、鋭意研究の結果、流路に液体検体を流通させて、所定物質と、該流路に面して固定されるとともに該所定物質と特定物質との相互作用に基づいて該液体検体に関する分析を行なうのに使用される分析用チップにおいて、該流路に凸状部材を形成することにより、該液体検体の使用量を少なくし、且つ、該液体検体についての分析を効率的に且つ精度良く行なうことができることを見出し、本発明を完成させた。
【0030】
即ち、本発明の分析用チップは、閉断面構造を有する流路に液体検体を流通させて、所定物質と、該流路に面して固定される特定物質との相互作用に基づいて該液体検体に関する分析を行なうのに使用される、分析用チップにおいて、該流路に、凸状部材を有することを特徴とする(請求項1)。
【0031】
また、該流路は、シート状空間に形成されていることが好ましい(請求項2)。
また、上記分析用チップには、該流路の上流端部に設けられ、該液体検体を注入する1つの注入口と、該流路の下流端部に設けられ、該液体検体を排出する1つの排出口とがそなえられていることが好ましい(請求項3)。
【0032】
また、上記分析用チップは、該凸状部材が、該流路を幅方向に分割する仕切部材として構成され、該流路が、該仕切部材により分割された複数の内部流路を有していることが好ましい(請求項4)。
【0033】
また、上記分析用チップは、基板と、蓋部材と、上記の基板と蓋部材との間に介装され、上記の基板及び蓋部材の少なくとも一方と協働して該流路を有するシート状空間を形成する少なくとも1枚の中間プレートとを備えて構成されていることが好ましい(請求項5)。
【0034】
また、上記分析用チップは、該中間プレートに1つ又は複数の内部孔が形成され、該基板と該蓋部材とが該中間プレートを挟んで重ね合わされ、該内部孔により該内部流路が形成されることが好ましい(請求項6)。
【0035】
また、上記分析用チップは、該中間プレートの該基板とは反対側の面が、該中間プレートの内部孔の壁面及び/又は該基板の該流路側表面よりも、特定物質含有液に対する親和性が低い部材により構成されていることが好ましい(請求項7)。
【0036】
また、上記分析用チップは、基板と、該基板に対向して配置され、該基板と協働して該流路を有するシート状空間を形成する蓋部材とを備えて構成されていることが好ましい(請求項8)。
【0037】
また、上記分析用チップは、該基板と該蓋部材とが互いに重なり合うように構成され、上記の基板及び蓋部材の対向する面のうち少なくとも一方の面側に該内部流路が形成されることが好ましい(請求項9)。
【0038】
また、上記分析用チップは、該内部流路の下流端部に、該内部流路が次第に狭くなる縮流部が形成されていることが好ましい(請求項10)。
【0039】
また、上記分析用チップは、該内部流路が、該注入口から該排出口にかけて形成されていることが好ましい(請求項11)。
【0040】
また、上記分析用チップは、該仕切部材が仕切壁として構成されるとともに、該内部流路が、該流路の流れ方向の中間部において該仕切壁によって分割されたスリット状流路であって、該流路の流れ方向の上流端部及び下流端部に形成され、該液体検体が集合する集合流路部を有することが好ましい(請求項12)。
【0041】
また、上記分析用チップは、該上流端部側の該集合流路部は、該注入口から該中間部にいくにしたがって幅広になるように形成され、該下流端部側の該集合流路部は、該中間部から該排出口にいくにしたがって幅狭になるように形成されていることが好ましい(請求項13)。
【0042】
また、上記分析用チップは、該上流端部側及び該下流端部側の該集合流路部それぞれが、該基板又は該蓋部材に設けられていることが好ましい(請求項14)。
【0043】
また、上記分析用チップは、該スリット状流路は、5mm以下の横断面積を有していることが好ましい(請求項15)。
【0044】
また、上記分析用チップは、該該スリット状流路の横断面の縦横比率が、0.005〜100程度であることが好ましい(請求項16)。
【0045】
また、上記分析用チップは、該特定物質が、該内部流路に面して互いに基準間隔を空けてスポット状に複数点固定されていることが好ましい(請求項17)。
【0046】
また、上記分析用チップは、該凸状部材が、該流路の対向する面の間に介装された支柱部材であることが好ましい(請求項18)。
【0047】
また、上記分析用チップは、基板と、蓋部材と、上記の基板と蓋部材との間に介装され、上記の基板及び蓋部材の少なくとも一方と協働して該流路を有するシート状空間を形成する少なくとも1枚の中間プレートとを備え、該支柱部材が、上記シート状空間における該流路において該中間プレートと上記の基板及び蓋部材の少なくとも一方との相互に対向する面間に介装されていることが好ましい(請求項19)。
【0048】
また、上記分析用チップは、基板と、該基板に対向して配置され、該基板と協働して該流路を有するシート状空間を形成する蓋部材とを備え、該支柱部材が、上記シート状空間内における該流路において上記の基板と蓋部材との相互に対向する面間に介装されていることが好ましい(請求項20)。
【0049】
また、上記分析用チップは、該流路を構成する、床面及び天井面に加え、左側側面、右側側面、上流側端面、及び、下流側端面で、上記シート状空間を形成し、上記支持部材が、上記の左側側面と右側側面との間、及び、上記の上流側端面と下流側端面との間の少なくともいずれか一方に介装されていることが好ましい(請求項21)。
【0050】
また、上記分析用チップは、該支柱部材が、上記対向する面に直接当接されていることが好ましい(請求項22)。
【0051】
また、上記分析用チップは、該支柱部材の一部が上記対向する面の一方に直接当接されるとともに、該支柱部材の他端が、該流路に流体を流通させた場合に、上記対向する面の他方に、該流体を介して当接されることが好ましい(請求項23)。
【0052】
また、上記分析用チップは、該支柱部材の表面に、密着性低減層が形成されていることが好ましい(請求項24)。
【0053】
また、上記分析用チップは、該流路に該特定物質が固定されていることが好ましい(請求項25)。
【0054】
また、上記分析用チップは、該流路に、第1の親和部と、該第1の親和部よりも該液体検体に対する親和性が低い第2の親和部とがそれぞれ設けられていることが好ましい(請求項26)。
【0055】
また、上記分析用チップは、該流路の表面に該特定物質が固定化され、該特定物質が固定化された部分よりも該流路の流れ方向上流に、該第1の親和部及び該第2の親和部が設けられていることが好ましい(請求項27)。
【0056】
また、上記分析用チップは、該第1の親和部及び該第2の親和部が、それぞれ該流路の流れ方向と交差する向きに延在する帯状に形成されていることが好ましい(請求項28)。
【0057】
また、上記分析用チップは、該第1の親和部及び該第2の親和部が、交互に且つそれぞれ複数並べて形成されていることが好ましい(請求項29)。
【0058】
また、該第1の親和部は親水性部であり、該第2の親和部は疎水性部であることが好ましい(請求項30)。
また、該第1の親和部は粗面部であり、該第2の親和部は滑面部であることが好ましい(請求項31)。
【0059】
また、上記分析用チップは、該流路に該特定物質が固定される面を備え、該面に、光の照射によりエバネッセント波を生じさせる回折格子と、表面プラズモン波を誘起しうる金属層とがそなえられていることが好ましい(請求項32)。
【0060】
また、上記分析用チップは、ヤング率が60GPa以上1000GPa以下の材料により構成されていることが好ましい(請求項33)。
【0061】
本発明の別の分析用チップは、流路に特定物質をそなえ、該流路に液体検体を流通させて、該液体検体中の該所定物質と該特定物質との相互作用に基づいて該液体検体に関する分析を行なうのに使用される、分析用チップにおいて、該液体検体を注入する1つの注入口と、該液体検体を排出する1つの排出口とをそなえ、該流路が、縦横比率0.005〜100程度の横断面、且つ、5mm以下の該横断面積を有し、該注入口と該排出口との間に複数並列に設けられていることを特徴とする(請求項34)。
【0062】
本発明の分析用チップユニットは、複数の面を有するユニットベースを有し、該ユニットベースの面上に、上記の分析用チップを単位チップとして備えていることを特徴とする(請求項35)。
【0063】
本発明の別の分析用チップユニットは、ユニットベースを備え、該ユニットベース上に上述した上記分析用チップを単位チップとして複数備え、該複数の単位チップのうちの対応した単位チップ間を連結する連結流路が設けられていることを特徴とする(請求項36)。
【0064】
本発明の分析用チップの作製方法は、上記分析用チップに該特定物質を固定し、該特定物質が固定された分析用チップを作製する、分析用チップの作製方法であって、該基板上に該中間プレートを固定し、次いで、該中間プレートの該内部孔を通して該基板に該特定物質含有液を滴下し、該特定物質を該基板にスポット状に固定させた後、該中間プレート上に該蓋部を固定することを特徴とする(請求項37)。
【0065】
本発明の分析装置は、上記分析用チップ又は上記分析用チップユニットと、液体検体の分析を行なう分析部とを備えることを特徴とする(請求項38)。
【0066】
このとき、該分析部が、表面プラズモン共鳴、化学発光、生物発光、電気化学発光、蛍光、及び放射性同位体分析からなる群より選ばれる少なくともいずれか1種の手法を用いた分析手法により分析を行なうものであることが好ましい(請求項39)。
【0067】
また、上記分析装置は、該分析用チップ又は該分析用チップユニットに該液体検体を導入するに先立ち、物理的及び/又は化学的な作用によって該液体検体を分離する分離部を備えることが好ましい(請求項40)。
【0068】
また、上記分析装置は、該分析用チップ又は分析用チップユニットから排出された該液体検体を分析する後分析部を備えることが好ましい(請求項41)。
【発明の効果】
【0069】
以上詳述したように、本発明の分析用チップ、分析用チップユニット、及び、分析装置によれば、液体検体を効率的に且つ精度良く分析することができるほか、次のいずれかの効果を得ることができる。
(1)液体検体の周り込みによる気泡の発生を抑制することができる。
(2)分析用チップの変形を防止することができる。
(3)液体検体の少量化を行なうことができる。
【0070】
また、本発明の分析用チップの作製方法によれば、中間プレートの基板とは反対側の面が、中間プレートの内部孔の壁面及び/又は基板の流路側表面よりも、特定物質含有液に対する親和性が低い部材により構成され、複数のスリット状孔が形成された中間プレートを基板上に固定し、次いで、中間プレートのスリット状孔を通して基板に特定物質含有液を滴下し、特定物質を基板にスポット状に固定させた後、中間プレート上に蓋部を固定するので、特定物質含有液が中間プレートの仕切壁にかかってしまったとしても、特定物質含有液は、中間プレートの基板とは反対側の面よりも特定物質含有液に対する親和性が高い内部孔の壁面及び/又は基板の流路側表面を通じて、基板へ流れる(誘導される)。つまり、特定物質を、基板上の目標とする位置に安定して固定することができ、特定物質が固定された分析用チップを簡単に精度良く作製することができる。
【発明を実施するための最良の形態】
【0071】
以下、模式的な図面を参照して本発明の各実施形態について説明する。なお、以下の各実施形態では、液体検体に水溶性のもの(親水性のもの。ここでは、溶媒が水のものとする)を使用した例を説明するが、液体検体が疎水性であっても本発明の分析用チップを用いて液体検体を測定することができることはいうまでもない。また、本発明でいう液体検体とは、例えば、抗原抗体反応、相補的なDNA結合、レセプタ/リガンド相互作用、酵素/基質相互作用等の相互作用を生じさせることができる物質であり、具体例を挙げると、たんぱく質,核酸,DNA,RNA,PNA,ペプチド,ホルモン,抗原,抗体,リガンド,レセプタ,酵素,基質,低分子有機化合物,細胞,イオン、及びこれらの複合体等の測定対象物を含む(又は、含む可能性のある)液体であり、サスペンション,コロイド等の分散系も含む。これらは、必要に応じて蛍光物質、発光物質、放射性物質等により標識されていてもよい。
【0072】
〔1〕第1実施形態
図1〜図3は本発明の第1実施形態としての分析用チップを示すもので、図1(a)はその模式的な組立斜視図、図1(b)はその模式的な分解斜視図、図2(a)は図1(a)のY−Y断面図、図2(b)は図1(a)のX1−X1断面図、図2(c)は図1(a)のX2−X2断面図、図3(a)はその蓋部の上面図、図3(b)はその第1のプレートの上面図、図3(c)はその第2のプレートの上面図、図3(d)はその基板の上面図である。なお、以下でいう液体検体Fsの流れ方向Aとは、流路における主流方向のことであり、例えば、図4に示すような流路5′においては、その流れ方向は、実線の矢印で示す方向のことをいうものとする。
【0073】
図1(a),(b)に示すように、本分析用チップ(単にチップともいう)1は、平板状の蓋部材である蓋部2と、厚みの薄い第1のプレート(以下、単にプレートという)8と、プレート8と同様に厚みの薄い第2のプレート(中間プレート,以下、単にプレートという)9と、基板4とをそなえて構成されている。そして、これらの部材2,8,9,4は、分析時には、図1(a)に示すように、この順に上から重ねられて図示しない接合用のホルダにより一体に組み付けられる。したがって、蓋部2と基板4との間に、プレート8,9が介装されることになる。
【0074】
なお、ホルダには位置合わせや傷防止のための保護機構を設けることが好ましい。保護機構の例としては、例えば、分析用チップ1を係止するためにホルダに設けられる係止部や、分析用チップ1の観測する部分(後述する反応部6)がホルダと接しないようにホルダに形成されるくぼみなどが挙げられる。
【0075】
図2(a)に示すように、後述する蓋部2の孔(流路5の上流端部の注入口)21から注入された液体検体Fsは、上流側の集合流路部であるプレート8の孔81を通って、プレート9の内部流路となる各スリット状孔9aを流れ、その後、下流側の集合流路部であるプレート8の孔82を通って、後述する蓋部2の孔(流路5の下流端部の排出口)22から流出するようになっており、液体検体Fsが、上記のプレート9のスリット状孔9aを流通する際に、基板4の反応部6に固定された各特定物質61に接触するようになっている。
【0076】
また、図2(b),(c)に示すように、液体検体Fsが流通する流路5は、水平方向に細長いスリット形状の断面(液体検体Fsの流れ方向Aに対して垂直となる断面)を有する流路、即ち、シート状空間に形成された、閉断面構造を有する流路として構成されている。
ここで、本発明でいう「シート状空間に形成された流路」とは、通常、その断面の長辺(流路5の流れ方向に直交する断面及び幅方向に直交する断面の辺のうち最長の辺をいい、一般的には流路5の幅又は流れ方向長さをいう。本実施形態では、流路5の幅をいう)5aの寸法Wが500μm〜100mmの範囲であり、且つ、断面の短辺(流路5の高さ)5bの寸法Hが5μm〜2mmの範囲のものをいう。また、上記長辺5aと上記短辺5bとの寸法比率(=長辺寸法W/短辺寸法H)の範囲は、通常1.5以上、好ましくは10以上、また、通常20000以下、好ましくは100以下である。このとき、後述するように凸状部材、仕切部材、支柱部材として機能する仕切壁9bによって、流路5が複数の内部流路9aに分割されている場合には、その分割されたもとの流路5、即ち、複数の内部流路9aをすべて併せた流路5の寸法が、上記の寸法比率の範囲に入っていればよい。なお、ここでは、上記長辺5aの長さWは20mmに、上記短辺5bの長さ(X1−X1断面ではプレート8の厚さH、X2−X2断面ではプレート9の厚さH)はともに250μmに、それぞれ設定されている。
【0077】
また、ここでいう閉断面構造とは、流路5の流れ方向に直交する断面が閉断面となっている構造をいう。また、例えば流路5の底面、天井面、又は壁面などがメンブレンフィルタや気体透過膜のように微小な細孔が形成されている材料で形成されているような場合であっても、分析時に流路5内を流通する液体検体Fsがその微小な細孔を通過しない場合には、流路5は閉断面構造であるものとする。なお、本明細書において流路5は、特に断らない限り、シート状空間に形成された閉断面構造を有する流路であるとして説明する。
【0078】
以下、本分析用チップ1を構成する上記の各部材について詳細に説明する。
蓋部2,プレート8,プレート9,基板4の各材質は、樹脂,セラミックス,ガラス,金属等,その種類は特に限定されないが、検出種と特定物質61との結合を、蛍光,発光,発色,又は燐光等を利用して光学的に測定する場合には、蓋部2及びプレート8,9を透明な材料により形成することが好ましい。但し、分析用チップ1を分解して測定することが可能な場合には、蓋部2及びプレート8,9には透明度は必要とされない。また、透明な材料としては、例えば、アクリル樹脂,ポリカーボネート,ポリスチレン,ポリジメチルシロキサン,ポリオレフィン等の樹脂や、Pyrex(登録商標。ホウケイ酸ガラス),石英ガラス等のガラスがある。
【0079】
また、分析用チップ1は、強度が弱い材料(ヤング率が1GPa以上60GPa以下)でも本実施形態の構成により、後述するように変形を防ぐことができるが、強度が強い材料で構成されることにより、より精度が高い分析が可能になる。したがって、分析用チップ1は、即ち、蓋部2,プレート8,プレート9,基板4は、強度が強い材料で形成されていることが好ましい。具体的には、蓋部2,プレート8,プレート9,基板4を形成する材料のヤング率が、通常60GPa以上のものが好ましい。なお、ここでは分析用チップ1はヤング率が60GPa以上の強い材料で形成されている。
【0080】
図3(a)に示すように、蓋部2の上流端部には、1つの孔(注入口)21が形成され、蓋部2の下流端部には、1つの孔(排出口)22が形成されている。
注入口21は、図示省略のコネクタ,チューブを介して送液ポンプ(例えば、シリンジポンプ)に接続され、また、排出口22は、図示省略のコネクタ,チューブを介して廃液タンクに接続されている。そして、上記の送液ポンプを作動させることにより、液体検体Fsを注入口21からチップ1内に注入させるとともにチップ1内から排出できるようになっている。
【0081】
図3(b)に示すように、プレート8の上流側には、孔81が形成され、プレート8の下流側には、孔82が形成されている。
また、孔81の上流端部81xは、チップ1組み立て時に蓋部2の注入口21に整合して連通するように位置設定されている。また、孔81は、この上流端部81xからプレート8の流れ方向中間部にいくにしたがって(液体検体Fsの流通方向下流側へいくにしたがって)幅広になるように形成されている。
【0082】
一方、孔82の下流端部82xは、チップ1組み立て時に蓋部2の排出口22に整合して連通するように位置設定されている。また、孔82は、プレート8の流れ方向中間部から下流端部82xにいくにしたがって(液体検体Fsの流通方向下流側へいくにしたがって)幅狭になるように形成されている。
【0083】
また、チップ1が組み立てられた時に、プレート8の上下面が蓋部2及びプレート9により閉塞され、孔81,82は液体検体Fsが集合する流路を形成する。従って、プレート8の孔81,82により形成される流路を、集合流路部81,82ともいう。なお、図1(a)及び図2では、プレート8,9の上下面がすべて蓋部2及びプレート9により閉塞されているが、少なくともプレート8の孔81,82が形成されている部分が閉塞されればよい。
【0084】
図3(c)に示すように、プレート9の流れ方向中間部には、凸状部材として形成された仕切壁(仕切部材)9bによって幅方向に分割形成された複数のスリット状の孔(内部孔。以下、スリット状孔という)9aが形成されている。チップ1が組み立てられた場合には、各スリット状孔9aは、流路5の中間部を仕切壁9bによって分割され、スリット状の内部流路(以下適宜、スリット状流路という)を形成する。ここで、内部流路とは仕切部材によって幅方向に分割された流路のことをいう。よって、仕切壁9bが基板4及びプレート8に直接当接しており、仕切壁9bと基板4との間、及び、仕切壁9bとプレート8との間には液体検体Fsが浸入できなくなって、流路5が複数の内部流路に分割されるのである。なお、チップ1が組み立てられた時に、スリット状孔の上下面がプレート8及び基板4により閉塞されてスリット状の流路を形成することから、以下、上記のスリット状孔とスリット状流路と内部流路とは同じものであるので、これらを同じ符号9aで示す。
【0085】
なお、通常は、上記スリット状流路9aの横断面の縦横比率(縦寸法/横寸法)が0.005(例えば縦5μm,横1mm)〜100(例えば縦10mm,横100μm)程度の範囲内に収まるようにスリット状流路9aが形成されることが好ましい。また、一般的には、スリット状流路9aは5mm以下の横断面積を有するように形成されるのが好ましい。詳細には、スリット状流路9aの断面積は通常100μm以上、好ましくは2000μm以上、また、通常5mm以下、好ましくは0.3mm以下である。
【0086】
また、チップ1の組み立て時に、各スリット状孔9aの上流端部91は、プレート8の孔81の下流端に連通するように位置設定されているとともに、各スリット状孔9aの下流端部92は、プレート8の孔82の上流端に連通するように位置設定されている。
これにより、プレート8の集合流路部81に注入された液体検体Fsが、各スリット状流路9aの上流端部91を通ってプレート9の各スリット状流路9aを流れた後、各スリット状流路9aの下流端部92を通ってプレート8の集合流路部82へ集合するようになっている。
【0087】
このように、本分析用チップ1では、従来のシート形状の流路5に、仕切壁9bを設けることで、上記流路5をさらに微小な内部流路9aに分割して(即ち、流路の横断面積を小さくして)液体検体Fsの周り込みを抑制できるようになっている。
【0088】
さて、図1(a),(b)に示すように、基板4の流れ方向中間部には、流路5に面して反応部6が設けられる。
この反応部6は、図1(a),(b)では簡略化して示しているが、図3(d)に示すように、所定の物質(検出種)と特異的又は非特異的に相互作用をする特定物質61が、基板4の流路5側の表面にスポット状に複数点固定されてなるものである。この際、特定物質61が基板4に確実に固定されるようにするため、基板4の表面には特定物質61と結合しうる固定化膜(有機膜)が形成されていることが望ましい。
反応部6の(縦寸法×横寸法)の一般的な範囲としては、(3mm×3mm)〜(20mm×20mm)であり、一般的に、この領域には、100μm〜1mmの間隔で縦横3〜200個ずつ計9〜40000個の特定物質61が配置される。
【0089】
なお、ここでは、各特定物質61には、相互に異なる物質に対して、特異的又は非特異的に、反応や結合等の相互作用をする特定物質(相互に異なる特定物質)が使用されている。
また、所定物質、特定物質とは、それぞれ、例えば、抗原抗体反応,相補的なDNA結合,レセプタ/リガンド相互作用,酵素/基質相互作用等の相互作用をを生じさせることができる物質であり、具体例を挙げると、たんぱく質,核酸,DNA,RNA,PNA,ペプチド,ホルモン,抗原,抗体,リガンド,レセプタ,酵素,基質,低分子有機化合物,細胞、及びこれらの複合体等である。これらは、必要に応じて蛍光物質、発光物質、放射性物質等により標識されていてもよい。
【0090】
また、後述する本分析用チップ1の作製方法でも説明するが、本分析用チップ1では、基板4上にプレート9を固定し、その後、プレート9上方からプレート9のスリット状孔9aを通して基板4に特定物質61を固定するので、実際は、図3(d)に示すような反応部6(複数の特定物質61が固定された部分)は初期段階では形成されていないが、基板4に対する特定物質61の配置をわかりやすく説明するため、図3(d)では便宜的に、基板4に特定物質61が固定されている状態を示している。従って、図3(d)では、幅方向における特定物質61の位置及びスポット数が、幅方向における中間プレート9のスリット状孔9aの位置及びスリット状孔9aの数に合致するように示している。
【0091】
スリット状流路9aを流通する液体検体Fsは、その流通過程でこれらの特定物質61と接触することとなり、上記流通後に各特定物質61の反応状況によって液体検体Fsについての分析を行なうことができる。
つまり、上記複数の特定物質61のうち何れかの特定物質61の反応を観察できれば、この反応した特定物質61に対応する所定の物質が液体検体Fsに含まれていることを検出できるのである。
【0092】
特定物質61は、隣接する特定物質61とコンタミネーションを起こさないように基準間隔をあけてチップ1に固定化されている。なお、ここで基準間隔とは、特定物質が固定された各スポットの中心間の間隔のことをいい、また、仕切壁9bのピッチは、この基準間隔と略同じに設定されている。仕切壁9bを設けても特定物質61の単位面積当たりのスポット数を従来よりも減少させることはない。逆に、仕切壁9bを設けることにより、上記のコンタミネーションを防止できるので、幅方向(流れ方向と垂直の方向)に対する特定物質61のピッチを従来よりも狭めて単位面積あたりのスポット数を増加することも可能となる。
【0093】
なお、各特定物質61に、必ずしも相互に異なる特定物質61を使用する必要はなく、同じ特定物質61を使用しても良い。何れにしても、どのような特定物質61を使用するかは、その分析の目的に応じて適宜設定されるものである。
【0094】
次に、本分析用チップ1の作製方法について説明すると、まず、基板4上にプレート9を接合する。そして、位置決め操作が可能なインジェクタやスポッター(図示省略)等により、図5に示すように、プレート9のスリット状孔9aを通して基板4に、特定物質61を液体に分散又は溶解させた分散液又は溶液を滴下して、互いに基準間隔を空けて特定物質61を固定する。以下適宜、前記の特定物質61を液体に分散又は溶解させた分散液又は溶液を「特定物質含有液」という。特定物質61を分散又は溶解させる液体は任意であるが、本実施形態においては、特定物質含有液は、特定物質61を水に溶解させた水溶液として説明する。なお、図5は、基板4にプレート9を接合した後、特定物質含有液を滴下し、特定物質61を固定した状態を模式的に示す上面図である。
その後、プレート9上にプレート8を組み付け、さらに、プレート8上に蓋部2を組み付ける。
【0095】
上記の本分析用チップ1の作製方法において、プレート9を、基板4よりも特定物質含有液に対する親和性が低い部材により構成することが好ましい。本実施形態においては、特定物質含有液として特定物質61の水溶液を用いているので、前記の親和性が低い部材の例としては、疎水性の部材などを用いることが好ましい。これにより、プレート9のプレート8側(基板4とは反対側)表面が、基板4の流路5側表面よりも特定物質含有液に対する親和性が低くなる。このため、インジェクタにより特定物質61を特定物質含有液に溶解又は分散させて滴下した際に、外乱や装置に起因して滴下位置にずれが生じ、特定物質含有液が、プレート9の仕切壁9bに滴下されてしまったような場合にも、特定物質含有液は、プレート9よりも特定物質61に対する親和性が高い基板4へ流れる(誘導される)ようになるので、特定物質含有液を基盤4に確実に導くことができ、したがって、特定物質61を、基板4上の目標とする位置に安定して固定することが可能となるからである。
【0096】
また、プレート9の仕切壁9bのみを、基板4よりも特定物質含有液に対する親和性が低い部材により構成したり、あるいは、プレート9の仕切壁9b表面に、基板4よりも特定物質含有液に対する親和性が低い層を形成したりするようにしても良い。また、プレート8及び蓋部2を予め接合して一体化しても良い。
【0097】
また、プレート9のプレート8側(基板4とは反対側)表面を、プレート9のスリット状孔9aの壁面よりも特定物質含有液に対する親和性が低い部材により構成してもよい。これにより、上述した場合と同様にして、特定物質含有液がプレート9の仕切壁9bのプレート8側表面に滴下されてしまったような場合にも、特定物質61は、プレート9の基板4とは反対側表面よりも特定物質含有液に対する親和性が高いスリット状孔9aへ流れる。これにより、特定物質含有液をスリット状孔9aに確実に導くことができ、特定物質61を、基板4上の目標とする位置に安定して固定することが可能となる。
【0098】
なお、本明細書でいう親和性とは、ある物質が他の物質に対して結合又は吸着しようとする傾向を広義に指すものであり、親水性及び疎水性のみを指すものと捉えるべきではない。
【0099】
また、本実施形態では各部材の接合を、チップ1の分解が可能なように、ホルダにより物理的に組み合わせることで行なったが、他の方法によって各部材の接合を行なってもよい。各部材の接合方法は任意であり、例えば、接着剤による接着,プライマーによる樹脂接合,拡散接合,陽極接合,共晶接合,熱融着,超音波接合,レーザー溶融,溶剤・溶解溶媒等が挙げられるが、粘着テープ,接着テープ,自己吸着剤を使用して行なっても良いし、圧着や、各部材に凹凸を設け係合させるようにしても良い。これにより、容易に組み付けを行なうことができる。さらに、これらの接合方法を任意の組み合わせて併用してもよい。
【0100】
本発明の第1実施形態としての分析用チップは、上述したように構成されているので、図2(a)及び図3(a)〜(d)に示すように、蓋部2の注入口21に注入された液体検体Fsは、プレート8の集合流路部81を流れる。
その後、液体検体Fsは、各スリット状流路9aの上流端部91から各スリット状流路9aへ流れ、特定物質61と接触する。
そして、液体検体Fsは、各スリット状流路9aの下流端部92から集合流路部82に集合し、蓋部2の排出口22を通してチップ1外へ排出される。
【0101】
このように、本分析用チップ1では、複数のスリット状流路9aに対し共用で注入口21及び排出口22が1つずつ設けられているので、上述した従来技術のように、単に複数の流路を並列に設け、各流路において個別に流体を注入・排出が行なわれる構成に比べて、注入・排出に用いるコネクタやチューブを多数必要せず、コネクタやチューブのチップ1への取り付け作業が容易である。
【0102】
さらに、本分析用チップ1を用いると、別種の異なる液体検体Fsをシリアル状に流し、それら別種の液体を連続して測定することができる。これにより、液体検体Fsごとに分析用チップ1を準備する必要が無く、分析を短時間で簡単に行なうことができる。
【0103】
また、集合流路部81が、上流端部81xから流れ方向中間部にいくにしたがって幅広になっているので、液体検体Fsを流れ方向中間部へ円滑に案内することができる。また、集合流路部82が、流れ方向中間部から下流端部82xにいくにしたがって幅狭になっているので、液体検体Fsを下流端部82xへ円滑に案内することができる。
【0104】
さらに、シート形状の空間に形成された流路5に、仕切壁9bを設けて更に微小な(幅狭な)内部流路(スリット状流路)9aとしたので、液体検体Fsの周り込みによる気泡の発生を抑制することができる。
つまり、図6(a)に示すように、従来のようなシート形状の流路では、固−気−液の三相境界線が長かったため、濡れ性の不均一により一部の液体検体Fsが進行してしまい、結果として液体検体Fsの周り込みによる気体の抱き込み(気泡201)が生じていたが、図6(b)に示すように、上記流路5を、独立した微小な内部流路(スリット状流路9a)に分割したことにより、流路中の主流と垂直な線分(流路幅)Lが小さくなるため、周り込みが発生する確率が大幅に減少する。また、流路の横断面積が小さくなるので、各スリット状流路9aに効率的に背圧が加わり気泡が滞留し難くなる。
【0105】
したがって、本分析用チップ1によれば、気泡の滞留による悪影響(液体検体Fsの流通の阻害、特定物質61と液体検体Fsとの接触の阻害、液体Fsと気泡201との熱伝達率の差異による測定系の温度の不均一、光を用いた分析を行なう際に光路上に気泡201が滞留することによる測定の妨害等)を排除でき、分析の信頼性を向上させることができるという利点がある。さらに、気泡の除去作業が不要となり、分析作業を効率的に行なえるといった利点がある。
【0106】
従来のシート形状の空間内に形成された流路5では、大域的な流れの不均一が生じる。すなわち、通常供給される液体流体の流量範囲では、壁面での液体流体の流速が零であり、縦方向,横方向ともに中心部の流速が早く、壁面に近づくにつれて流速が遅いという流速の不均一が生じる。
しかし、本分析用チップ1では、独立した微小な内部流路(スリット状流路9a)を設けることで、例えば、スリット状流路9aの幅方向において2列に特定物質61を設ける場合には、この幅方向に並ぶ特定物質61に対して、液体検体Fsが接触する期間を均一にすることができるので、分析結果の精度を向上させることができる。
【0107】
また、内部流路9aごとの液体検体Fsの主流に伴う長さが異なる場合には、流路5の中心付近の内部流路9aを流れる液体検体Fsが、流路5の端付近の内部流路9aを流れる液体検体Fsとくらべ固−気−液三相境界線が先行してしまうため、下流側の集合流路部で流路5の中心付近の内部流路9aからの液体検体Fsが「先回り」してしまい、流路5の端付近に気泡の滞留を引き起こしてしまうことがありうる。その様子を図40を用いて示す。なお、図40において符号51は仕切壁を示し、符合52は内部流路を示す。また、符号St1,St2,St3,St4はそれぞれ流路5に液体検体Fsが流れ始めてからある時間後の固−気−液三相境界線を示し、St1,St2,St3,St4の順に界面が進んでいるものとする。
【0108】
したがって、各内部流路の長さを「先回り」が起きない程度に一定にするか(図41参照)、後述する第7実施形態で説明するような第1及び第2の親和部を設けて各内部流路を流れる液体検体Fsの流速を調整するか{図26(c)参照}を行なうことが望ましい。また、図42に示すように、内部流路52の断面積が流路5の幅方向の中心から端に行くほど狭くなるようにして液体検体Fsの線速を調整することも望ましい。また、内部流路52の高さを変えて断面積を調整したり(図43参照)、仕切壁51や流路5の表面の粗度を調整したり(図44参照)する等によって、内部流路9aを流れる液体検体Fsの圧力損失を調整し、各内部流路9aを流れる液体検体Fsの流速を調整することも望ましい。但し、測定の際に各内部流路9aの流量が一定とならないことによる測定の不均一(例えば反応量)がある場合には、断面積を一定にすることが望ましいが、これらは反応を検出する対象の反応種、反応速度、温度、流量などによって、それらの条件による分析用チップの最適化を行なうべきである。図44の構成は、一般に、仕切壁51や流路5の表面の粗度が粗ければ、その流路5を流れる液体検体Fsの圧力損失が大きくなることを利用したものである。なお、図41〜44において、図40に用いた符号と同じ符号は、同様のものを示す。また、図44において内部流路52a〜52eの壁面はそれぞれ粗度を調整され、その粗度は52a、52b,52c,52d,52eの順に滑らかにされている。
【0109】
また、ホルダによりチップ1を組み付ける場合には、チップ1に圧力がかかるが、チップ1幅方向に亘って複数形成された仕切壁9bにより、チップ1の耐圧性を向上させることができ、チップ1の形状変化、特に、厚み方向の形状変化を防止することができる。これにより、チップ1のたわみに起因する流速分布の不均一を防止できるとともに、光学的な分析においては、光路長のばらつきや光軸の変化を抑制できるので、最適な条件下で分析を行なうことができ、分析結果の精度を向上させることができるという利点がある。
以下、この形状変化防止機能に注目し、本実施形態を説明する。
【0110】
プレート9の仕切壁9bは、流路5を幅方向に分割している。この仕切壁9bは、流路5の対向する面、即ち、基板4の流路5側表面とプレート8の流路5側表面との間に介装された支柱部材として機能する。
仕切壁9bが基板4とプレート8とを連結することにより、基板4に立設された仕切壁9bが支柱部材としてプレート8を支持し、これにより、チップ1の厚み方向に力がかかったとしてもチップ1の変形を防止することができる。
【0111】
また、仕切壁9bが支柱部材として流路5に介装されている様子を別の表現で説明すると、次のように言える。即ち、流路5の床面を構成する基板4の流路5側表面と、流路5の天井面を構成するプレート8の流路5側表面と、流路5の左側側面、右側側面、上流側端面、及び、下流側端面を構成するスリット状流路9aに面したプレート9の表面とにより、流路5は上記シート状空間に形成されていて、支持部材である仕切壁9bが、流路5の左側側面と右側側面との間、又は、流路5の上流側端面と下流側端面との間の少なくともいずれか一方(ここでは、上流側端面と下流側端面との間)に介装された構成となっている。
したがって、仕切壁9bの流路5上流端及び流路5下流端がプレート9に連結されているので、チップ1にその仕切壁9bが介装された方向{ここでは、長手方向(流れ方向A)}の力が加わった場合のチップ1の変形を防止することもできる。ただし一般に、分析用チップ1の長手方向の形状変化は、厚み方向の形状変化ほど大きいものではないので、仕切壁9bは、通常は厚み方向の形状変化を防止すべく形成することが好ましい。
【0112】
また、ここではチップ1にかかる力として、ホルダがチップ1を組み付ける場合にかかる圧力を例にとって説明したが、仕切壁9bはこの他の力により生じる形状変形を防止することもできる。例えば流路5内の液体検体Fsの圧力変動に起因する力や外気の気圧変化など、チップ1にかかる種々の力により生じる形状変形を防止することができるのである。
【0113】
また、本実施形態ではホルダで基板4、プレート8,9、及び蓋部2を組み付けてチップ1を構成したが、上記の基板4、プレート8,9、及び蓋部2の間を接着などにより固定すれば、圧縮方向のみでなく引張方向及びずれ方向に力が加わった場合の変形を防止することも可能である。
【0114】
上述したように、支柱部材である仕切壁9bによってチップ1の変形を防止することができるので、従来のように、流路5を流れる液体検体Fbの流速分布、流路5を透過する光の光路長や光軸の向き変わることがなく、正確な分析を行なうことができる。さらに、検体液体Fsの種類、流速、圧力などが時間的に変化したり、分析用チップ1の保持力が時間的に変化したり、若しくは湿度や温度などが変動した結果分析用チップ1の保持力や液体検体Fsの粘度などの特性が時間的に変わったりするなど、分析用チップ1の形状変形が時間的な変動を伴う場合であっても、時間的な変動に起因するチップ1の変形を防止することができ、正確な分析を行なうことができる。
【0115】
また、上述したように、特定物質61のピッチを従来よりもさらに狭めて単位面積あたりのスポット数を増加することが可能であるために、少量の液体検体Fsによって効率的に分析を行なうことができる。つまり、液体検体Fsの少量化を実現することができる。また、従来であれば液体検体Fsが流路5の特定物質61の固定されていない部分をも流通していたが、本実施形態においては、流路5の特定物質61が固定化されていない部分の少なくとも一部は仕切壁9bによって占有されているため、仕切壁9bが占有している体積分だけさらに液体検体Fsの少量化を図ることが可能となる。
【0116】
即ち、特定物質61を固定した部分の面積を減少させることなく、流路5中の液体検体Fsの流れ方向に対して直交する面で前記流路5を切断した断面(以下適宜、流路断面という)の面積を小さくすることができるので、液体検体Fsと特定物質61との接触面積を従来よりも大きくし、且つ、流路5を流通させる液体検体Fsの量を従来よりも少なくすることができ、これにより、少量の液体検体Fsであっても一度の流通により複数の特定物質61と接触させて高スループットの分析が実現でき、分析を効率的に行なうことができるのである。
【0117】
また、チップ1が強度の強い材料で形成されていることから、チップ1の変形を防止することができる。また、チップ1の材料の強度が強くなれば、流路5に高い圧力を加えても流路5の破損を招かないので、万一流路5に気泡201が発生した場合であっても、流路5を流通する液体検体Fsに高い圧力を与えて気泡201を強制的に排出することが可能となる。
【0118】
さらに、気泡201の発生に伴って生じる分析作業のやり直し頻度及びそれに伴う液体検体Fsの使用量が減少するので、分析を効率的に行なえるようになるという利点もある。
また、本分析用チップ1の作製方法によれば、プレート9を基板4よりも流体検体Fsに対する親和性が低い部材を使用して、プレート9を基板4に固定した後、上部が開口した状態の各スリット状孔9aを通して特定物質含有液を滴下する。この際、流体検体Fsが基板4に案内されるようになるので、スリット状流路9a内に特定物質61を安定して固定することができる。
【0119】
さて、以上から分かるように、本明細書において凸状部材とは、流路5を分割することができるか、又は、流路5の対向する面に介装されてその対向する面を支持しうる程度に突出して形成された部材を指す。
【0120】
また、本実施形態では、基板4及び蓋部2によりプレート8及びプレート9を挟んでチップ1を構成したが、図7(a)〜(c)に示すように、集合流路部を形成するプレート8の孔81,82を蓋部2に形成するようにしても良い。即ち、この場合、蓋部2下面に、孔81,82と同じ形状の、集合流路部を形成する溝部(凹部)21′,22′を直接形成する。これにより、基板4及び蓋部2によりプレート9を挟むだけでよいので、チップ1を容易に作製することができる。さらに、図8(a),(b)に示すように、蓋部2下面に、孔81,82と同じ形状の、集合流路部を形成する溝部(凹部)21′,22′を直接形成するとともに、プレート9を使用せずにスリット状溝によってスリット状流路4aを基板4に直接形成するようにしても良い。これにより、基板4と蓋部2とを重ね合わせるだけでよいので、チップ1を更に容易に作製することもできる。また、このときスリット状溝4a間の仕切壁4bが、凸状部材及び支柱部材として機能する。
【0121】
また、図9(a)〜(c)に示すように、プレート8を使用する代わりに、プレート8の孔81,82を基板4に形成するようにしても良い。即ち、この場合、基板4上面に、孔81,82と同じ形状の、集合流路部を形成する溝部(凹部)43,44を直接形成するとともに、蓋部2とプレート9とを重ねた場合に、注入口21と孔91′及び排出口22と孔92′とが整合して、注入口21及び排出口22をこの溝部に連通させるよう、プレート9に孔91′,92′を形成する。これにより、基板4及び蓋部2によりプレート9を挟むだけでよいので、チップ1を容易に作製することができる。
【0122】
また、プレート8の孔81,82をプレート9に形成し、このプレート9を基板4及び蓋部2により挟むようにしても良く、このように構成することでも、チップ1を作製することができる(図33(a)参照)。なお、その場合には、後述するように、スクリーン印刷やインクジェットなどの印刷、又はコーティングなどを用いることによりチップ1を容易に作製することができる。
【0123】
また内部流路を蓋部2、中間プレート8、基板4のうちの複数に形成してもよい。例えば図45(a)〜(c)に示すように、プレート8に、上流側の集合流路部81と下流側の集合流路部82とをつなぐスリット状孔83を形成し、さらに、基板4にスリット状溝4aを形成し、これらスリット状孔83及びスリット状溝4aがいずれも内部流路として機能するように構成してもよい。なお、ここではプレート8にスリット状孔83を1つのみ形成したが、スリット状孔83を複数形成してもよいことは言うまでも無い。
なお、図7〜9,33,45中、図1〜6において使用した説明した符号と同じ符号は同様のものを示す。
【0124】
〔2〕第2実施形態
本発明の第2実施形態としての分析用チップは、表面プラズモン共鳴(SPR:Surface Plasmon Resonance)を利用したSPRセンサに使用される分析用チップ(以下、センサチップという)として構成されている。
【0125】
以下、図10及び図11を参照してSPRセンサ及びセンサチップについて説明する。
図10及び図11は、本発明の第2実施形態について示すものであり、図10はSPRセンサの模式的なシステム構成図、図11はセンサチップの構成を説明するための模式的な分解斜視図である。なお、上述の第1実施形態で説明した部材については同一の符号を付し、その説明を省略する。
【0126】
図10に示すように、SPRセンサは、センサチップ1Aと、このセンサチップ1Aに光を照射する光源100と、センサチップ1Aからの反射光を検出するための検出器〔ここではCCD(Charge Coupled Device)カメラ〕101とをそなえて構成されている。なお、図10では光源100からの入射光及びセンサチップ1Aからの反射光の光軸は流れ方向と垂直な方向で示しているが、前記入射光及び反射光の光軸の方向はこれに限定されるものでは無く、例えば入射光の光軸が流れ方向と平行な方向でも良く、また、反射光の光軸がセンサチップ1Aで反射することによって入射光の光軸の方向から変わってもよい。さらに、センサチップ1の背面(基板4側)から光を照射して、センサチップ1の背面(基板4側)で反射光を観測し、分析を行なうようにしてもよいが、その場合は、基板4を入射光及び反射光が透過できる素材で形成しなくてはならない。
【0127】
センサチップ1Aは、上述した第1実施形態の分析用チップ1(図1参照)と同様に、スリット状流路9a及び集合流路部81,82をそなえて構成され、送液ポンプ(図示省略)によりこのスリット状流路9a及び集合流路部81,82に液体検体Fsを流通させるようになっている。
【0128】
図11に示すように、センサチップ1Aは、第1実施形態の分析用チップ1に対し、基板4の構成が異なり、また、蓋部2及びプレート8,9が特に透明な材料により構成されている。
チップ1の組み立て時にスリット状流路9aに面する基板4の一方の面には、金属層41がコーティングされている。また、第1実施形態と同様に基板4にプレート9を重ね合わせた後、この金属層41がコーティングされた面には、エバネッセント波を生成する光学構造として回折格子42が形成されるとともに、反応部6(複数の特定物質61)が形成されるようになっている。なお、反応部6は金属層41に直接固定されるか、金属層41に形成された有機膜に固定される。
【0129】
そして、上記光源100から、透明な蓋部2及びプレート8,9を介して基板4に光が照射されると、この光によって金属層41の表面に発生した表面プラズモン波が、回折格子42により金属層41に誘発されたエバネッセント波と共鳴して、金属層41に照射された光のうち、特定の入射角又は特定の波長の光成分のエネルギーが金属層41に吸収される。
したがって、金属層41からの反射光は、特定の入射角又は特定の波長の光成分のエネルギーが弱くなる。
【0130】
金属層41上で発生するエバネッセント波の角度及び波長は、金属層41もしくは金属層41上に形成された有機膜に固定された特定物質61により捕捉された検出種の量に応じて変化し、これに応じて、吸収される反射光の角度及び波長が変化する。なお、ここでいう有機膜とは公知の構造を含む。また、この有機膜の機能としては、特定物質61を金属層41に安定的に固定化し、非特異吸着を抑制するものが望ましい。例えば、生体物質と結合するための官能基として、アミノ,アルデヒド,エポキシ,カルボキシル,カルボニル,ヒドラジド,ヒドロキシル,ビニル基のいずれかを含み、金属層41と結合するためにイソチオシアネート,イソニトリル,キサンテート,ジセレニド,スルフィド,セレニド,セレノール,チオール,チオカルバメート,ニトリル,ニトロ,ホスフィンのいずれかを含む直鎖高分子あるいは2重,3重結合を含む炭化水素鎖を含む。また、マトリックスとしてハイドロゲル(アガロース,アルギン酸,カラゲナン,セルロース,デキストラン,ポリアクリルアミド,ポリエチレングリコール,ポリビニルアルコール等)を構成するものでも良い。また、LB膜,自己組織化単分子膜,脂質二重膜等の組織的構造を用いたものでも良い。
【0131】
したがって、反応部6の各特定物質61からの反射光の光強度をそれぞれCCDカメラ101により監視して、かかる角度及び波長の変化を検出することで試験流体中の検出種の濃度をリアルタイムで測定できる。
なお、金属層41の材質は、表面プラズモン波を誘起しうるものであれば限定はなく、例えば、金,銀,アルミニウム等である。
【0132】
また、回折格子42は、基板4の表面に凹凸を形成しておき、その上にスパッタリング等により金属を薄く積層して上記金属層41を形成することで上記金属層41の表面に具現できる。
また、基板4に回折格子42を設けるべく形成される凹凸は、例えば、基板4を切削して形成され、切削方法としては機械的に行なうものでも良いし、エッチングの技術等により化学的に行なうものでもよい。
【0133】
さらに、基板4を樹脂材により構成する場合には、樹脂材が完全に固化しないうちに、例えばフォトリソグラフィ等により凹凸を形成したスタンパを基板4に押圧して凹凸を形成することもできるし、射出成形によりスタンパから凹凸形状を転写しても良い。
【0134】
本発明の第2実施形態としての分析用チップ(センサチップ)1Aは、上述したように構成されているので、第1実施形態の分析用チップ1と同様に、液体検体Fsの周り込みによる気泡の発生を抑制し、また、分析用チップ1Aの変形を防止することができ、さらに、液体検体Fsの少量化を図ることができる。
【0135】
また、SPRセンサに使用される分析用チップの大きな特徴として、反応部6(複数の特定物質61)における相互作用の状態を光学的に且つオンラインで検出することが挙げられる。
例えば、反応部(即ち、測定領域)6に気泡が滞留してしまうと、特定物質61と検出種との相互作用が阻害されてしまうだけでなく、上記の光学的な測定を行なえなくなってしまうが、本分析用チップ1Aによれば、気泡の発生を抑制できるので、上記のような光学的測定によるオンラインでの分析を安定して行なえるといった利点がある。
【0136】
なお、このようなSPRを利用した分析では、マイクロチャンネルチップに同一の液体検体Fsを流通させて分析を行なうだけでなく、複数の液体検体Fsを、バッファーを挟んで連続的に流通させて、これらの液体検体Fsの測定対象物と特定物質との一連の結合−解離を分析することも可能である。
【0137】
また、本実施形態では検出器101としてCCDカメラを用いたが、検出器101はこれに限定されるものではなく、フォトダイオード、光電子増倍管、感光紙など、任意のものを使用することができる。
【0138】
〔3〕第3実施形態
図12〜図14は本発明の第3実施形態としての分析用チップの構成を示すもので、図12(a)はその模式的な組立斜視図、図12(b)はその模式的な分解斜視図、図13はそのプレートの模式的な下面図、図14(a)は図12(a)のY1−Y1断面図、図14(b)は図12(a)のX3−X3断面図である。なお、上述の第1実施形態で説明した部材については同一の符号を付し、その説明を省略する。
【0139】
図12(a),(b)に示すように、本分析用チップ(単にチップともいう)1Bは、蓋部2,プレート10,基板4をそなえて構成されている。
本分析用チップ1では、第1実施形態に対しプレート8,9の代わりにプレート(中間プレート)10をそなえていることが特徴である。従って、以下、特にプレート10について詳細に説明する。
なお、蓋部2の注入口21,排出口22には、それぞれパイプ26,27(図14参照)が挿入されており、外部の送液ポンプや廃液タンクへつながるチューブとの接続を容易に行なえるようになっている。
【0140】
図12(a),(b)に示すように、プレート10には、蓋部2の注入口21,排出口22に連通する孔11,12が形成されている。
また、図13に示すように、プレート10下面(基板4と向かい合わされる側)には、孔11からプレート10の流れ方向中間部へいくにしたがって幅広になるように形成された凹部13と、プレート10の流れ方向中間部から孔12へいくにしたがって幅狭になるように形成された凹部14とが設けられている。
【0141】
なお、プレート10を基板4に重ね合わせることにより、プレート10の凹部13,14が、その開口部を閉塞され、液体検体Fsが集合する流路を形成するようになっている。従って、基板1とプレート10の凹部13,14とにより形成される空間を、集合流路部13,14ともいう。
また、プレート10の流れ方向中間部(凹部13と凹部14との間の領域)には、仕切壁10bによって幅方向に分割形成された複数のスリット状溝10aが形成されている。よって、プレート10を基板4に重ね合わせることにより、プレート10の凹部13,14及び中間部は、液体検体Fsが流れる流路5を形成する。
【0142】
なお、プレート10を基板4と重ね合わせることにより、上記のスリット状溝10aが、その開口部を閉塞されてスリット状の内部流路(スリット状流路)を形成することから、以下、スリット状溝とスリット状流路とを同じ符号10aで示す。
また、このとき、上記スリット状流路10aの横断面の縦横比率(縦寸法/横寸法)が0.005(例えば、縦5μm,横1mm)〜100(例えば、縦1000μm,横10μm)程度の範囲内に収まるようにスリット状流路10aが形成されることが好ましい。また、一般的には、スリット状流路10aが5mm以下の横断面積を有するように形成されるのが良く、好ましくは100μm以上5mm以下、さらに好ましくは2000μm以上0.3mm以下の横断面積を有するように形成されるのがよい。このようにスリット状流路10aが構成されることにより、流路中の液体検体Fsの回りこみによる気泡の発生をより確実に抑制することができるようになっている。
【0143】
また、このような凹部13,14及びスリット状溝10aの形成方法としては、機械加工、射出成型や圧縮成型に代表される転写技術、ドライエッチング(RIE,IE,IBE,プラズマエッチング,レーザーエッチング,レーザーアブレーション,ブラスト加工,放電加工,LIGA,電子ビームエッチング,FAB)、ウエットエッチング(化学浸食)、光造形やセラミックス敷詰等の一体成型、各種物質を層状にコート,蒸着,スパッタリング,堆積して部分的に除去することにより微細構造物を形成するSurface Micro−machining、インクジェットやディスペンサーにより流路構成材料を滴下して形成する方法(即ち、凹部13,14及び流れ方向中間部を一体に凹部として形成し、その後、上記中間部に流れ方向に沿って流路構成材料を滴下し、仕切壁10bを形成する方法)、光造形法などを適宜選択して用いればよい。
【0144】
次に、本分析用チップ1Bの作製方法について説明すると、まず、位置決め操作が可能なインジェクタ等により、基板4の目標位置に特定物質含有液を滴下し、基板4に互いに基準間隔を空けて特定物質61を固定させる。
その後、図14(b)に示すように、特定物質61の各列間にプレート10の仕切壁10bがくるように、プレート10の位置決めを行なって基板4に載置し、さらに、プレート10上に蓋部2をセットする。なお、予め蓋部2とプレート10とを接合して一体としたものを基板4にセットするようにしても良い。
【0145】
本発明の第3実施形態としての分析用チップ1Bは、上述したように構成されているので、図14(a)に示すように、蓋部2の注入口21に注入された液体検体Fsは、プレート10の孔11を通って集合流路部13を流れる。そして、各スリット状流路10aを流れ、特定物質61と接触する。
その後、液体検体Fsは、各スリット状流路10aから集合流路部14に集合し、プレート10の孔12及び蓋部2の排出口22を通してチップ1外へ排出される。
【0146】
このように、本分析用チップ1Bによれば、集合流路部13が、上流端部から流れ方向中間部にいくにしたがって幅広になっているので、液体検体Fsを流れ方向中間部へ円滑に案内することができる。また、集合流路部14が、流れ方向中間部から下流端部にいくにしたがって幅狭になっているので、液体検体Fsを下流端部へ円滑に案内することができる。
【0147】
さらに、シート形状の空間を形成する流路に、仕切壁10bを設けてさらに幅狭な流路(スリット状流路)10aを形成することで、液体検体Fsの周り込みによる気泡の発生を抑制することができる。
したがって、本分析用チップ1Bによれば、第1実施形態の効果と同様に、気泡の滞留による悪影響(液体検体Fsの流通の阻害、特定物質61と液体検体Fsとの接触の阻害、液体Fsと気泡201との熱伝達率の差異による測定系の温度の不均一、光路上に気泡201が滞留することによる測定の妨害等)を排除でき、分析の信頼性を向上させることができるという利点がある。さらに、気泡の除去作業が不要となり、分析作業を効率的に行なえるといった利点がある。
【0148】
また、チップ1Bの組み立てをホルダを用いて行なう場合には、チップ1Bに圧力がかかるが、第1実施形態と同様に、チップ1の幅方向に亘って複数形成された仕切壁10bが支柱部材となるので、チップ1Bの耐圧性を向上することができ、チップ1Bの厚み方向の形状変化を防止することができる。これにより、チップ1Bのたわみに起因する流速分布の不均一を防止できるとともに、光照射を用いた分析においては、光路長のばらつきや光軸の変化を防止できるので、分析結果の精度を向上させることができる。
さらに、第1実施形態と同様に、液体検体Fsの少量化を実現することも可能である。
【0149】
なお、本実施形態では、基板4及び蓋部2によりプレート10を挟んでチップ1Bを構成したが、図15(a),(b)に示すように、プレート10の凹部13,14及びスリット状溝10aに対応する、集合流路部を形成する凹部21′,22′、及び、内部流路を形成するスリット状溝2aを蓋部2下面に直接形成するようにしても良い。この場合、プレート10を設けずに、基板4と蓋部2とを重ね合わせるだけでよいので、チップ1Bを容易に作製することができる。なお、2bは仕切壁を示している。
このように作製された分析用チップ1は、基板4と、基板4に対向して配設され、基板4と協働して基板4との間に流路5を有するシート状空間を形成する蓋部2とを備え、流路5に、支柱部材及び仕切部材の両機能を有する仕切壁10bを有する構成となる。
【0150】
また、図16(a),(b)に示すように、プレート10の凹部13,14及びスリット状溝10aに対応する、集合流路部を形成する凹部43,44、及び、内部流路を形成するスリット状溝4aを基板4上面に直接形成するようにしても良い。この場合、プレート10を設けずに、基板4と蓋部2とを重ね合わせるだけでよいので、チップ1Bを容易に作製することができる。なお、4bは仕切壁を表わす。
また、例えば、上記のように基板4と蓋部2とだけでチップ1Bを作製する場合、図17(a)に示すように、液体検体Fsの注入口21及び排出口22を、蓋部2の上流側及び下流側の側面に形成したり、図17(b)に示すように、基板4下面に形成したりしても良い。
【0151】
さらに、本実施形態では、図13,図15(a),図16(b)中符号Rで示すように、孔11又は孔12から各仕切壁10bの端部までの距離が略等しくなるような仕切壁10b,2b,4bを設けたが、図18中符号R1で示すように、幅方向中央に近い仕切壁10bほど仕切壁10bの長さを長くする(孔11又は孔12と仕切壁10bの端部との距離を前記図13、図15(a)、図16(b)と比べ短くする)ようにしても良い。この図18に示す例は、図15(a),図16(b)に示す例にも同様に適用できることは言うまでもない。
【0152】
〔4〕第4実施形態
図19(a)は本発明の第4実施形態を説明するプレート(中間プレート)の下面図である。
本発明の第4実施形態としての分析用チップ1Cは、図19(a)に示すように、中間プレート10の仕切壁10bが注入口である孔11から排出口である孔12にかけて形成されているほかは、図12〜14に示す上述した第3実施形態と同様の構成となっている。なお、上述の第3実施形態で説明した部材については同一の符号を付し、その説明を省略する。
【0153】
つまり、本実施形態では、流れ方向中間部のみならず凹部13,14にも仕切壁10bが形成され、仕切壁10により分割された各内部流路10aの入口が孔11に開口しており、出口が孔12に開口している。したがって、本実施形態においては凹部13,14は集合流路部を構成せず、内部流路10aの一部を構成している。
【0154】
本発明の第4実施形態は以上のように構成されているので、集合流路部による作用、効果を除いては第3実施形態と同様の作用、効果を奏することができるが、それに加え、第3実施形態では集合流路部を形成していた凹部にまで内部流路を形成することができるので、流路5内のより広い部分で、確実に気泡の発生を防止することができ、且つ、チップの変形を防止し、さらに、液体検体Fsの少量化を促進することができる。これにより、より正確に分析を行なうことができる他、より広い反応部を設けることができ、効率よく分析を行なうことが可能となる。
【0155】
また、各内部流路10aの距離は等しくなることが好ましい。また、液体検体Fsの圧力、仕切壁10bの形状、流路5の壁面の特性などによっては、仮に気泡が生じた場合でも、気泡が背圧により容易に排除されることも可能である。
【0156】
また、本実施形態においても第3実施形態と同様、図19(b)に示すように、プレート10の凹部13,14及びスリット状溝10aに対応する溝部(凹部)23,24及びスリット状溝2aを蓋部2下面に直接形成するようにしても良く、また、図19(c)に示すように、プレート10の凹部13,14及びスリット状溝10aに対応する溝部(凹部)46,47及びスリット状溝4aをそれぞれ基板4上面に直接形成するようにしても良い。
なお、図19(b)に示すものは、その他の構成は図15(a),(b)に示したものと同様の構成となっており、図19(c)に示すものは、その他の構成は図16(a),(b)に示したものと同様の構成となっている。
【0157】
〔5〕第5実施形態
図20(a)は本発明の第5実施形態を説明するプレート(中間プレート)の下面図である。
本発明の第5実施形態としての分析用チップ1Dは、その基本構成は図12(a)に示すように、上述した第3実施形態と共通している。即ち、図20(a),(b)に示すものは、その他の構成は上記第3実施形態と同様の構成となっている。なお、上述の第3実施形態で説明した部材については同一の符号を付し、その説明を省略する。さらに、本実施形態は、図20(b)に示すように、内部流路10aの下流端部に縮流部10cが形成されていることを特徴としている。
【0158】
図20(b)は図20(a)のXXb部を拡大した図である。縮流部10cは、図20(b)に示すように、内部流路10aが次第に狭くなるよう、即ち、内部流路10aの流れ方向に垂直な断面積が小さくなるように形成された部分であり、ここでは、内部流路10aの幅が次第に狭くなるよう形成された部分を指す。
【0159】
本発明の第5実施形態は以上のように構成されているので、第3実施形態と同様の効果に加え、内部流路10aの下流端部に気泡が残留するのを抑制することができる。
詳しく説明すると、従来、内部流路10aの下流端部には、図20(c)に示すようにして気泡201が形成されやすいことが経験的に分かっている。これは、内部流路10aの下流端部が図20(c)に示すような形状である場合には、液体検体Fsが内部流路10aから下流側の集合流路部14に移動する際に、内部流路10aの下流端部で急に背圧がかからなくなり、気泡201が滞留してしまっていたものと考えられる。なお、図20(c)では内部流路10aの下流端部が幅方向に次第に広がるよう(即ち、仕切壁10bの厚みが次第に小さくなるよう)形成された例を示したが、内部流路10aの下流側端部が幅方向に一定であるよう形成されていても同様にして気泡201が形成されることがある。これに対して本実施形態では、上述したような縮流部10cを形成し、液体検体Fsが内部流路10aから下流側の集合流路部14に移動する際、上記のように、急に背圧がかからなくなることを防ぐために、図20(b)に示す縮流部10cにより液体検体Fsの線速を増加することで、内部流路10aに気泡201が残留することを抑制することができる。
【0160】
なお、本実施形態の構成を、他の実施形態あるいはその変形例に適用できることは言うまでもない。
【0161】
〔6〕第6実施形態
図21(a)は本発明の第6実施形態を説明するため、流路の仕切壁が形成された部分を流路の幅方向に対して直交する面で切断した断面を拡大して模式的に示す断面図である。
本発明の第6実施形態としての分析用チップ1Eは、図21(a)に示すように、その基本構成は上述した第3実施形態と共通している。なお、上述の第3実施形態で説明した部材については同一の符号を付し、その説明を省略する。そして、本実施形態では、図21(a)、及び、図21(a)のXXIb部を拡大して示す図21(b)に示すように、仕切壁10bの基板4と対向する面に仕切壁10bと基板4との密着性を低減させる物質の層(密着性低減層)としてテフロン(登録商標)の層10tが形成され、これにより、仕切壁10bと基板4との密着性が低減され、仕切壁10bと基板4とは極小さい距離だけ離されている。
【0162】
密着性を低減する程度としては、仕切壁10bと基板4との間の密着性が低減された結果、仕切壁10bと基板4との間に流体である液体検体Fsが浸入し、浸入した液体検体Fsの薄い液層を介して仕切壁10cが基板4を支持しうる程度であり、具体的な密着性は液体検体Fsの種類や分析時の条件などにより異なっている。
また、仕切壁10bの、プレート10側端部は、プレート10と一体に形成されている。
【0163】
本発明の第6実施形態は以上のように構成されているので、第3実施形態と同様の効果に加え、仕切壁10bと基板4との間の応力による形状変形を防ぐことができる。
以下、詳細に説明する。仕切壁10bと基板4とが接着されたり高度に密着されている場合には、仕切壁10bと基板4との接触部分に過剰な応力が働くと、その応力によって分析用チップ1Eが変形する可能性がある。即ち、分析用チップ1Eを製造する際の仕切壁10bと基板4との接着時にかかる応力、又は、接着後に液体検体Fsを流した場合や温度が変化した場合などに起こる理想的な形状(即ち、応力や圧力などの力がなんら負荷されていない場合の形状)からの逸脱に起因する応力によって、分析用チップ1Eの形状変形が生じることがある。
【0164】
そこで、本実施形態においては、仕切壁10bと基板4との密着性を低減させ、液体である液体検体Fsを流路5に流した際に、仕切壁10bと基板4との間に部分的に液体検体Fsを浸入させて、浸入した液体検体Fsの薄い液層を介して仕切壁10bが基板4を支持しうるよう、ひいてはプレート10が基板4に支持されるよう構成している。これにより、仕切壁10bと基板4との間で過度の応力が伝わらないようにすることができるので、仕切壁10bと基板4との間で応力が生じること、または応力が伝わることに起因する形状変形を防止することができる。
【0165】
また、仕切壁10bと基板4との間の距離の程度は、仕切壁10bが、薄い液層状態として存在する液体検体10bを介して基板4を支持できる程度に小さく、また、通常予想される程度の分析用チップ1Eの変形を抑制することができる程度に小さく設定されることが好ましい。
【0166】
なお、密着性低減層は、テフロン(登録商標)の層以外の層であってもよく、仕切壁10bの表面と基板4の表面との密着性を低減することができる層であればよい。
【0167】
また、その他の手法により、仕切壁10bと基板4との間で液体検体Fsを介して仕切壁10bが基板4に支持されるように構成してもよい。例えば、化学侵食などのウェットエッチングや、反応性イオンエッチング(Deep Reactive Ion Etching)などのドライエッチングによって、数nm〜数十nm程度の極わずかな距離だけ仕切壁10bの高さ(即ち、流路の高さ方向の距離)を低く形成することで構成してもよい。
【0168】
ただし、本実施形態では第3実施形態とは異なり、仕切壁10bと基板4との間を通じて、隣接する内部流路、つまり、スリット状溝10b間での液体検体Fsのリークが生じることがあるので、このようなリークが生じてもよい場合に本実施形態にて説明した技術を用いることが好ましい。
【0169】
また、本実施形態では仕切壁10bと基板4との間の部分に注目したが、分析用チップ1Eが別の構造を有している場合には、その分析用チップ1Eの構造に応じて液体検体Fsで支持する部分を選択すればよい。更に、流路5が蓋部2に面して形成されている場合には、仕切壁10bと蓋部2の流路5側表面との間が液体検体Fsを介して支持されるようにすればよい。本実施形態の技術は、応力が生じる流路5表面の部分であればどの部分に対しても適応することが可能である。
【0170】
また、本実施形態では仕切壁10bと基板4との間に液体検体Fsを流した場合を例示して説明したが、仕切壁10cと基板4との間に浸入する流体は任意であり、例えば液体検体Fs以外にもバッファを流しながら分析を行なう場合には、流路5を流れるバッファを介して仕切壁10bが基板4を支持しうるようにしてもよい。さらに、空気などの気体や、気体と液体との混合体が仕切壁10bと基板4との間に滞留した場合には、それらを介して仕切壁10bが基板4を支持しうるようにしてもよい。ただし、仕切壁10bと基板4との間に気体が滞留している場合には、分析を行なっている間を通じてその気体が継続的に仕切壁10bと基板4との間に留まる等により、その気体が原因で分析の精度が低下しないようにすることが好ましい。
【0171】
さらに、仕切壁10bと基板4との間に常に流体が存在していなければならないわけではなく、例えば分析中のある瞬間に、仕切壁10bと基板4とが直接に当接したとしても、それによって仕切壁10bと基板4との間に過剰な応力が生じなければよい。
【0172】
〔7〕第7実施形態
図22は本発明の第7実施形態を説明するプレート(中間プレート)の模式的な下面図であり、図23(a),(b)はその機能を説明するための拡大図である。
本発明の第7実施形態としての分析用チップ1Fの基本構成は、上述の第3実施形態と共通している。即ち、図22,図23(a),(b)に示すものは、その他の構成は上記第3実施形態と同様の構成となっている。なお、上述の第3実施形態で説明した部材については同一の符号を付し、その説明を省略する。そして、本実施形態では、図22に示すように、仕切壁10bの上流側及び下流側端部が幅方向に一列になるよう形成され、流路5の中間プレート10側表面が親水性に加工されており、且つ、流路5の上流側の集合流路部13の中間プレート10側表面に、流路5の流れ方向と直交する向きに流路5幅全幅に亘って延在する帯状の疎水性の部分(疎水性部。以下適宜、疎水部という)5xが複数断続的に形成されている。
【0173】
したがって、集合流路部13は、第1の親和部として、親水性に加工された中間プレート10の表面が剥き出しの帯状の部分(親水性部。以下適宜、親水部という)5yが形成され、また、第2の親和部として疎水部5xが形成された構成となる。この結果、集合流路部13では親水部5yと疎水部5xとが流れ方向に交互に並ぶこととなる。なお、ここで親和部とは、対象となる物質に対してある一定の親和性を有する部分のことを指すものとする。したがって、親和部が対象となる物質に対して必ずしも高い親和性を有するとは限らない。
【0174】
また、疎水部5xはそれぞれ厚さ(流路5の流れ方向寸法)が互いに同寸法に設定され、また、疎水部5xに挟まれた親水部5yの厚さも疎水部5xの厚さと同じに設定されている。上記厚さは、種々の条件に応じて適宜設定されるものであり、同寸法であることに限定されないが、一般的に10μm〜1000mm以下である。
【0175】
これにより、図23(a)に示すように親水性の液体検体Fsの一部が先行して疎水部5xに到着すると、疎水部5xは流通しづらいことからこの液体検体Fsは疎水部5xとの接触部で丁度ブレーキが掛けられた状態となり、後続の液体検体Fsは、このようなブレーキの作用しない流れやすい領域、即ち未だ液体検体Fsが到達していない親水部5y側へと矢印F1〜F3で示すように流れるようになる。
【0176】
この結果、液体検体Fsは、流路5全幅に渡って疎水部5xに到着するまで、その一部が疎水部5xを乗り越えて移動することが抑制されるようになる。つまり、図23(b)に示すように液体検体Fsの先端(気―液界面)Sを幅方向Bに沿って揃えることができるのである。
ここでは、上述したように疎水部5xは中間プレート10だけに設けられているが、疎水部5xは、流路5の基板4側表面に形成されてもよく、流路5の表面であれば任意の場所に設けることができる。また、疎水部5xは流路5の横断面全周に渡って形成するのが最も好ましいが、流路5は相当直径が微小であることから流路5壁面から受ける抵抗が大きいため、本実施形態のように中間プレート10だけに疎水部5xを設けるだけでも、液体検体Fsの流通を抑制して上述したように液体検体Fsの先端位置を揃えることができる。
【0177】
本発明の第7実施形態としての分析用チップは上述したように構成されているので、第3実施形態と同様の効果に加え、親水部5y及び疎水部5xにより液体検体Fsの周り込みによる気泡の発生をさらに確実に防止することができ、正確で効率的な分析を行なうことができる。
【0178】
また、親水部5y及び疎水部5xが、反応部6よりも流れ方向上流の集合流路部13に形成されているので、液体検体Fsが反応部6への到着するまでに気泡が発生することを確実に防止することができるので、正確な分析を行なうことができる。
【0179】
本実施形態では第1の親和部5yを親水性に、第2の親和部5xを疎水性にしたが、親水性の部分及び疎水性の部分をともに形成しなくとも、例えば、流路5表面を部分的に疎水化したり、これとは逆に流路5表面の所定部分(疎水部5xに相当する部分)を除いた部分のみを親水化したりして、第1の親和部よりも第2の親和部の方が液体流体Fsに対する親和性(ここでは、親水性の度合い)が低い構成にすればよい。ただし、本実施形態のように親水部5yと疎水部5xとを両方備えている場合は、より効果的に気泡の発生を抑制することができる。
【0180】
なお、親水化及び疎水化の方法はどのような方法を用いてもよいが、具体例としては、流路5表面に、アクリル樹脂,ポリカーボネート,ポリスチレン,シリコン,ポリウレタン,ポリオレフィン,ポリテトラフルオロエチレン,ポリプロピレン,ポリエチレン,熱可塑性エラストマーなどの比較的親和性の低い疎水性材料を用いる場合、これを親水化する方法としては、表面コーティング,湿式化学的改質,ガス改質,界面活性剤処理,コロナ放電,粗面化,金属の蒸着,金属のスパッタリング,紫外線処理,加工雰囲気に依存する親水性官能基または親水性分子の表面への付与を伴う方法(プラズマ法,イオン注入法,レーザー処理等)が挙げられる。
【0181】
また、流路5表面に、ガラス,金属,セラミックスなどの比較的親和性の高い親水性材料を用いる場合、これを部分的に疎水化する方法としては、接着剤,ロウなどの疎水性物質の表面コーティング,表面グラフト法,加工雰囲気に依存する疎水性官能基または疎水性分子の表面への付与を伴う方法(プラズマ法,イオン注入法,レーザー処理等)が挙げられる。
【0182】
このように流路5壁面の改質(親水化又は疎水化)を行なう場合には、流路5壁面の内、改質する部分にだけ上記処理を行ってもよいし、非改質部分をマスキングして流路5壁面全体に対して上記処理を一括して行なうようなこともできる。
また、別種の親水性,疎水性材料を組み立てることで、部分的パターンを形成することも可能である。即ち、例えば親水性の流路5壁面に疎水性の材質を貼り付けて疎水部を形成するようにしてもよい。
【0183】
また、本実施形態では、流路5全幅に渡って帯状の親水部5y及び疎水部5xを形成したが、その幅寸法や、流れ方向に並べられるその個数や、その相互間隔や、その形状は任意である。
【0184】
さらに、帯状の親水部5y及び疎水部5xは必ずしも流路5の流れ方向に対して直交する帯状に形成する必要はなく、図24に示すように、例えば、流路5の流れ方向に斜めに交差するよう延在する帯状に形成してもよい。また、疎水部5xが完全に流路5全幅に渡って形成されていなくても良い。親水部5y及び疎水部5x、即ち、第1及び第2の親和部の延在する角度や長さは、分析用チップ1Fの構成にあわせて適宜変更してもよいのである。
【0185】
また、親水部5y及び疎水部5xを非直線形状としても良い。たとえば、図25に示すように、孔11,12から仕切壁10bの端部までの距離を略等しく形成した場合には、疎水部5xを、孔11からの距離が略等しい弧状に形成することが好ましい。
また、本実施形態では第1及び第2の親和部をそれぞれ複数形成したが、これらは少なくとも1つ設けられていれば良い。ただし勿論、流れ方向に沿って複数並べることが好ましい。つまり、疎水部5xに到達した時点で液体検体Fs先端のばらつきが大きければこれを十分に抑制するのが困難となるため、疎水部5xを流れ方向に複数並べることにより繰り返し液体検体Fsの先端を揃えて確実に空気の抱き込みを防止できるようになるのである。
【0186】
また、第1の親和部5y及び第2の親和部5xは流路5内のどこに設けても良く、例えば、図26(a)に示すように、第1の親和部5y及び第2の親和部5xを流路5の中間部に設けたり、図26(b)に示すように、第1の親和部5y及び第2の親和部5xを下流側の集合流路部14に設けたり、図26(c)に示すように、流路5の全長にわたって第1の親和部5y及び第2の親和部5xを交互に設けたりしてもよい。
なお、図24,図25、図26(a)〜(c)に示すものは、その他の構成は上記第3実施形態と同様の構成となっている。
【0187】
なお、上記実施形態では、液体検体Fsが親水性である例を説明したが、液体検体Fsが疎水性のものであっても良く、この場合、上記疎水部を親油性部(比較的親油性の低い部分)に置き換え、上記親水部を、疎油性部よりも親油性の高い親油性部に置き換えれば良い。
【0188】
また、上記の実施形態では第1の親和部5yを親水部、第2の親和部5xを疎水部でそれぞれ構成したが、第1の親和部5xを粗面部として形成し、第2の親和部5yを滑面部として形成してもよい。ここで、滑面部は粗面部よりも表面が滑らかな部分を指す。通常、流路5の表面の塗れ性に注目すると、表面が滑らかな面は表面が粗い面よりも液体検体Fsに対して親和性が低いので、上述した実施形態と同様に、気泡の滞留を防止することができる。なお、第1実施形態では流路5の表面が粗い場合には流路5を流れる液体検体Fsの圧力損失が大きくなることを述べたが、圧力損失と固−気−液三相境界線での塗れ性(液体検体Fsが流通していない流路5に、はじめて液体検体Fsが流通する際の特性)とは異なる概念であり、上述した内容は第1実施形態の内容と矛盾するものではない。
【0189】
また、上記の実施形態では、流路5に第1の親和部5y及び第2の親和部5xのみが形成された例を示したが、本発明は少なくとも第1の親和部5y及び第2の親和部5xを有していれば良く、第1及び第2の親和部とは液体検体Fsに対する親和性が異なる新たな親和部を更に備えていてもよい。
【0190】
〔8〕第8実施形態
図27は、本発明の第8実施形態を説明する模式的斜視図である。
本発明の第8実施形態としての分析用チップユニット1Gは、図27に示すように、正八角柱に形成されたユニットベース300に、正八角柱の両端面それぞれの中央を貫通する回転支持軸302が取り付けられている。さらに、ユニットベース300の正八角柱の側面には、それぞれ第1,3〜7実施形態の分析用チップと同様の構成を有する単位チップ301が保持されている。また、ユニットベース300は支持軸301を回転中心として回転可能とされている。なお、上述の第1実施形態で説明した単位チップ301の構造については、上記の第1、第3〜第7実施形態で説明したので、その説明を省略する。また、図27では、説明のために単位チップ301の流路5の透視して示す。即ち、実際は蓋部2やプレート8,9,10が流路5の部分を覆っている。
【0191】
本発明の第8実施形態としての分析用チップユニット1Gは以上のように構成されているので、使用時には、分析用チップユニット1Gの所定の位置にある単位チップ301を用いて分析を行なう。つまり、所定の位置にある単位チップ301の注入口21から流路5に液体検体Fsを注入し、流路5内を流れる液体検体Fsの分析を行ない、分析後、液体検体Fsは排出口22から単位チップ301の外部に排出される。その単位チップ301を用いた分析が終わると、ユニットベース300を回転支持軸302を中心に所定角度(例えば、45°の整数倍)回転させ、先ほどとは別の単位チップ301を所定の位置に移動させて、所定の位置に移動させた単位チップ301を用いて分析を行なう。これを繰り返して、分析用チップユニット1Gを用いた分析を行なうのである。
【0192】
各単位チップ301に異なる種類の特定物質61を固定しておけば、分析用チップユニット1Gを回転させるだけで、簡単に異なる種類の所定物質を検出することができ、効率よく液体検体Fsの分析を行なうことができる。
【0193】
なお、本実施形態ではユニットベース300を正八角柱形状としたが、ユニットベース300の形状について特に制限はなく、任意の形状とすることができる。
また、ユニットベース300のすべての側面に単位チップ301を配置しなくても、ユニットベース300のすべての側面のうちの一部の側面に、単位チップ301を配置することもできる。
ユニットベース300の1つの面に保持する単位チップ301の数は1つに制限されるものではなく、図28に示すように、ユニットベース300の1つの面に複数の単位チップ301を保持するようにしてもよい。
もちろん、単位チップ301は第1,3〜7実施形態で説明したものと同一のものでなくても良く、他の構成を有する分析チップを単位チップとしてもよいことはいうまでもない。
【0194】
〔9〕第9実施形態
図29は本発明の第9実施形態を説明する模式図である。
本発明の第9実施形態としての分析用チップユニット1Hは、図29に示すように、平板状のユニットベース400に、上記第1,3〜7実施形態の分析用チップと同様の構成を有する単位チップ401を複数備えている。なお、上述の第1,3〜7実施形態で説明した単位チップ401の構造については、上記の第1,第3〜第7実施形態で詳述したので、その説明を省略する。
【0195】
さらに、最も上流にある単位チップ401の注入口21と最も下流にある単位チップ401の排出口22とを除き、各単位チップ401の注入口21と、その注入口21に対応する他の単位チップ401の排出口22とは、図29のようにそれぞれユニットベース401に設けられた連結流路402によって連結されている。この例では、1つの単位チップ401の排出口22と複数の単位チップ401の注入口21とが連結流路402で連結されていたり(図29の符号400a参照)、また、複数の単位チップ401の排出口22と1つの単位チップ401の注入口21とが連結流路402で連結されていたり(図29の符号400b参照)、さらには、複数の単位チップ401の排出口22と複数の単位チップ401の注入口21とが連結流路402で連結されていたりする(図29の符号400c参照)。
【0196】
本発明の第9実施形態としての分析用チップユニット1Hは以上のように構成されているので、最も上流にある注入口21から液体検体Fsを注入し、液体検体Fsを各単位チップ401及び連結流路402に流しながら分析を行なう。単位チップ401及び連結流路402を流れた液体検体Fsは、最も下流にある単位チップ401の排出口22から排出される。
【0197】
このように、単位チップ401を組み合わせた分析用チップユニット1Hを用いれば、液体検体Fsの分析を効率よく行なうことができる。
例えば、各単位チップ401に異なる種類の特定物質61を固定しておけば、1回分析を行なうだけで異なる種類の所定物質を検出することができ、効率よく液体検体Fsの分析を行なうことができる。
【0198】
また、各単位チップ401に同じ種類の特定物質61を固定しておけば、各単位チップ401にある反応部の観測や測定を行なうことができ、1回分析を行なうだけで多くのデータを得ることができるので、分析結果の信頼性を高めることができる。
【0199】
また、各単位チップ401を一体化して分析用チップユニット1Hとしたことによって、別々の分析用チップを用いる場合に生じるデッドボリュームを防止することができるとともに、分析用チップを複数用いる場合には必要となる配管などが不要となり、設備の準備や点検に要するコストを低減し、また、漏れの可能性、チップ外部での温度や湿度などの変化、配管、チューブ、コネクタなどの閉塞、チューブやコネクター材質との吸着など、精密で効率的な分析の障害となるものを小さくすることができる。
【0200】
なお、ユニットベース400に保持させる単位チップ401の配置や組み合わせに特に制限はなく、分析目的に応じて任意に設定することができる。
また、単位チップ401は第1、第3〜第7実施形態で説明したものと同一のものでなくても良く、他の構成を有する分析用チップを単位チップ401としてもよいことはいうまでもない。
【0201】
〔10〕第10実施形態
図30は、本発明の第10実施形態としての分析装置を説明する説明図である。図30に示すように、本発明の第10実施形態としての分析装置は、第1,第3〜第7実施形態で説明した分析用チップ1,1B,1C,1D,1E,1F(以下、分析用チップとしては符号1を使用する)と、分析用チップ1を流通する液体検体Fsの分析を行なう分析部501と、分析用チップ1の上流に備えられ、分析用チップ1に液体検体Fsを導入するに先立ち物理的及び/又は化学的な作用によって液体検体Fsを分離する分離装置(分離部)502と、分析用チップから排出された液体検体Fsを分析する後分析装置(後分析部)503とを備えている。なお、上述の第1,第3〜第7実施形態で説明した分析用チップについては、上記の第1,第3〜第7実施形態で詳細に説明したので、その説明を省略する。
【0202】
分析部501の種類は任意であるが、通常、分析部501は表面プラズモン共鳴、化学発光、生物発光、電気化学発光、蛍光、及びRI(放射性同位体分析)のいずれかの分析手法により分析を行なうものが好ましい。なお、分析部は上記手法のうちの1種の手法により分析を行なうものでも良く、2種以上の手法を組み合わせて分析を行なうものでもよい。
【0203】
分析部501が表面プラズモン共鳴を用いて分析を行なう場合には、その分析部501の具体的な装置構成は、上述した第2実施形態と同様に構成することができる。また特に、表面プラズモン共鳴を用いた分析部501では、分析用チップ1の背面から光を照射して、分析を行なうことも可能である。即ち、分析用チップ1の基板4側から分析用チップ1の流路5内に形成された反応部6に光を照射して、その反応部6からの反射光を分析用チップ1の基板4側で観測し、分析を行なうのである。ただしその場合には、照射された光が分析用チップ1の反応部6にまで届く必要があることから、当然基板4は照射される入射光が透過できるものでなくてはならない。したがって、分析用チップ1の背面から光を照射して分析を行なう場合には、通常、基板4は入射光と同じ波長を有する光を透過しうる素材で作製することになる。
【0204】
分析部501が蛍光により分析を行なうものである場合には、一般的には分析用チップの蓋部2を透明に形成し、蓋部2側から励起光を照射して蓋部2側から蛍光の検出を行なう。ただし、表面プラズモン共鳴により分析を行なう場合と同様に、分析用チップ1の背面側、即ち、基板4側から励起光を照射し、基板4側で蛍光を検出し、分析を行なうこともできる。なお、この場合には基板4を透明に形成することが必要となる。また、分析用チップ1の蓋部2側から励起光を照射して基板4側で蛍光を検出したり、逆に基板4側から励起光を照射して蓋部2側で蛍光を検出することも可能である。
【0205】
分析部501が化学発光や生物発光により分析を行なうものである場合にも、表面プラズモン共鳴や蛍光を用いる場合と同じく、適宜、分析用チップ1の透明部(透明に形成した部分)を通じて、任意の方向から化学発光の検出を行なうことができる。よって、例えば分析用チップ1の蓋部2を透明に形成した場合には蓋部2側から光の照射・検出をすることができるし、基板4を透明に形成した場合には基板4側から光の照射・検出をすることができる。なお、化学発光や生物発光においては、通常励起光の照射は不要である。
【0206】
分析部501が電気化学発光により分析を行なうものである場合も化学発光により分析を行なう場合とほぼ同様であるが、電気化学発光の場合には、基板4に電極を設けることに注意すべきである。したがって、電極が不透明の素材で形成されている場合には、たとえ基板4を透明な素材で形成していても基板4側から電気化学発光の検出を行なうことは難しい。ただし、電極が透明な素材(例えばITO)で形成されている場合や、不透明な素材で形成されているが極薄い薄膜状に形成されていることによって光が透過できる場合には、基板4側から光の照射、検出を行なうことも可能である。
【0207】
また、本実施形態の分析装置では、分析用チップ1の上流に、分析用チップ1に液体検体Fsを導入するに先立ち、物理的及び/又は化学的な作用によって液体検体Fsを分離する分離装置502が備えられている。
【0208】
分離装置502の種類は任意であるが、通常、試料の吸着性や分配係数に応じて分離を行う液体クロマトグラフィーやHPLC(high performance liquid chromatography),試料の電気陰性度に応じて分離を行うキャピラリー電気泳動やマイクロチップ電気泳動,マイクロチャネル電気泳動、或いはフローインジェクションの利用などが好適であるが、もちろんこの他の装置を分離装置502として分析装置に取り付けても良く、また、上記の装置を組み合わせて用いてもよい。
【0209】
マイクロチャネルは何らかのチップ表面に形成された試料が流れる溝のことであり、マイクロチャネル電気泳動は、この溝の一部にHPLCのカラム充填材に相当するものを詰めたり、溝表面に官能基を備えさせたりすることで、分離が可能となるものである。
また、フローインジェクションは試料が流れている状態で様々な反応を起こさせる手法であるが、例えば錯形成反応と溶媒抽出とを行い、試料中の検出種以外の物質を除去する等の処理をして、分離を行うことができる。
なお、もちろん上記以外の装置を分離装置502として分析装置に取り付けても良い。
【0210】
また、本実施形態の分析装置は、分析用チップから排出された液体検体Fsを分析する後分析装置503を備えている。後分析装置503の種類について特に制限はなく、任意の分析装置を後分析装置503として用いることができるが、具体例としては、MS(質量分析装置)、プロテインシーケンサ、DNAシーケンサ、SEM,SPM,STM,AFMなどが挙げられる。
後分析装置503は液体検体Fsを分析可能な状態にするような前処理機構を含めてもよい。また、上記の装置を組み合わせて用いてもよい。
【0211】
本発明の第10実施形態としての分析装置は以上のように構成されているので分析時には、分離装置502、分析用チップ1、後分析装置503の順に液体検体Fsが流され、分析が行なわれる。
分析部501で分析を行なう際に、分析用チップ1を用いて分析を行なうため、液体検体Fsを効率よく且つ精度良く行なうことができる。
【0212】
また、分離装置502を備えているので、酵素やたんぱく質等の所定物質を予め分離装置によって純粋な物質ごとに分離することができる。このため、純粋な物質となった所定物質を分析することができ、より正確な分析を行うことができる。
【0213】
さらに、後分析装置503を備えているので、一度の分析操作によって多くのデータを得ることができ、液体検体Fsをより多面的に分析することが可能となる。
【0214】
なお、本実施形態では分析用チップとして第1実施形態で説明した分析用チップ1を用いたが、分析用チップはこれと同一のものでなくても良く、他の構成、例えば第3〜第7実施形態にかかる構成を有する分析チップを用いてもよいことは言うまでもない。
【0215】
また、図31に示すように、本実施形態で用いた分析用チップの代わりに、第8実施形態又は第9実施形態で説明した分析用チップユニット1G,1Hを用いてもよい。なお、図31において図30と同じ符合のものを示している。
このような構成により、分析部501で分析を行なう際に、分析用チップユニット1G,1Hを用いて分析を行なうため、液体検体Fsを効率よく且つ精度良く行なうことができる。
【0216】
また、分離装置502を備えているので、酵素やたんぱく質等の所定物質を予め分離装置によって純粋な物質ごとに分離することができる。このため、純粋な物質となった所定物質を分析することができ、より正確な分析を行うことができる。
【0217】
さらに、後分析装置503を備えているので、一度の分析操作によって多くのデータを得ることができ、液体検体Fsをより多面的に分析することが可能となる。
【0218】
〔11〕その他
以上、本発明の第1〜第10実施形態について説明したが、本発明はこれらの実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形して実施することができる。
例えば、第1〜第10実施形態の構成をそれぞれ組み合わせて実施してもよい。特に、上述した第4〜第7実施形態は、第3実施形態の分析用チップの構成を中心に説明を行なったが、第1実施形態や第2実施形態など、他の実施形態の構成に組み合わせて実施してもよい。
また、例えば第3実施形態に第2実施形態を併合しても良い。即ち、第3実施形態の分析用チップ1Bにかかる蓋部2及びプレート10を透明な材料により構成し、また、基板4の特定物質61が固定される面に回折格子42及び金属層41を形成してセンサチップとして構成する。これにより、蓋部2及びプレート10を介して基板4に光を照射し、反応部6の各特定物質61からの反射光の光強度を検出することにより、第2実施形態の効果と同様に、試験流体中の検出種の濃度をリアルタイムで測定することが可能となる。
【0219】
また、上記の各実施形態では、液体検体Fsを輸送するための手段を、送液ポンプにより構成したが、液体検体Fsの輸送手段はこれに限定されず、送液ポンプ以外の圧力式のものは勿論、スリット状流路9a(第1,2実施形態),10a(第3実施形態)及び集合流路部81,82(第1,2実施形態),13,14(第3実施形態)に電場を加えることにより液体検体Fsの流れ(電気浸透流れ)を生起させるようにしても良いし、さらに、これらに毛細管現象による輸送を組み合わせても良い。
【0220】
さらに、上述した各実施形態では、液体検体Fsが水溶性である例を説明したが、液体検体Fsが油性のものであっても良い。
また、縦横比率(縦寸法/横寸法)0.005(例えば、縦5μm,横1mm)〜100(例えば、縦1000μm,横10μm)程度の横断面、且つ、5mm以下の横断面積を有する流路を、1つの注入口と1つの排出口との間に複数並列に設け、上記の各流路内に、所定物質と特異的又は非特異的に相互作用する特定物質をそなえるようにしても良い。また、上記の横断面積は、好ましくは100μm以上5mm以下、さらに好ましくは2000μm以上0.3mm以下であるのが良い。このように構成しても、流路内での気泡の発生を抑制することができ、また、気泡が発生しない最適な条件下で分析を行なうことができるので、分析結果の精度を向上させることが可能となる。
【0221】
また、内部流路を、複数の中間プレートに亘って構成してもよい。つまり、例えば図32(a)〜(d)に示すように、蓋部2と基板4との間に、仕切壁8b′によって分割されたスリット状孔8a′を有する第1のプレート8′と、仕切壁9b′によって分割されたスリット状孔9a′を有する第2のプレート9′とを挟み、スリット状孔8a′,8b′及びスリット状孔9a′がともに内部流路を形成するように構成してもよい。
【0222】
また、スクリーン印刷やインクジェットなどの印刷、又はコーティングなどにより、図33(a)に示すように基板4上に直接仕切壁(凸状部材)9b′を形成してもよい。なお、第1実施形態でも説明したようにして、中間プレート9′を用いて凸状部材を形成した場合には、例えば図33(b)に示すように、凸状部材9b′がスリット状孔9a′などによって中間プレート9′から離隔してしまい、分析用チップを組み立てることが難しいことがある。しかし基板2上に直接凸状部材9b′を形成すれば、このような場合でも簡単に凸状部材9b′を設けることができる。さらに、この技術を上記の第1,3実施形態をはじめ、他の実施形態に適用してもよい。
【0223】
また、図17で触れたが、図34に示すように、注入口21及び排出口22を分析用チップ1の側面に形成してもよい。ここでは、プレート8の対向する側面のうち、一方の側面に注入口として孔21が形成され、他方の側面に排出口として孔22が形成されている。これにより、例えば表面プラズモン共鳴センサにより分析を行なう場合には、分析用チップ1上部の光の通過部分に液体検体Fsを供給又は排出するためのコネクタを設ける必要がなくなるため、反応部6を広くすることができ、また、光源や検出器などの光学系を分析用チップに近づけることができるなどの利点を得ることができる。
【0224】
また、凸状部材の形状及び配置は上述した実施形態で説明したものに限定されるものではなく、任意の形状、配置とすることができる。以下、その具体例を、流路5の形状を模式図である図35(a)〜(f)に示して説明する。
例えば、図35(a)に示すように、凸状部材51として断続的に形成された断続した壁形状に形成してもよく、また、図35(b)に示すような、円柱状の凸状部材51を多数形成してもよい。さらに、図35(c)に示すように、凸状部材51を流路5の中央に1つだけ形成するようにしても良く、また、図35(d)に示すように、凸状部材(壁形状部材)51が流路5の壁面に接するように形成してもよい。さらに、図35(e)に示すように各凸状部材(壁形状部材)51の大きさや内部流路52の幅が異なっていてもよく、図35(f)に示すように、凸状部材(壁形成部材)51を内部流路52を流れ方向に一様な幅に形成しなくても良く、また、規則性なく形成してもよい。
【0225】
また、上述した各実施形態では凸状部材を支持部材として機能する仕切壁として形成したが、この凸状部材は支持部材又は仕切壁以外の機能を有していてもよい。たとえば、凸状部材が微細加工技術、MEMS技術、半導体製造技術などにより製造されたマイクロミキサー、マイクロポンプ、熱交換器(ヒーター、クーラー)、マイクロインジェクタなどのマイクロ流体素子などであってもよい。
【0226】
また、上述した各実施形態では、分析用チップの流路5の形状を略六角形のシート形状として説明したが、流路5はこれ以外の形状で形成してもよい。例えば、曲線のみで構成された形状としてもよいし、六角形形状以外の形状でもよい。さらには、円筒状などのシート状以外の形状の流路(シート状空間に形成された流路以外の形状を有する流路)に形成してもよい。
【0227】
なお、上記実施形態より、上記の凸状部材(仕切壁)は、気泡201の発生を抑制する機能に注目すると気泡抑制部手段を構成するものである、ということができ、さらに、流路5を複数の内部流路に分割する機能に注目すると流路5を分割する流路分割手段を構成するものであるということもできる。また、上記の凸状部材(仕切壁)は、分析用チップ1,1A〜1Hの変形を抑制する機能に注目すると変形抑制手段を構成するものであるということができ、使用する液体検体Fsの量を少量化する機能に注目すると液体検体少量化手段を構成するものであるということもできる。
【実施例】
【0228】
以下、本発明につき実施例を挙げて具体的に説明するが、本発明は勿論これらの実施例に限定されるものではなく、その要旨を越えない限りにおいて、種々の形態で実施することが可能である。
【0229】
平板樹脂上に、溝ピッチ約870nm、溝深さ約40nmの凹凸形状を形成し、この凹凸形状を回折格子として、さらにこの平板樹脂の表面に厚さ約80nmの金で形成された薄膜層を蒸着により形成した。この平板樹脂を25mm×25mmに切断して、基板を形成した。
【0230】
続いて、4インチシリコンウェハー(フルウチ化学社製)にフォトレジストNanoXP SU−8(50)(MicroChem Corporation社製)をスピンコートした後、加熱溶媒除去を30分間行ない、室温に冷却した後に、フォトフィルムマスク(ファルコム社製)を介して紫外線露光を行なった。この際、フォトフィルムマスクには、図46に示すように、凸状部材を有する分析用チップとなるスリット状構造を有するパターンP1と、従来の分析用チップとなるスリット状構造を持たないパターンP2とが同一のシリコンウェハー601上に転写されるようにパターンが形成されている。なお、これらのパターンP1,P2は、それぞれ分析用チップが完成した際に、分析用チップの流路部分に対応する形状となっており、その流れ方向の最大長さが10mm、幅方向の長さが最大21mmとされている。また、スリット状構造を有するパターンP1では、流路が幅0.5mmの内部流路に分けられるようスリットのパターンが形成されている。
【0231】
露光後にアフターベークを30分間行ない、引き続いてデベロッパー(Nano XP SU−8 Developer, MicroChem Corporation社製)により15分間現像し、最後にイソプロピルアルコール及び水で洗浄を行なった。
さらに、東レ・ダウコーニング社製のシリコーンエラストマーPDMS(ポリジメチルシロキサン)Sylgard184キットを用いて本剤−硬化剤比を10:1として攪拌後、真空下で脱気を−630Torr,15分で行なった。
【0232】
上記シリコンウェハー601上に、図47に示すように、厚み1mmのPMMA製のU字形状の型602と、厚み1mmの樹脂平板603とを重ねエラストマーの充填部分を形成し、充填部分の開放部から上記エラストマーを充填後、80℃、3時間で硬化させた。硬化後に、エラストマーをシリコンウェハー601及びU字形状の型602から剥がした。硬化後は、各パターンP1,P2が形成された部分に対応した部分をシート状流路部分として切り取り、樹脂平板603に注入口及び排出口となる貫通穴を形成した。切り取った部分それぞれに、蓋部として、注入口及び排出口となる貫通穴が形成された厚み1mmのPyrex(登録商標)ガラスを、その蓋部の貫通穴とフローセルの貫通穴とが整合するように位置合わせをして貼り合わせ、最後に、基板と組み合わせることにより、スリット状構造を有するパターンP1が形成された部分に対応するものを、凸状部材を有する分析用チップとして完成させ、また、スリット状構造を持たないパターンP2が形成された部分に対応するものを、従来の分析用チップとして完成させた。なお、流路部分の深さは両分析用チップにおいて90μmとなるように作成した。
【0233】
以上のように作成した、凸状部材を有する分析用チップ、及び、従来の分析用チップのそれぞれを用いて、SPR測定装置FLEX CHIPTM Kinetic Analysis System(HTS Biosystems社製)を用いてSPR分析を行なった。測定は30℃で行ない、純水を60分間分析用チップの流路内を一定流量500μl/minで流通させ、その際に角度スキャンさせた際の共鳴角の変動を約7秒おきに512点取得した。また、測定領域は10mm×10mmの検出領域内に8×20=160個の微小測定領域(ROI)を設けてそれぞれの値を取得した。各微小測定領域ごとの測定時間範囲(60分)における最大値と最小値との差をドリフト量として定義し、凸状部材を有する分析用チップと、従来の分析用チップとで比較した。凸状部材を有する分析用チップを用いた場合のドリフト量(angle difference)を図48(a)に示し、従来の分析用チップを用いたドリフト量(angle difference)を図48(b)に示す。各微小測定領域ごとのドリフト量の平均値(drift average)を、表1に示す。
【0234】
【表1】

【0235】
表1より、凸状部材を有する分析用チップでは、従来の分析用チップに比べてドリフト量が小さいことが分かる。これより、凸状部材を有する分析用チップでは、精度の高い分析を行なうことができ、また、分析作業のやり直し頻度及びそれに伴う液体検体の使用量を小さくすることができるので、分析を効率的に行なえることが確認された。
【図面の簡単な説明】
【0236】
【図1】本発明の第1実施形態としての分析用チップについて示す図であり、(a)はその模式的な組立斜視図、(b)はその模式的な分解斜視図である。
【図2】本発明の第1実施形態としての分析用チップについて示す模式的な図であり、(a)は図1(a)のY−Y断面図、(b)は図1(a)のX1−X1断面図、(c)は図1(a)のX2−X2断面図である。
【図3】本発明の第1実施形態としての分析用チップについて示す模式的な図であり、(a)はその蓋部の上面図、(b)はその中間プレートの上面図、(c)はその中間プレートの上面図、(d)はその基板の上面図である。
【図4】液体検体の流れ方向の定義を説明するための模式図である。
【図5】本発明の第1実施形態としての分析用チップの作製方法について説明するための模式的な上面図である。
【図6】(a)は従来のシート形状の空間内に形成された流路を模式的に示す平面図、(b)は本発明の第1実施形態としての分析用チップのスリット状流路を模式的に示す平面図である。
【図7】本発明の第1実施形態の第1変形例を示す模式的な図であり、(a)は蓋部の下面図、(b)は中間プレートの上面図、(c)は基板の上面図である。
【図8】本発明の第1実施形態の第2変形例を示す図であり、(a)は蓋部の下面図、(b)は基板の上面図である。
【図9】本発明の第1実施形態の第3変形例を示す模式的な図であり、(a)は蓋部の上面図、(b)は中間プレートの上面図、(c)は基板の上面図である。
【図10】本発明の第2実施形態にかかるSPRセンサの全体構成を示す模式的な斜視図である。
【図11】本発明の第2実施形態としての分析用チップの構成を示す模式的な分解斜視図である。
【図12】本発明の第3実施形態としての分析用チップについて示す図であり、(a)はその模式的な組立斜視図、(b)はその模式的な分解斜視図である。
【図13】本発明の第3実施形態としての分析用チップにそなえられる中間プレートを示す模式的な下面図である。
【図14】本発明の第3実施形態としての分析用チップについて示す模式的な図であり、(a)は図12(a)のY1−Y1断面図、(b)は図12(a)のX3−X3断面図である。
【図15】本発明の第3実施形態としての分析用チップの第1変形例について示す模式的な図であり、(a)は蓋部の下面図、(b)は基板の上面図である。
【図16】本発明の第3実施形態としての分析用チップの第2変形例について示す模式的な図であり、(a)は蓋部の下面図、(b)は基板の上面図である。
【図17】(a),(b)は、本発明の第3実施形態としての分析用チップの第3変形例を示す模式的な断面図である。
【図18】本発明の第3実施形態にかかる中間プレートの変形例を示す模式的な下面図である。
【図19】本発明の第4実施形態にかかる分析用チップを示す模式的な図で、(a)は中間プレートの下面図、(b)は蓋部の下面図、(c)は基板の上面図である。
【図20】本発明の第5実施形態にかかる中間プレートを示す模式的な図で、(a)は中間プレートの下面図、(b)は(a)のXXb部を拡大して示す図、(c)は従来のプレートの要部を拡大して示す図である。
【図21】本発明の第6実施形態にかかる分析用チップを示す模式的な図であり、(a)は分析用チップの流路の、仕切壁が形成された部分を流路の幅方向に直交する面で切断した断面図、(b)は(a)のXXIb部を拡大して示す図である。
【図22】本発明の第7実施形態にかかる中間プレートを示す模式的な下面図である。
【図23】(a),(b)はそれぞれ本発明の第7実施形態を説明するための模式図である。
【図24】本発明の第7実施形態の第1変形例にかかる中間プレートを示す模式的な下面図である。
【図25】本発明の第7実施形態の第2変形例にかかる中間プレートを示す模式的な下面図である。
【図26】(a),(b),(c)はそれぞれ、本発明の第7実施形態の第3〜第5変形例にかかる中間プレートを示す模式的な下面図である。
【図27】本発明の第8実施形態の分析用チップユニットの模式的な斜視図である。
【図28】本発明の第8実施形態の変形例の分析用チップユニットの模式的な斜視図である。
【図29】本発明の第9実施形態の分析用チップユニットを説明する模式的な平面図である。
【図30】本発明の第10実施形態にかかる分析装置を説明する模式的な図である。
【図31】本発明の第10実施形態の変形例にかかる分析装置を説明する模式的な図である。
【図32】本発明の実施形態を示す模式的な図であり、(a)は蓋部を示す上面図、(b)は第1のプレートを示す上面図、(c)は第2のプレートを示す上面図、(d)は基板を示す上面図である。
【図33】本発明の実施形態にかかる分析用チップを示す模式的な図で、(a)はその分解斜視図、(b)は要部を流路の流れ方向に直交する面で切断した断面図である。
【図34】本発明の実施形態を示す、分析用チップの模式的な組み立て斜視図である。
【図35】(a)〜(f)はいずれも本発明の分析用チップの流路の例を説明するための模式的な図である。
【図36】(a),(b)はいずれも従来の分析用チップを説明するための模式的な図である。
【図37】従来の分析用チップを説明するための模式的な図である。
【図38】(a),(b)は従来の分析用チップを説明するための模式的な図である。
【図39】(a),(b)は従来の分析用チップを説明するための模式的な図である。
【図40】液体検体が先回りする様子を説明する図である。
【図41】液体検体の先回りを防止するための流路の構成を説明する図である。
【図42】液体検体の先回りを防止するための流路の構成を説明する図である。
【図43】液体検体の先回りを防止するための流路の構成を説明する、流路の横断面図である。
【図44】液体検体の先回りを防止するための流路の構成を説明する図である。
【図45】本発明の第1実施形態の変形例を示す図で、(a)はその蓋部の上面図、(b)はそのプレートの上面図、(c)はその基板の上面図である。
【図46】本発明の実施例を説明するための図である。
【図47】本発明の実施例を説明するための図である。
【図48】(a)は本発明の実施例の結果を示すグラフ、(b)は従来の分析用チップを用いた結果を示すグラフである。
【符号の説明】
【0237】
1,1A,1B,1C,1C,1E,1F 分析用チップ
1G,1H 分析用チップユニット
2 蓋部
2a スリット状溝
2b 仕切壁
4 基板
4a スリット状流路
4b 仕切壁
5,5′ 流路
5a 流路5の横断面の長辺
5b 流路5の横断面の短辺
5x 疎水部(第2の親和部)
5y 親水部(親水性部。第1の親和部)
6 反応部
8,8′ プレート(中間プレート)
9,9′ プレート(中間プレート)
8a′,9a,9a′ スリット状孔(スリット状流路)
8b′,9b,9b′ 仕切壁
10 プレート(中間プレート)
10a スリット状溝(スリット状流路)
10b 仕切壁
10c 縮流部
10t 4フッ化エチレンの層
11,12 孔
13,14 凹部
21 孔(注入口)
21′,22′ 溝部(集合流路部)
26,27 パイプ
22 孔(排出口)
23,24 溝部
41 金属層
42 回折格子
43,44,46,47 溝部(凹部)
51 凸状部材
52,52a〜e 内部流路
61 特定物質
81 孔(集合流路部)
81x 孔81の上流端部
82 孔(集合流路部)
82x 孔82の下流端部
83 スリット状孔
91 スリット状孔(スリット状流路)の上流端部
92 スリット状孔(スリット状流路)の下流端部
91′,92′ 孔
100 光源
101 検出器
200 気体
201 気泡
202 粒子状物質
204 反応領域
204a 気泡201の近辺
205 測定領域
300,400 ユニットベース
302 回転支持軸
301,401 単位チップ
402 連結流路
501 分析部
502 分離装置
503 後分析装置
601 シリコンウェハー
602 U字形状の型
603 樹脂平板
Fs 液体検体
S、St1〜St4 固−気−液三相境界線
W 流路の幅
H 流路の高さ
P1 スリット状構造を有するパターン
P2 スリット状構造を持たないパターン

【特許請求の範囲】
【請求項1】
閉断面構造を有する流路に圧力式の輸送手段で液体検体を流通させて、所定物質と、該流路に面して固定される特定物質との相互作用に基づいて該液体検体に関する分析を行なうのに使用される、分析用チップにおいて、
該流路に、該流路を幅方向に分割する仕切部材を有し、
該流路が、該仕切部材により分割された複数の内部流路を有している
ことを特徴とする、分析用チップ。
【請求項2】
該流路が、シート状空間に形成されている
ことを特徴とする、請求項1記載の分析用チップ。
【請求項3】
該流路の上流端部に設けられ、該液体検体を注入する1つの注入口と、
該流路の下流端部に設けられ、該液体検体を排出する1つの排出口とがそなえられている
ことを特徴とする、請求項1又は請求項2に記載の分析用チップ。
【請求項4】
基板と、
蓋部材と、
上記の基板と蓋部材との間に介装され、上記の基板及び蓋部材の少なくとも一方と協働して該流路を有するシート状空間を形成する少なくとも1枚の中間プレートとを備えて構成されている
ことを特徴とする、請求項1〜3のいずれか1項に記載の分析用チップ。
【請求項5】
該中間プレートに1つ又は複数の内部孔が形成され、
該基板と該蓋部材とが該中間プレートを挟んで重ね合わされ、該内部孔により該内部流路が形成される
ことを特徴とする、請求項4記載の分析用チップ。
【請求項6】
該中間プレートの該基板とは反対側の面が、該中間プレートの内部孔の壁面及び/又は該基板の該流路側表面よりも、特定物質含有液に対する親和性が低い部材により構成されている
ことを特徴とする、請求項5記載の分析用チップ。
【請求項7】
基板と、
該基板に対向して配置され、該基板と協働して該流路を有するシート状空間を形成する蓋部材とを備えて構成されている
ことを特徴とする、請求項1〜3のいずれか1項に記載の分析用チップ。
【請求項8】
該基板と該蓋部材とが互いに重なり合うように構成され、上記の基板及び蓋部材の対向する面のうちの少なくとも一方の面側に該内部流路が形成される
ことを特徴とする、請求項7記載の分析用チップ。
【請求項9】
該内部流路の下流端部に、該内部流路が次第に狭くなる縮流部が形成されている
ことを特徴とする、請求項1〜8のいずれか1項に記載の分析用チップ。
【請求項10】
該内部流路が、該注入口から該排出口にかけて形成されている
ことを特徴とする、請求項1〜9のいずれか1項に記載の分析用チップ。
【請求項11】
該仕切部材が仕切壁として構成されるとともに、該内部流路が、該流路の流れ方向の中間部において該仕切壁によって分割されたスリット状流路であって、
該流路の流れ方向の上流端部及び下流端部に形成され、該液体検体が集合する集合流路部を有する
ことを特徴とする、請求項1〜9のいずれか1項に記載の分析用チップ。
【請求項12】
該上流端部側の該集合流路部は、該注入口から該中間部にいくにしたがって幅広になるように形成され、
該下流端部側の該集合流路部は、該中間部から該排出口にいくにしたがって幅狭になるように形成されている
ことを特徴とする、請求項11記載の分析用チップ。
【請求項13】
該上流端部側及び該下流端部側の該集合流路部それぞれが、該基板又は該蓋部材に設けられている
ことを特徴とする、請求項12記載の分析用チップ。
【請求項14】
該スリット状流路は、5mm以下の横断面積を有していることを特徴とする、請求項11〜13のいずれか1項に記載の分析用チップ。
【請求項15】
該横断面の縦横比率が、0.005〜100程度である
ことを特徴とする、請求項14記載の分析用チップ。
【請求項16】
該特定物質が、該内部流路に面して互いに基準間隔を空けてスポット状に複数点固定されている
ことを特徴とする、請求項1〜15の何れか1項に記載の分析用チップ。
【請求項17】
該流路に、該特定物質が固定されている
ことを特徴とする、請求項1〜15のいずれか1項に記載の分析用チップ。
【請求項18】
該流路に、第1の親和部と、該第1の親和部よりも該液体検体に対する親和性が低い第2の親和部とがそれぞれ設けられていることを特徴とする、請求項1〜17のいずれか1項に記載の分析用チップ。
【請求項19】
該流路の表面に該特定物質が固定化され、
該特定物質が固定化された部分よりも該流路の流れ方向上流に、該第1の親和部及び該第2の親和部が設けられていることを特徴とする、請求項18記載の分析用チップ。
【請求項20】
該第1の親和部及び該第2の親和部が、それぞれ該流路の流れ方向と交差する向きに延在する帯状に形成されていることを特徴とする、請求項18又は請求項19に記載の分析用チップ。
【請求項21】
該第1の親和部及び該第2の親和部が、交互に且つそれぞれ複数並べて形成されていることを特徴とする、請求項18〜20のいずれか1項に記載の分析用チップ。
【請求項22】
該第1の親和部が親水性部であり、該第2の親和部が疎水性部であることを特徴とする、請求項18〜21のいずれか1項に記載の分析用チップ。
【請求項23】
該第1の親和部が粗面部であり、該第2の親和部が滑面部であることを特徴とする、請求項18〜22のいずれか1項に記載の分析用チップ。
【請求項24】
該流路に該特定物質が固定される面を備え、
該面に、
光の照射によりエバネッセント波を生じさせる回折格子と、
表面プラズモン波を誘起しうる金属層とがそなえられている
ことを特徴とする、請求項1〜23の何れか1項に記載の分析用チップ。
【請求項25】
該分析用チップが、ヤング率が60GPa以上1000GPa以下の材料により構成されていることを特徴とする、請求項1〜24のいずれか1項に記載の分析用チップ。
【請求項26】
流路に特定物質をそなえ、
該流路に圧力式の輸送手段で液体検体を流通させて、該液体検体中の該所定物質と該特定物質との相互作用に基づいて該液体検体に関する分析を行なうのに使用される、分析用チップにおいて、
該液体検体を注入する1つの注入口と、
該液体検体を排出する1つの排出口とをそなえ、
該流路が、縦横比率0.005〜100程度の横断面、且つ、5mm以下の該横断面積を有し、該注入口と該排出口との間に複数並列に設けられている
ことを特徴とする、分析用チップ。
【請求項27】
複数の面を有するユニットベースを有し、該ユニットベースの面上に、請求項1〜26のいずれか1項に記載の分析用チップを単位チップとして備えている
ことを特徴とする分析用チップユニット。
【請求項28】
ユニットベースを備え、
該ユニットベース上に、請求項1〜26のいずれか1項に記載の分析用チップを単位チップとして複数備え、
該複数の単位チップのうちの対応した単位チップ間を連結する連結流路が設けられている
ことを特徴とする、分析用チップユニット。
【請求項29】
上記請求項6記載の分析用チップに該特定物質を固定し、該特定物質が固定された分析用チップを作製する、分析用チップの作製方法であって、
該基板上に該中間プレートを固定し、
次いで、該中間プレートの該内部孔を通して該基板に該特定物質含有液を滴下し、該特定物質を該基板にスポット状に固定させた後、
該中間プレート上に該蓋部を固定する
ことを特徴とする、分析用チップの作製方法。
【請求項30】
請求項1〜26のいずれか1項に記載の分析用チップ、又は、請求項27若しくは28に記載の分析用チップユニットと、
液体検体の分析を行なう分析部とを備えることを特徴とする、分析装置。
【請求項31】
該分析部が、表面プラズモン共鳴、化学発光、生物発光、電気化学発光、蛍光、及び放射性同位体分析からなる群より選ばれる少なくともいずれか1種の手法を用いた分析手法により分析を行なうことを特徴とする、請求項30記載の分析装置。
【請求項32】
該分析用チップ又は該分析用チップユニットに該液体検体を導入するに先立ち、物理的及び/又は化学的な作用によって該液体検体を分離する分離部を備えることを特徴とする、請求項30又は31記載の分析装置。
【請求項33】
該分析用チップ又は該分析用チップユニットから排出された該液体検体を分析する後分析部を備えることを特徴とする、請求項30〜32のいずれか1項に記載の分析装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate

【図26】
image rotate

【図27】
image rotate

【図28】
image rotate

【図29】
image rotate

【図30】
image rotate

【図31】
image rotate

【図32】
image rotate

【図33】
image rotate

【図34】
image rotate

【図35】
image rotate

【図36】
image rotate

【図37】
image rotate

【図38】
image rotate

【図39】
image rotate

【図40】
image rotate

【図41】
image rotate

【図42】
image rotate

【図43】
image rotate

【図44】
image rotate

【図45】
image rotate

【図46】
image rotate

【図47】
image rotate

【図48】
image rotate


【公開番号】特開2009−8690(P2009−8690A)
【公開日】平成21年1月15日(2009.1.15)
【国際特許分類】
【出願番号】特願2008−220975(P2008−220975)
【出願日】平成20年8月29日(2008.8.29)
【分割の表示】特願2003−196080(P2003−196080)の分割
【原出願日】平成15年7月11日(2003.7.11)
【出願人】(000005968)三菱化学株式会社 (4,356)
【Fターム(参考)】