説明

分析装置

【課題】容器の外部から容器内の液体試料の攪拌が可能で、複雑な工程の自動測定を簡便に行うことができるようにする。
【解決手段】基台1に容器載置部2が設けられ、この容器載置部2に液体試料を入れた使い捨て容器3が取り付け可能とされている。基台1上の辺部には支柱4が設けられ、支柱4内のモータ機構5により固体センサ6が上下動自在とされ、固体センサ6を容器3内の液体試料中に浸漬できるようにされている。また、容器載置部2には撹拌手段7が構設され、容器3に押圧力を反復して加えて、容器3内の液体試料を撹拌できるようにされている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、液体試料中の特定の測定対象物を分析する分析装置に関するものである。
【背景技術】
【0002】
固体センサを液体試料に浸漬して、液体試料中の特定の測定対象物を検出することは広く行われ、電気的又は電気化学的な手法により、温度、イオン濃度、導電率、溶存酸素濃度などの測定が多く行われている。また光学的手法としては、光透過性基材から成る光学プローブなどから成るセンサに、光を導入及び/又は収集することにより、吸光度、濁度、発光量、屈折率などの測定を行い、これらの量から測定対象物の濃度を求めることも可能である。例えば、特許文献1のように光ファイバ内部に全反射光を伝播させ、ファイバ表面に発生するエバネッセント波を励起光とする蛍光免疫法が知られている。
【0003】
【特許文献1】特許1916924号公報
【0004】
このような測定において、固体センサの液体試料中への浸漬又は浸漬に先立って、液体試料の攪拌を行う場合がある。また、液体試料の希釈、pH調整等の前処理、測定可能な状態に測定対象物を誘導する反応などを目的として、別の試薬等を混合して攪拌する場合がある。容器が大きい場合には、通常の攪拌子などを用いて攪拌が行われるが、比較的少量の試料を扱う自動化装置においては、装置に用意した分注機構により試料又は試薬の注入と流束を利用した攪拌が行われることも多い。この際に、配管が汚染の原因となり易いので、特許文献2のように分注機構の自動洗浄や、特許文献3のように吸引ノズルの自動交換などが行われる。
【0005】
【特許文献2】特許2956547号公報
【特許文献3】特許3142830号公報
【発明の開示】
【発明が解決しようとする課題】
【0006】
しかし、分注機構の自動洗浄や吸引ノズルの自動交換は複雑な機構になり易く、保守性も悪い。
【0007】
本発明の目的は、上述の問題点を解消し、容器の外部から容器内の液体試料の攪拌が可能で、複雑な工程の自動測定を簡便に行うことができる分析装置を提供することにある。
【課題を解決するための手段】
【0008】
上記目的を達成するための本発明の要旨は、容器中の液体試料中の特定の測定対象物を検出する分析装置であって、前記液体試料中に浸漬して前記測定対象物を検出する検出手段と、前記容器の外部に設け前記液体試料を撹拌する撹拌手段とを備えたことを特徴とする分析装置である。
【発明の効果】
【0009】
本発明に係る分析装置によれば、液体試料の撹拌、測定を確実に実施できるので、操作者の負担を軽減でき、しかも保守が容易である。
【発明を実施するための最良の形態】
【0010】
本発明を図示の実施の形態に基づいて詳細に説明する。
図1は分析装置の概略構成図であり、基台1に容器載置部2が設けられ、この容器載置部2に液体試料を入れた使い捨て容器3が取り付け可能とされている。基台1上の辺部には支柱4が設けられ、支柱4内のモータ機構5により固体センサ6が上下動自在とされ、固体センサ6を容器3内の液体試料中に浸漬できるようにされている。また、容器載置部2には撹拌手段7が構設され、容器3に対し押圧或いは振動を加えて容器3中の液体試料を撹拌し得るようになっている。更に、モータ機構5、撹拌手段7には駆動制御部8の出力が接続され、固体センサ5の出力は信号処理部9に接続されている。
【0011】
図2は具体的な構成図を示し、容器3の下部には柔軟で弾力性のある部材から成り試薬を予め入れた房室3aが設けられ、上部に細径部3bを介して測定室3cが設けられている。
【0012】
操作者は測定室3c内に液体試料を注入するが、この状態では液体試料と房室3a内の試薬の混合は実質的に生じない。そこで、駆動制御部8を介して撹拌手段7により房室3aの器壁に対し押圧を反復的に行い、試薬を細径部3bを介して測定室3c内に押し出すと共に、液体試料を房室3a内に引き入れることを繰り返し、液体試料と試薬の撹拌、混合を促進する。
【0013】
この動作により、液体試料と試薬のほぼ均一な混合が達成でき、その後に房室3aを押し潰した状態で上方から固体センサ6を下降させて、測定部3c内の液体試料中に固体センサ6を浸漬して検出を行う。
【0014】
この際に、撹拌手段7は容器3内の液体試料に接触することがないので汚染は生じない。なお、房室3aは必須ではないが、細径部3bを通過することにより生ずる噴流が効率の良い混合効果をもたらす。或いは、房室3aを複数個設けることにより、より多くの種類の試薬を液体試料に加えることも可能である。
【0015】
細径部3bとしては、図2に示すような細管の他に、容器3の器壁を絞って設けたベンチュリ管や、仕切壁に開けたオリフィスが代用できる。また、試薬の保存性を高めるために、細径部3bにコック等を設けてもよい。
【0016】
図3の構成においては、容器3の測定室3cには予め試薬が格納されており、操作者はこの測定室3cに液体試料を注入する。この状態では、液体試料と試薬の混合は不十分であるが、圧電セラミック等から成る超音波振動子から成る撹拌手段7によって振動を与えることにより、測定室3c内の液体に流動を生じさせて攪拌、混合が行われる。
【0017】
この場合、測定対象物や試薬類が破壊される虞れがある場合には、その振動強度や印加時間に注意をする必要がある。撹拌手段7は容器3の壁に直接接触させてもよいし、水などの媒体を介して間接的に振動を伝達させることも可能である。
【0018】
図4の構成においては、容器3は偏芯回転軸10を有する偏芯回転機構11上に載置されている。この偏芯回転機構11によって容器3を回転移動して、容器3内の液体に遠心力を与えて攪拌を行うことができる。この方式は容器3の径が或る程度大きい場合に特に有効である。
【0019】
図5は固体センサ6として光ファイバを用いた測定光学系の構成図を示し、抗体固定部21を設けた光ファイバ22に対して、レンズ23、ダイクロイックミラー24、レンズ25、635nmの波長光を出射する半導体レーザー光源26が配列され、ダイクロイックミラー24の反射方向にレンズ27を介してフォトダイオード28が配置されている。
【0020】
半導体レーザー光源26からレンズ25、ダイクロイックミラー24、レンズ23を介して光ファイバ22にレーザー光を導入し、抗体固定部21から得られる反射光を、レンズ23、ダイクロイックミラー24、レンズ27を介してフォトダイオード28で検出し、反射光中に含まれる測定対象物に関する情報を求めることができる。
【0021】
本発明を適用すべき測定系、即ち混合及び攪拌を必要とする測定系としては、例えば競合的な免疫法測定が挙げられる。適当な光ファイバに捕捉抗体を固定しておき、予め液体試料と一定量の標識抗原を混合、反応させた液体試料に固体センサを浸漬する。液体試料中の抗原量が多いほど標識抗原が捕捉されず、標識からの例えば吸光度、発光、酸化還元電流などの信号がより減少する。
【0022】
別法としては、光ファイバに標準抗原を固定しておき、予め一定量の標識抗体を混合、反応させた液体試料に光ファイバを浸漬する。液体試料中の抗原量が多いほど標識抗体が捕捉されず、標識からの信号がより減少する。その他の測定系としては、金属とキレート剤の錯形成反応、核酸の増幅反応などの反応を前段階として経る系が挙げられる。
【0023】
また、反応以外の適用形態としては、固体試料の溶解、固体試料からの抽出、液体試料の希釈、pH調整、夾雑物の吸着除去等の前処理が挙げられる。混合する液体が汚染をもたらす虞れがない場合に、例えば液体試料に対して希釈用の溶媒を添加する場合においては、注入の目的に限って洗浄や交換のない分注機構を用いることもできる。また、温調機構などその他の装備は、攪拌手段に支障のない範囲で設けることができる。
【0024】
また、上記の形態は何れも固体センサを浸漬する前に、予め液体試料の混合を行う測定系であるが、同様な攪拌手段を固体センサの浸漬中に使用することもできる。例えば、測定対象物が微粒子や高粘度である場合に、攪拌により固体センサの表面への測定対象物の輸送が促進され、測定時間の短縮や測定感度の向上をもたらすことができる。
【0025】
本分析装置において、固体センサとして各種の型式のものが適用可能であるが、表面に傷を受けた場合に性能が低下し易いセンサへの適用は更に好適である。この種のものとして、光透過性の基材から成る光学的センサや、表面にタンパク等を固定したバイオセンサが挙げられる。これらのセンサをより少量の液体試料への浸漬中に攪拌動作を行う場合に、攪拌羽根、磁気攪拌子、磁性粒子のような攪拌機構を用いることは、センサの表面を傷付ける虞れがあるが、本発明のように容器の外部に設けた攪拌手段による極めて簡素な構成によって、このような問題を回避することができる。
【0026】
図2の構成において、固体センサ6としてポリスチレン製光ファイバから成る光学センサを用いて、蛍光免疫法によるヒスタミンの測定を行った。光学センサは図5に示すような直径1mmの光ファイバ22の一端から約4cmの固定部21に抗ヒスタミンモノクローナル抗体を固定して浸漬側とした。ポリプロピレンによる肉厚0.2mmの容器3を作製し、房室3aにCy5色素(アマシャムバイオサイエンス社製)で標識した標識ヒスタミンの緩衝液溶液を用意した。
【0027】
ヒスタミンを含む液体試料を容器3の測定室3cに入れ、房室3aを遊星型ローラによる突き押し機構により2分間揉んだ。その後に、光ファイバ22を浸漬し、レーザー光を導入して蛍光量を電流値として計測した。液体試料に含まれるヒスタミンの量に応じて蛍光量が減少することが確認された。
【0028】
図3の構成において、固定センサ6として導電率センサを用いて、食材中の塩分量の測定を行った。予め、イオン交換水が格納されているポリプロピレン製の容器3にタラコ等の塩蔵品を投入し、容器3に超音波振動を10分間加えた。その後に、導電率センサを浸漬し導電率を測定した。濃度既知の食塩水に基づく検量線との比較により、塩分量を推定することができた。
【0029】
図4の構成において、固定センサ6としてポリスチレン製光ファイバを用いて、蛍光免疫法による食品の大腸菌O157を測定した。2〜3cfu/ml(生菌)を含む菌液100μlを、牛肉ブロックの表面に塗布しモデル食材とした。牛肉の表面を綿棒で拭き取り、ポリプロピレン製の容器3に予め格納されたTSB培地溶液に分散させた。
【0030】
42℃の環境で偏芯回転(1000rpm)を4時間行った後に、先の光ファイバ22にヤギ抗O157ポリクローナル抗体を固定し5分浸漬した。別の容器に用意した標識抗体(同一抗体をCy5色素で標識)の緩衝液溶液に光ファイバ22を搬送し、レーザー光を導入し5分間の間に増加した蛍光量を電流値として検出した。数個のO157生菌を約5000cfu/mlに増菌して検出できることが確認された。
【図面の簡単な説明】
【0031】
【図1】分析装置の概略構成図である。
【図2】容器周辺の構成図である。
【図3】容器周辺の他の構成図である。
【図4】容器周辺の更に他の構成図である。
【図5】測定光学系の構成図である。
【符号の説明】
【0032】
1 基台
2 容器載置部
3 容器
3a 房室
3b 細径部
3c 測定部
5 モータ機構
6 固体センサ
7 撹拌手段
8 駆動制御部
9 信号処理部
11 偏芯回転機構
21 抗体固定部
22 光ファイバ
24 ダイクロイックミラー
26 半導体レーザー光源
28 フォトダイオード

【特許請求の範囲】
【請求項1】
容器中の液体試料中の特定の測定対象物を検出する分析装置であって、前記液体試料中に浸漬して前記測定対象物を検出する検出手段と、前記容器の外部に設け前記液体試料を撹拌する撹拌手段とを備えたことを特徴とする分析装置。
【請求項2】
前記液体試料は前記検出手段による検出に先立ち、前記撹拌手段により少なくとも2種類の液体を前記容器中で混合及び攪拌することを特徴とする請求項1に記載の分析装置。
【請求項3】
前記撹拌手段は前記容器の器壁を外側から間欠的に押圧することを特徴とする請求項1又は2に記載の分析装置。
【請求項4】
前記容器の下部に細径部によって仕切った房室を設け、該房室の器壁を外側から間欠的に押圧して前記房室の圧縮及び復元を行うことを特徴とする請求項3に記載の分析装置。
【請求項5】
前記撹拌手段は前記容器の器壁の外側に直接的又は間接的に接触させた振動素子により前記液体試料に振動を与えることを特徴とする請求項1又は2に記載の分析装置。
【請求項6】
前記撹拌手段は前記容器を外側から偏芯回転させることを特徴とする請求項1又は2に記載の分析装置。
【請求項7】
前記検出手段は光透過性の透明材料から成る光学センサとしたことを特徴とする請求項1又は2に記載の分析装置。
【請求項8】
前記光学センサの表面に抗体、抗原、酵素、レセプタ、核酸塩基、糖鎖の中から選択した少なくとも1つを固定化したことを特徴とする請求項7に記載の分析装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公開番号】特開2006−47250(P2006−47250A)
【公開日】平成18年2月16日(2006.2.16)
【国際特許分類】
【出願番号】特願2004−232277(P2004−232277)
【出願日】平成16年8月9日(2004.8.9)
【出願人】(393002634)キヤノン化成株式会社 (640)
【Fターム(参考)】