説明

加振機能を有するアクティブ除振装置

【課題】被支持体へ試験振動を付加する機能を有するアクティブ除振装置において、その試験振動に連成する振動を相殺し、正確な振動試験を行えるようにする。
【解決手段】被支持体に対し6自由度の各方向に制御力を付加するようにアクチュエータ群が設けられ、各々の自由度方向に少なくとも速度に比例する制御力を発生するよう除振フィードバック制御される。例えばx軸方向に試験振動を付加するときには、そのための加振信号をx軸方向の除振フィードバックループに挿入する加振制御部3cと、その試験振動に連成して他の方向に現れる振動を相殺すべく、加振信号から生成した連成抑制信号を連成する方向の制御の操作量に加える連成抑制制御部3dと、を備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、例えば半導体製造装置や精密計測装置等、振動の影響を受けやすい精密な装置、機器等の設置に用いられるアクティブ除振装置に関し、特に、被支持体へ試験振動を付加する加振機能を有するものに係る。
【背景技術】
【0002】
従来より、この種のアクティブ除振装置として例えば特許文献1には、半導体製造装置等の精密機器を載置するための試験機台に、各々空気ばねからなる3〜4基の垂直方向アクチュエータと、同3〜4基の水平方向アクチュエータとを備えたものが記載されている。このものでは垂直、水平のそれぞれの方向について、機器に配設した加速度センサからの信号を制御用回路に入力し、所謂PIDフィードバック制御によって前記アクチュエータ群を制御するようにしている。
【0003】
すなわち、前記試験機台の各アクチュエータ(空気ばね)には、それぞれに空気を給排するための制御弁が備えられており、前記制御用回路においては、加速度センサからの信号を比例、積分及び微分の各アンプに入力し、それぞれ制御ゲインを乗算した上で加算して前記制御弁に入力する。つまり、機器の加速度をフィードバックするPID制御によって空気ばねの内圧を調整することにより、外乱振動を減殺するような制御力を発生させるのである。
【0004】
それに加えて前記の試験機台では、本来、前記のように外乱振動を減殺するためのアクチュエータ群を利用して、機器に試験振動を付加する加振機能も有している。すなわち、前記のように外乱振動を減殺するための加速度のフィードバックループに、例えばCPU内で生成する試験波形を加振信号として挿入することによって、外乱振動を極力、取り除いた状態で試験振動を機器に付加することができる。
【0005】
詳しくは例えば同文献の第4頁第7欄第40〜48行や図4(a)には、積分アンプ(20a)に入力する加速度の反転信号に試験振動(T)成分を加算する一方、比例アンプ(21a)や微分アンプ(22a)には加速度の信号のみを入力し、前記加速度信号及び試験振動(T)成分の積分値と加速度信号の比例値、微分値とを合算して、制御弁(14)の駆動信号を生成することが開示されている。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特許第2864038号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
ところで、前記従来例のような試験機台では一般的に、アクチュエータからの制御力の作用線が機器の重心を通らないことから、例えば上下、前後及び左右の直交座標系における6自由度のいずれかの方向に試験振動を付加するときに、これに連成して別の自由度方向の振動が励起されることがある。
【0008】
こうして励起される連成振動は外乱とみなされ、上述した加速度のフィードバック制御によって軽減されることになるが、正確な振動試験を行う上で好ましいものとは言えない。つまり、試験振動の付加に付随して好ましくない外乱が引き起こされるということであり、甚だ不合理である。
【0009】
斯かる点に鑑みて本発明の目的は、アクティブ除振装置において機器等へ試験振動を付加する機能を追加する場合に、この試験振動に連成する振動を取り除いて、正確な振動試験を行えるようにすることである。
【課題を解決するための手段】
【0010】
前記の目的を達成するために本発明に係るアクティブ除振装置では、試験振動を生成するための加振信号から連成振動を相殺するような信号を生成して、これを連成振動の現れる自由度方向の制御の操作量に加えるようにした。
【0011】
具体的に、請求項1の発明は、被支持体を基礎に対して弾性的に支持するとともに、該被支持体の振動状態を検出するセンサからの信号を入力し、その振動を減殺する制御力を発生するようにアクチュエータ群をフィードバック制御する、除振制御手段を備えたアクティブ除振装置が対象である。
【0012】
そして、前記アクチュエータ群が前記被支持体に対して6自由度の各自由度方向に制御力を付加可能に設けられており、前記除振制御手段は、前記被支持体の各自由度方向についてそれぞれ、加速度、速度及び変位のうちの少なくとも速度に比例する制御力を発生するように、前記アクチュエータ群を制御するものとする。そして、この場合に、被支持体の各自由度方向のうちの所定方向に試験振動を付加すべく、該試験振動に対応する加振信号を、前記除振制御手段による当該自由度方向の制御のフィードバックループに挿入する加振制御手段と、その試験振動に連成して別の自由度方向に現れる連成振動を減殺すべく前記加振信号から生成した連成抑制信号を、前記除振制御手段による当該別の自由度方向の制御の操作量に加える連成抑制制御手段と、を備える構成とする。
【0013】
前記の構成により、まず、センサからの信号を受けた除振制御手段によって、被支持体の振動状態に応じてアクチュエータ群がフィードバック制御され、該被支持体にはその6自由度の各自由度方向について各々外乱振動を減殺するような制御力が付加される。この制御力は被支持体の少なくとも速度に比例するもの、即ち減衰力を付加するものであり、これにより外乱振動を効果的に減殺することができる。
【0014】
また、被支持体の振動試験を行うときには加振制御手段によって、所定の自由度方向についての前記除振制御のフィードバックループに加振信号が挿入され、上述した従来例(特許文献1)と同様にセンサ信号から加振信号分が減算されることにより、アクチュエータ群から被支持体には外乱振動を減殺しながら試験振動を加えるような制御力が付加されるようになる。
【0015】
そうして或る自由度方向に試験振動が付加されると、これに連成して別の自由度方向に振動が励起されることがあるが、この別の自由度方向の制御の操作量には、前記加振信号から生成された連成抑制信号が加えられて、前記のように連成する振動を相殺するような制御力が発生する。これにより連成振動は取り除かれることになり、正確な振動試験を行うことができる。
【0016】
より具体的に、前記連成抑制制御手段は、6自由度方向のうちの並進3方向のいずれか1つに付加される試験振動に直接的に連成して、回転3方向の1つ以上に現れる連成振動を減殺すべく、この回転方向の制御の操作量に連成抑制信号を加えるものとすればよい(請求項2)。
【0017】
また、上述の従来例のように被支持体を支持する気体ばねをアクチュエータとして利用する場合に、このアクチュエータ自体が積分要素となることを考慮すれば、前記除振制御手段は、例えば加速度センサからの信号を入力する比例演算部、積分演算部及び微分演算部のうち、少なくとも比例演算部を有していて、少なくともこの比例演算部により前記制御弁へ入力する操作量を演算するものとすればよい(請求項3)。
【0018】
そうして除振制御手段に被支持体の加速度の信号を入力し、少なくとも比例演算によって制御弁へ入力する操作量を演算するようにすれば、この制御弁によって流量調整される気体の給排を受けて、積分要素である気体ばね(アクチュエータ)が発生する制御力は、少なくとも速度に比例するものとなる。この場合に前記加振制御手段は、前記のフィードバックループにおける比例、積分及び微分演算部の少なくとも1つに加振信号を入力するものとすればよい。
【0019】
尚、前記アクチュエータとしては例えばリニアモータのような電磁アクチュエータを用いてもよく、この場合には除振制御手段は、前記被支持体の加速度の信号に比例演算、積分演算及び二重積分演算の少なくとも1つを施して、前記アクチュエータへの操作量を演算するものとなる。
【0020】
また、前記連成抑制制御手段として好ましいのは、前記加振信号と前記被支持体の連成する方向の振動伝達特性とに基づいて、前記連成振動を相殺するようにアクチュエータを駆動する信号を生成し、この信号を前記除振制御手段による制御の操作量として前記アクチュエータへ入力することである(請求項4)。
【0021】
こうして連成振動を減殺するための信号を比例、積分及び微分演算部の何れにも入力せずに直接、アクチュエータへ入力するようにすれば、正しく抑制が行われるとともに、比例、積分及び微分演算のゲインの設定に何ら影響を及ぼすことがない。よって、除振フィードバック制御による外乱振動の抑制効果を十分に高くしながら、連成振動を効果的に減殺することが可能になる。
【0022】
また、アクチュエータの駆動特性と被支持体の運動特性とを考慮すれば好ましいのは、例えば試験振動の付加によって前記被支持体に連成振動が生じるまでの伝達関数を運動方程式から特定するか或いは実験等の結果から同定し、この伝達関数に対し、アクチュエータの作動により被支持体に連成振動が生じるまでの伝達関数の逆関数を乗じて、こうして求めた関数式によって前記加振信号から前記アクチュエータへの駆動信号を生成することである(請求項5)。
【発明の効果】
【0023】
以上、説明したように請求項1の発明に係るアクティブ除振装置は、被支持体の振動状態を検出するセンサからの信号に例えば比例、積分及び微分等の演算を施して、その振動を減殺する制御力を発生するように6自由度方向のアクチュエータ群をフィードバック制御するものが前提である。そして、所定の自由度方向に試験振動を加えるためにこの方向の制御のフィードバックループに加振信号を挿入する場合に、これにより引き起こされる連成振動の方向の制御には、加振信号から生成した連成抑制信号を挿入することによって、連成振動を取り除くことができる。
【0024】
一方、前記連成抑制信号は比例、積分及び微分の何れの演算部も介さずに直接、アクチュエータへ入力するようにすれば、外乱の除振制御に悪い影響を及ぼすことがない。
【図面の簡単な説明】
【0025】
【図1】本発明の実施形態に係る除振台のシステム構成を模式的に示す図である。
【図2】被支持体の運動の6自由度方向を示した除振台の斜視図である。
【図3】x軸及びθ方向についての制御のブロック図である。
【図4】除振フィードバック制御の効果を示すイメージ図である。
【図5】試験振動に連成する振動とこれを相殺する制御力の説明図である。
【図6】除振フィードバック制御において積分演算部を用いない他の実施例に係る図3相当図である。
【図7】同微分演算部も用いない他の実施例に係る図3相当図である。
【発明を実施するための形態】
【0026】
以下、本発明の実施形態を図面に基いて説明する。尚、以下の好ましい実施形態の説明は本質的に例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものではない。
【0027】
−除振台の構成−
図1、2には、本発明に係るアクティブ除振装置を具現化した除振台Aの全体的な構成を示す。この除振台Aは、例えば半導体関連の製造装置や電子顕微鏡等のように振動の影響を受けやすい精密機器Dを定盤1の上に搭載して、それらを床振動からできるだけ絶縁した状態とするために、複数のアイソレータ2,2,…によって弾性的に支持したものである。つまり、この除振台Aにおいては定盤1及び機器Dが被支持体であり、以下では単に被支持体ともいう。
【0028】
一例として図2に示すように、この実施形態では4つのアイソレータ2,2,…を各々定盤1の4隅に配置しているが、これは3個以上であれば幾つでもよい。個々のアイソレータ2は、図1に模式的に示すように、床面等に配置されたインナケース20の上部に、上下方向の荷重を支持する空気ばね20aを備えている。これは、インナケース20の上端の開口にダイヤフラム等を介してピストンを気密状に内挿し、該ケース内に空気室を画成してなる。
【0029】
また、図の例ではインナケース20の上半部を上方から覆うようにして、下方に開口するアウタケース21が配設されており、その天板は空気ばね20aのピストン上に載置されている。一方、アウタケース21の側板とインナケース20の側板との間には所定の間隔があり、前記空気ばね20aと概ね同様の構成の一対の空気ばね20b,20bが、インナケース20を間に挟んで互いに対向するように配設され、水平方向の力を発生するようになっている。
【0030】
つまり、アイソレータ2は、上下方向の空気ばね20aによって被支持体(定盤1及び機器D)の分担荷重を支持するとともに、この上下方向の空気ばね20aや水平方向の空気ばね20b,20bの内圧を増減するように制御することで、被支持体に対しその振動を減殺するような制御力を付加することができる。
【0031】
より詳しくは、被支持体である定盤1及びその上の機器Dを一体の剛体とみなして、図2に示すようにその重心位置Gを通る直交3軸x、y、zを設定すると、この直交座標系における運動の自由度は、x軸、y軸及びz軸の並進3方向とそれら各軸周りの回転3方向φ、θ、ψとなるので、これら合計6自由度の各方向に各々制御力を付加するように、4つのアイソレータ2,2,…の上下及び水平の空気ばね20a,20b,…、即ちアクチュエータ群を配設している。
【0032】
同図に示す例では、右手前及び左奥(図示せず)の2つのアイソレータ2,2が各々、水平の一対の空気ばね20b,20bの内圧を互いに逆相に増減させることにより、x軸方向(以下、単に左右方向ともいう)の制御力Fxを発生するように、また、左手前及び右奥の2つのアイソレータ2,2は各々y軸方向(以下、単に前後方向ともいう)の制御力Fyを発生するように配置されている。それらの4つのアイソレータ2,2,…で水平方向の力の大きさを異ならせれば、z軸周り即ちψ方向の制御力を被支持体に付加することができる。
【0033】
また、上下方向であるz軸方向の制御力Fzについては、4つのアイソレータ2,2,…の各々の上下の空気ばね20aが分担して発生するものであり、その各々が発生する力Fzの配分を重心Gからの距離に応じて適当に設定すれば、被支持体に対して上下方向の制御力のみを付加することができる。一方、4つのアイソレータ2,2,…の各々の上下の空気ばね20aが発生する力Fzの配分によって、x軸及びy軸の周り即ちφ、θ方向の制御力を付加することができる。
【0034】
そうして所要の制御力を発生させるためにこの実施形態では、図1に模式的に示すように各アイソレータ2毎の上下及び水平の空気ばね20a,20bに各々、図外の空気圧源から圧縮空気を供給するための配管が接続されており、この配管に介設されたサーボ弁22a,22bによって空気ばね20a,20bへの給排気量が調整されるようになる(尚、同図には右側のアイソレータ2についてのみ、その空気圧の制御系統を示す)。
【0035】
また、各アイソレータ2毎に、その支持位置の近傍における定盤1の上下及び水平(即ち水平の空気ばね20bが設けられている)方向の加速度をそれぞれ検出するように加速度センサ23a,23bが配設されていて、これらのセンサ23a,23bからの信号がコントローラ3に入力されるようになっている。
【0036】
そうして複数の加速度センサ23a,23bからの信号を受けたコントローラ3は、これに基づいて被支持体の重心G周りの6自由度の運動状態、即ち各自由度方向の加速度を演算し、それら各自由度方向について各々加速度を打ち消すような、つまり振動を減殺するような制御力を求める。そして、今度は、そのような制御力が被支持体に各自由度毎に付加されるように、4つのアイソレータ2の各々の空気ばね20a,20bの内圧を制御するためのサーボ弁22a,22bの開度目標値を演算する。
【0037】
その上で、それら4つのアイソレータ2の各々の複数のサーボ弁22a,22bにコントローラ3から制御信号が出力され、これを受けた複数のサーボ弁22a,22bによって各々上下及び水平の空気ばね20a,20bの空気圧が増減されることにより、該空気ばね20a,20bがアクチュエータとして機能して、制御力を発生するようになる。
【0038】
つまり、コントローラ3は、被支持体の振動状態として加速度を検出するセンサ23a,23bからの信号を入力し、その振動を減殺する制御力を発生するようにアイソレータ2の各々の空気ばね20a,20bの内圧をフィードバック制御する、除振制御部3aを備えている(図3を参照)。このような除振フィードバック制御は、コントローラ3のCPUによって所定のプログラムが実行されることにより実現するもので、その意味で除振制御部3aは、ソフトウエアの態様で備わっている。
【0039】
さらに、図の例では、前記の加速度センサ23a,23bと同様に、各アイソレータ2毎にその支持位置の近傍における定盤1の上下及び水平方向の変位をそれぞれ検出するように変位センサ24a,24bが配設され、また、インナケース20の下部における加速度、即ち床振動を検出するための加速度センサ25も配設されていて、それら変位センサ24a,24b及び加速度センサ25からの信号もコントローラ3に入力されるようになっている。
【0040】
−除振フィードバック制御−
図3は、前記のような除振フィードバック制御を行うための構成を示すブロック図であり、その上段にはx軸方向について、また下段にはy軸周りのθ方向について、それぞれのフィードバックループを示す。後述するが除振台Aの構成上、x軸方向の運動とθ方向の運動とは直接に連成するので、以下では説明の便宜のためにこれら2つの自由度方向について説明するが、これ以外の4つの自由度方向、即ちy軸及びz軸方向、並びにφ及びψ方向についても同様である。
【0041】
図の上段に示すようにx軸方向の制御においては、前記のように定盤1、機器D等(図3ではPlantとして示す)の加速度x″をフィードバックして振動を減殺する除振フィードバックループの他に、変位xをフィードバックする変位フィードバックループも設けられている。除振フィードバックループが主に床から伝達する微小な振動を減殺する一方、変位フィードバックループは、主に機器Dの作動等に起因する相対的に大きな変位を減殺するためのものである。
【0042】
すなわち、まず、図の上段に示すx軸方向の除振フィードバックループでは、加速度センサ23bからの信号、即ち被支持体の左右方向の加速度x″が、除振制御部3aに入力され6自由度の加速度に変換された後、該各自由度の比例演算部に入力されて比例ゲインGが乗算されるとともに、同積分演算部において積分されて積分ゲインGが乗算され、また、同微分演算部において微分されて微分ゲインGが乗算される。そして、それら各演算値が加算された後に反転して、6自由度の操作量から各アクチュエータへの操作量に変換された後に、アクチュエータ群(Act.:この例ではサーボ弁22b及び空気ばね20bである)への操作量に加えられる。
【0043】
そのような加速度のフィードバック制御によって被支持体には、その実際の振動状態に応じて適切に、この振動を減殺するような制御力を付加することができる。また、そうして加速度の信号に比例、積分及び微分演算を施してフィードバック制御することには、従来から知られているように見かけ上、被支持体の質量やこれを支えるばね系の減衰係数及びばね定数を調整して、振動の伝達特性を最適化するという効果がある。
【0044】
すなわち、この実施形態のように空気ばね20bへの給気の給排量を調整して、その内圧を制御する場合、制御上は空気ばね20b自体が積分要素となることから、前記のように加速度の信号に比例演算を施してサーボ弁22bを制御する制御は、空気ばね20bによって被支持体の速度に比例する制御力を発生させるものとなり、減衰係数を増大させる効果がある。所謂スカイフックダンパであって図4(a)に一例を示すように、共振周波数よりも高い周波数域での除振性能を悪化させることなく共振倍率が低下するため、外乱振動の抑制に効果が高い。
【0045】
また、加速度の積分演算は被支持体の変位に比例する制御力を発生させるものであり、ばね定数を増大させることになるので、同図(b)に示すように共振周波数よりも低い周波数域でも除振効果が得られる(所謂スカイフックスプリング)。さらに、加速度の微分演算は被支持体の加速度に比例する制御力を発生させるものであり、これは被支持体の質量を増大させて、同図(c)に示すように共振周波数を低下させる効果がある。
【0046】
それらのうちで除振制御には特にスカイフックダンパが有効であり、除振制御部3aは、少なくとも比例演算部を備えるものとし、積分演算部、微分演算部は必要に応じて備える構成とすればよい。つまり、除振制御部3aは、少なくとも速度に比例する制御力を発生するように空気ばね20bの内圧を制御するものであればよい。
【0047】
前記のような除振制御部3aに加えて、この実施形態のコントローラ3は、上述したように変位フィードバック制御を行う変位制御部3bもソフトウエアの態様で備えている。すなわち、変位センサ24bにより検出される被支持体の床面に対する相対変位x−x0(x0は床面の位置を表す)に基づいて、その変位を打ち消すように各アイソレータ2の空気ばね20bの内圧を制御するもので、具体的には例えば図示のようにPID制御による。
【0048】
尚、図示は省略するがコントローラ3により、加速度センサ25からの信号により床の振動状態を検出し、この振動を被支持体に伝達する途中で打ち消すように空気ばね20a,20bの内圧を制御するようなフィードフォワード制御を加えてもよい。また、機器Dの作動信号に基づいて予測される振動を打ち消すような制御力を付加するように、空気ばね20a,20bの内圧を制御することもできる。
【0049】
さらに、詳しい説明は省略するが、図3の下段に示すθ方向についても前記のx軸方向と同様の除振フィードバック制御が行われる。θ方向の加速度は複数の加速度センサ23a,23b,…からの信号に基づいて演算される。一方、θ方向の制御出力は所定の演算によって複数のアクチュエータ群(空気ばね20a,20b)へ分配される。
【0050】
−試験振動の付加−
上述した除振フィードバック制御等によって、この実施形態に係る除振台Aでは、定盤1の上に載置される機器Dに適切な制御力を付加して外乱振動を減殺することができる。加えて、そうして制御力を付加するためのアクチュエータ、即ち空気ばね20a,20bを利用して、機器Dに試験振動を付加する機能も有している。すなわち、図3のブロック図の上段右側に示すように例えばx軸方向に試験振動を付加するために、コントローラ3は、その試験振動に対応する加振信号をx軸方向の除振制御のフィードバックループに挿入する、加振制御部3cを備えている。
【0051】
この加振制御部3cもソフトウエアの態様で、即ち加振信号を生成するプログラムとしてコントローラ3に備えられており、予め設定した波形、周波数及び振幅の加振信号を生成して出力することができる。加振信号として具体的には正弦波やそのチャープ信号、ランダム波等、或いは特定の環境で測定した信号も用いられる。
【0052】
そうして加速度センサ23bからの信号から加振信号を減算して、上述の除振フィードバック制御を行うことにより、矛盾なく外乱振動を減殺しながら被支持体に試験振動を加えることができる。すなわち、加振信号は、図示のように除振のフィードバックループにおける比例、積分及び微分演算部の全てに入力するようにしてもよいし、それらの少なくとも1つに入力するようにしてもよい。
【0053】
−連成振動の抑制−
ところで、この実施形態では前記の図1に示すように、定盤1を下方から支持するアイソレータ2,2,…の空気ばね20a,20b,…を、被支持体(定盤1及び機器D)に力を加えるためのアクチュエータ群として利用している。そのため、前記のように試験振動を付加すべく例えば空気ばね20bによってx軸方向の力を発生させると、図5(a)に模式的に示すように、その力Fxの作用線fが被支持体の重心Gよりも低い位置を通ることから、y軸周りのモーメント力Mθが発生する。
【0054】
すなわち、例えば図の左向き(x軸方向の負の向き)の力Fxによってy軸の周りには図の時計回りのモーメント力Mθ(=Fx×d1)が発生し、これにより振動が励起される。つまり、x軸方向への加振によってy軸周りのθ方向に振動が連成する。尚、説明の便宜上、図にはx軸方向の力Fxとy軸周りのモーメント力Mθとの連成のみを示しているが、同じように力Fxによってz軸周り(ψ方向)の連成も生じるし、さらに、z軸方向、y軸方向、φ方向にも連成が生じることがある。
【0055】
そのような連成振動は振動試験にとって好ましいものではないから、この実施形態においてコントローラ3は、前記のようにx軸方向の試験振動を付加するときに、これに直接的に連成するθ、ψ方向の振動を相殺するような制御を行う。具体的にはθ方向について説明すると、前記のようにx軸方向への力Fxによってθ方向に励起されるモーメント力Mθの大きさは、被支持体を剛体とみなせば容易に計算できるので、図5(b)に示すように、そのモーメント力Mθを打ち消すような反対向きのモーメント力を発生させる。
【0056】
すなわち、図示のように例えば右側のアイソレータ2における上下方向の空気ばね20aの内圧を上昇させて、上向きの力Fzを発生させるとともに、左側のアイソレータ2においては空気ばね20aの内圧を下降させ、下向きの力Fz(図の−Fz)を発生させる。こうするとy軸周りに図の反時計回りのモーメント力Mθ(図では2×Fz×d2であるが、厳密にはアイソレータ2は4つなので、4×Fz×d2)が発生するから、制御力Fzを、θ方向の連成振動に同期してこの振動を相殺するように、即ち連成振動による加速度を打ち消すように変化させるべく、コントローラ3は、複数のサーボ弁22a,22a,…の開度を制御して空気ばね20a,20a,…の内圧を増減させるのである。
【0057】
そのためにコントローラ3には、x軸方向への加振によってθ方向の振動が生じるまでの関係を表す伝達関数が予め設定されており、図3の右側に示すようにその伝達関数(x→θ方向の伝達関数)に加振信号を入力して、θ方向の連成振動を相殺するようなアクチュエータ群(Act.)への操作量、即ちサーボ弁22a,22,…の駆動信号(連成抑制信号)を演算し、これをθ方向の除振フィードバックループに挿入する連成抑制制御部3dが、ソフトウエアの態様で備わっている。
【0058】
ここで、図の例では連成抑制信号は、θ方向の除振フィードバックループにおいて比例、積分及び微分演算部のいずれも介さずに直接、アクチュエータ群(Act.)へ入力されるようになっている。このため、連成抑制信号を入力することが除振フィードバック制御における比例、積分及び微分演算のゲインG,G,Gの設定に影響を及ぼすことがなく、それらの値は外乱振動の除振に最適化することができる。
【0059】
尚、前記のx軸方向への加振信号からθ方向の振動連成までの伝達関数は、図5を参照して上述した幾何学的な関係から、運動方程式によって特定してもよいが、現実の被支持体における弾性変形、例えば定盤1の撓み等を考慮すれば、実験等によって同定するのが好ましい。その際にアクチュエータの駆動特性と被支持体の運動特性とを考慮し、前記のように特定或いは同定した伝達関数に対して、該アクチュエータへ入力される駆動信号によって被支持体に加速度θ"が生じるまでの伝達関数の逆関数を乗じるようにすれば、より好ましい。
【0060】
さらに、前記図3ではx軸方向に試験振動を加えるときに、これによりθ方向に連成する振動を抑制する場合について説明しているが、その反対も可能であることは言うまでもない。すなわち試験振動をx軸、y軸及びz軸の並進3方向のいずれかに付加する場合だけではなく、回転3方向φ、θ、ψのいずれかに付加する場合についても本発明は適用可能である。
【0061】
したがって、この実施形態に係るアクテイブ除振台Aによると、まず、加速度センサ23a,23bにより検出される被支持体(定盤1及び機器D)の振動状態に基づき、その6自由度の各方向についてコントローラ3の除振制御部3aによる除振フィードバック制御が行われ、アイソレータ2,2,…の空気ばね20a,20bが発生する制御力が被支持体に付加される。この制御力は被支持体の少なくとも速度に比例するものであり、減衰力の付加によって外乱振動を効果的に減殺することができる。
【0062】
また、振動試験を行うときにはコントローラ3の加振制御部3cによって、所定の自由度方向(例えばx軸方向)についての除振フィードバックループに加振信号が挿入され、この加振信号分が加速度センサ23bからの信号から減算されることによって、被支持体には外乱振動を減殺しつつ、試験振動を加えるような制御力が付加されるようになる。
【0063】
さらに、前記のようにx軸方向に付加する試験振動に連成してθ方向に励起される連成振動は、このθ方向の除振フィードバックループに挿入される連成抑制信号によって効果的に減殺することができ、連成振動の影響を受けることなく正確な振動試験を行える。その際、連成抑制信号は除振フィードバックループにおける比例、積分及び微分の何れの演算部も介さずに直接、アクチュエータ群へ入力するようにしているので、外乱振動の抑制効果は十分に高めつつ、連成振動も効果的に減殺することができる。
【0064】
(他の実施形態)
尚、本発明の構成は前記の実施形態に限定されず、その他の種々の構成をも包含する。例えば前記実施形態では、被支持体である定盤1や機器Dを支持するためにアイソレータ2に上下方向の空気ばね20aを備えているが、これに代えて、例えば窒素ガス等を充填した気体ばねを備えてもよい。
【0065】
また、例えば図6に示すように除振フィードバックループから積分演算部は削除し、比例演算部及び微分演算部のみとしてもよい。この場合にも加振信号は少なくとも一方の演算部に入力すればよい。或いは図7に示すように、除振フィードバックループを比例演算部のみにて構成することもできる。この場合には当然に、加振信号も比例演算部のみに入力することになる。
【0066】
さらに、前記実施形態の除振台Aにおいて変位フィードバック制御を行わないようにしてもよい。この場合には定盤1の上下動に応じて作動し、アイソレータ2の上下方向の空気ばね20aに圧縮吸気を給排する機械式のレベリングバルブが必要になる。
【0067】
一方で制御のアクチュエータとしては別途、リニアモータ等の電磁式のものを備えることも可能であり、この場合には空気ばね20aに代えてコイルばね、ゴム弾性体等を用いることができる。そうした場合に除振フィードバック制御は、被支持体の加速度の信号に少なくとも積分演算を施すものとすればよく、このときにはその積分演算部に加振信号を入力することになる。
【符号の説明】
【0068】
A 除振台(アクティブ除振装置)
D 機器(被支持体)
1 定盤(被支持体)
2 アイソレータ
20a,20b 空気ばね(気体ばね)
22a,22b サーボ弁(制御弁)
23a,23b 加速度センサ
3 コントローラ
3a 除振制御部(除振制御手段)
3c 加振制御部(加振制御手段)
3d 連成抑制制御部(連成抑制制御手段)

【特許請求の範囲】
【請求項1】
被支持体を基礎に対して弾性的に支持するとともに、該被支持体の振動状態を検出するセンサからの信号を入力し、その振動を減殺する制御力を発生するようにアクチュエータ群をフィードバック制御する、除振制御手段を備えたアクティブ除振装置であって、
前記アクチュエータ群は、前記被支持体に対して6自由度の各自由度方向に制御力を付加可能に設けられ、
前記除振制御手段は、前記被支持体の各自由度方向についてそれぞれ、加速度、速度及び変位のうちの少なくとも速度に比例する制御力を発生するように、前記アクチュエータ群を制御するものであり、
前記被支持体の各自由度方向のうちの所定方向に試験振動を付加すべく、該試験振動に対応する加振信号を、前記除振制御手段による当該自由度方向の制御のフィードバックループに挿入する加振制御手段と、
前記試験振動に連成して別の自由度方向に現れる連成振動を減殺すべく、前記加振信号から生成した連成抑制信号を、前記除振制御手段による当該別の自由度方向の制御の操作量に加える連成抑制制御手段と、
を備えることを特徴とする、加振機能を有するアクティブ除振装置。
【請求項2】
前記連成抑制制御手段は、6自由度方向のうちの並進3方向のいずれか1つに付加される試験振動に直接的に連成して、回転3方向の1つ以上に現れる連成振動を減殺すべく、この回転方向の制御の操作量に連成抑制信号を加えるものである、請求項1に記載のアクティブ除振装置。
【請求項3】
前記アクチュエータが、気体ばねと、これに気体を給排するための制御弁とを備え、
前記センサが被支持体の加速度を検出するものであり、
前記除振制御手段は、前記センサからの信号を入力する比例演算部、積分演算部及び微分演算部のうち、少なくとも比例演算部を備えていて、少なくともこの比例演算部により前記制御弁へ入力する操作量を演算するものである、請求項2に記載のアクティブ除振装置。
【請求項4】
前記連成抑制制御手段は、前記加振信号と前記被支持体の連成する方向の振動伝達特性とに基づいて、前記連成振動を相殺するようにアクチュエータを駆動する信号を生成し、この信号を前記除振制御手段による制御の操作量として前記アクチュエータへ入力する、請求項1〜3のいずれか1つに記載のアクティブ除振装置。
【請求項5】
前記連成抑制制御手段は、試験振動の付加によって前記被支持体に連成振動が生じるまでの伝達関数に対して、アクチュエータの作動によって被支持体に前記連成振動が生じるまでの伝達関数の逆関数を乗じ、こうして求めた関数式によって、前記加振信号から前記アクチュエータへの駆動信号を生成する、請求項4に記載のアクティブ除振装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2011−153991(P2011−153991A)
【公開日】平成23年8月11日(2011.8.11)
【国際特許分類】
【出願番号】特願2010−17108(P2010−17108)
【出願日】平成22年1月28日(2010.1.28)
【出願人】(000201869)倉敷化工株式会社 (282)
【Fターム(参考)】