説明

安定OLED材料及び改善された安定性を有するデバイス

両方のオルト位で置換されたアリール又はヘテロアリール基を有する配位子を含むリン光金属錯体を含んだ、有機発光物質及びデバイスを記載する。有機発光デバイスは、基材上に以下の順に配置された、アノード;ホール輸送層;発光層ホストと発光ドーパントとを含む有機発光層;電子妨害層;電子輸送層;及びカソード、を含む。

【発明の詳細な説明】
【技術分野】
【0001】
〔関連出願の相互参照〕
本出願は、2005年5月6日に出願された仮出願第60/678,170号;2005年7月25日に出願された出願第60/701,929号;2005年9月20日に出願された出願第60/718,336号の優先権の利益を主張する。3つ全ての内容はそれら全体を参照により本願に援用する。
【0002】
特許請求の範囲に記載した発明は、共同の大学・企業研究契約に関わる1つ以上の以下の団体:プリンストン大学、サザン・カリフォルニア大学、及びユニバーサルディスプレイコーポレーションにより、1つ以上の団体のために、及び/又は1つ以上の団体と共同してなされた。上記契約は、特許請求の範囲に記載の発明がなされた日及びそれ以前に発効しており、特許請求の範囲に記載された発明は、前記契約の範囲内でなされる活動の結果として行われた。
【0003】
〔技術分野〕
本発明は一般的には、有機発光デバイス(OLED)及びそれらのデバイスに用いられる有機化合物、並びに電子妨害層(electron impeding layer)を有するリン光OLEDに関する。
【背景技術】
【0004】
〔背景〕
有機材料を用いるオプトエレクトロニクスデバイスは、多くの理由によりますます望ましいものとなってきている。そのようなデバイスを作るために用いられる多くの材料はかなり高価であり、そのため有機オプトエレクトロニクスデバイスは、無機デバイスに対して、コスト上の優位性についての潜在力をもっている。加えて、有機材料固有の特性、例えばそれらの柔軟性は、それらを柔軟な基材上への製作などの具体的用途に非常に適したものにしうる。有機オプトエレクトロニクスデバイスの例には、有機発光デバイス(OLED)、有機光トランジスタ、有機光電池、及び有機光検出器が含まれる。OLEDについては、有機材料は、従来の材料よりも性能的優位性をもちうる。例えば、有機発光層が発光する波長は、一般に、適切なドーパントで容易に調節されうる。
【0005】
本明細書で用いるように、「有機」の用語は、有機オプトエレクトロニクスデバイスを製作するために用いることができる、重合物質並びに小分子有機物質を包含する。「小分子」とは、重合体ではない任意の有機物質をいい、「小分子」は実際は非常に大きくてもよい。小分子はいくつかの状況では繰り返し単位を含んでもよい。例えば、置換基として長鎖アルキル基を用いることは、分子を「小分子」の群から除かない。小分子は、例えば重合体主鎖上のペンダント基として、あるいは主鎖の一部として、重合体中に組み込まれてもよい。小分子は、コア残基上に作り上げられた一連の化学的殻からなるデンドリマーのコア残基として働くこともできる。デンドリマーのコア残基は、蛍光又はリン光小分子発光体であることができる。デンドリマーは「小分子」であってよく、OLEDの分野で現在用いられている全てのデンドリマーは小分子であると考えられる。一般に、小分子は、単一の分子量をもつ明確な化学式をもつが、重合体は分子によって変わりうる化学式と分子量とを有する。本明細書で用いるとおり、「有機」は、ヒドロカルビル(hydrocarbyl)配位子及びヘテロ原子置換ヒドロカルビル配位子の金属錯体を含む。
【0006】
OLEDは、そのデバイスを横切って電圧を印加した場合に光を発する薄い有機膜(有機フィルム)を用いる。OLEDは、フラットパネルディスプレイ、照明、及びバックライトなどの用途で用いるためのますます興味ある技術となってきている。いくつかのOLED材料と構成が、米国特許第5,844,363号明細書、同6,303,238号明細書、及び同5,707,745号明細書に記載されており、これらの明細書はその全体を参照により本願に援用する。
【0007】
OLEDデバイスは一般に(常にではないが)少なくとも1つの電極を通して光を発するように意図され、1つ以上の透明電極が、有機オプトエレクトロニクスデバイスにおいて有用でありうる。例えば、インジウムスズオキシド(ITO)などの透明電極材料は、ボトム電極として用いることができる。米国特許第5,703,436号明細書及び同5,707,745号明細書(これらはその全体を参照により援用する)に開示されているような透明なトップ電極も使用できる。ボトム電極を通してのみ光を発することが意図されたデバイスについては、トップ電極は透明である必要はなく、高い電気伝導度をもつ厚く且つ反射性の金属層からなることができる。同様に、トップ電極を通してのみ光を発することが意図されたデバイスについては、ボトム電極は不透明及び/又は反射性であってよい。電極が透明である必要がない場合は、より厚い層の使用はより良い伝導度をもたらすことができ、反射性電極を用いることは透明電極に向けて光を反射し返すことによって他方の電極を通して放射される光の量を多くすることができる。完全に透明なデバイスも製作でき、この場合は両方の電極が透明である。側方発光OLEDも製作することができ、そのようなデバイスでは1つ又は両方の電極が不透明又は反射性でありうる。
【0008】
本明細書で用いるように「トップ」は、基材から最も遠くを意味する一方で、「ボトム」は基材に最も近いことを意味する。例えば、2つの電極を有するデバイスについては、ボトム電極は基材に最も電極であり、通常、作製する最初の電極である。ボトム電極は2つの表面、基材に最も近いボトム面と、基材から最も遠いトップ面とをもつ。第一の層を第二の層の「上に配置される」と記載した場合は、第一の層は基材からより遠くに配置される。第一の層が第二の層と「物理的に接触している」と特定されていない限り、第一の層と第二の層との間に別な層があってよい。例えば、カソードとアノードとの間に様々な有機層があったとしても、カソードはアノードの「上に配置される」と記載されうる。
【0009】
本明細書で用いるように、「溶液処理可能」とは、溶液又は懸濁液形態中のいずれかで、液体媒体中に溶解、分散、又は輸送でき、及び/又は液体媒体から堆積されうることを意味する。
【0010】
本明細書で用いるように、かつ当業者によって一般に理解されているように、第一の「最高被占軌道」(HOMO)又は「最低空軌道」(LUMO)エネルギー準位は、第一のエネルギー準位が真空のエネルギー準位により近い場合は、第二のHOMO又はLUMOのエネルギー準位よりも大きいか又は高い。イオン化ポテンシャル(IP)は、真空準位に対して負(マイナス)のエネルギーとして測定されるので、より高いHOMOエネルギー準位は、より小さな絶対値をもつIP(より小さな絶対値の負のIP)に相当する。同様に、より高いLUMOエネルギー準位は、より小さな絶対値をもつ電子親和力(EA)(より小さな絶対値の負のEA)に相当する。従来のエネルギー準位ダイヤグラム上では、上端(トップ)を真空準位として、物質のLUMOエネルギー準位は、同じ物質のHOMOエネルギー準位よりも上である。「より高い」HOMO又はLUMOエネルギー準位は、「より低い」HOMO又はLUMOエネルギー準位よりも、そのようなダイヤグラムの上端(トップ)近くに現れる。
【特許文献1】米国特許第5,844,363号明細書
【特許文献2】米国特許第6,303,238号明細書
【特許文献3】米国特許第5,707,745号明細書
【特許文献4】米国特許第5,703,436号明細書
【発明の開示】
【発明が解決しようとする課題】
【0011】
長寿命の青色発光リン光ドーパントの開発は、現在のOLED研究及び開発の重要な、実現されていない目標と認められている。濃青又は近紫外に発光ピークをもつリン光OLEDデバイスが実証されているが、100nitsの初期輝度を示す青色発光デバイスの寿命は数百時間レベルである(ここで「寿命」とは、一定電流において、初期レベルの50%にまで輝度が低下するための時間をいう)。例えば、N-メチル-2-フェニルイミダゾール類から導かれる二座配位子のイリジウム(III)錯体は、青色OLEDデバイスを作製するために用いることができるが、これらのドーパントでは非常に短い寿命(100nitの初期輝度で約250時間)が観測される。
【0012】
多くの商用用途は、200nitsの初期輝度で10000時間を超える寿命を必要とすると予想されているので、青色リン光OLEDデバイスの寿命の大きな改善が望まれている。
【課題を解決するための手段】
【0013】
〔本発明のまとめ〕
我々は、N-(2,6-ジ置換フェニル)-2-フェニルイミダゾールから誘導された金属錯体が、それに相当する同じR置換基をもつN-メチルイミダゾール錯体を組み込んだデバイスよりも5倍以上長い寿命をもちうることを発見した。
【0014】
【化1】

【0015】
例えば、図6に示したように、デバイスV(化合物Cを組み込み、830nitsの初期輝度を示した)の寿命は約270時間である一方で、デバイスT(化合物Aを組み込み、810nitsの初期輝度を示した)は、わずか約44時間だった。化合物Hにおけるように(デバイスPP、図8)、2,6-ジ置換N-フェニル環の4位を、3,5-ジメチルフェニル環で置換した場合には、さらに長い寿命が観測された。同様の文脈で、デバイスXII(濃い青の化合物Gを組み込んだデバイス)は、デバイスLLL(化合物Lを組み込んだデバイス(図9))よりも長寿命だった。デバイスNNN(化合物Kを組み込んだデバイス)は、さらに長い寿命だった(図46、48)。2,6-ジ置換フェニル誘導体の発光極大は全ての場合で、対応するN-メチル誘導体のものと同程度だったので、周辺基の変更がデバイス寿命に大きな影響をもちうることは、驚くべき且つ予期せぬ発見だった。
【0016】
本明細書に記載した化合物は、デンドリマー金属錯体並びに重合体に結合したあるいは重合体と混合した金属錯体を包含するがこれらには限定されない小分子金属錯体を元にしたデバイスを含めたリン光OLEDデバイスに広く適用され、このOLEDデバイスは気相蒸着法及び溶液加工法を含めた様々な方法のいずれかで加工されたものであり、これらデバイスの全てにおける金属錯体はホモレプティック(homoleptic)錯体又はヘテロレプティック(heteroleptic)錯体であってよく、ドナー原子は、窒素、炭素、酸素、硫黄、リン、ヒ素、ケイ素、セレン、又はその他の金属からなる群から選択される原子の組み合わせを含むことができることが予期される。
【0017】
第一の側面では、本発明はリン光化合物を提供する。このリン光化合物は、単座、二座、三座、四座、五座、又は六座配位子の中性金属錯体である。本配位子は、金属に直接結合した少なくとも1つの第一のアリール又はヘテロアリール環を含む。この第一の環は第二のアリール又はヘテロアリール環で置換されており、この第二のアリール又はヘテロアリール環は金属に直接結合しておらず且つ両方のオルト位で、アリール及びヘテロアリール基からなる群から選択される置換基で独立して置換されている。この第二の環はさらに置換されていてもよく、それぞれの置換基は独立して置換又は非置換であってよい。金属は、40よりも大きな原子番号をもつ非放射性金属からなる群から選択される。
【0018】
第二の側面では、本発明はリン光化合物を提供する。本リン光化合物は、単座、二座、三座、四座、五座、又は六座配位子の中性金属錯体である。本配位子は、金属に直接結合した少なくとも1つの第一のアリール又はヘテロアリール環を含む。この第一の環は、両方のオルト位でH又はハライド以外の基によって置換されており且つ前記金属に直接結合していない第二のアリール又はヘテロアリール環で置換されている。第一の環は、イミダゾール、ベンゼン、ナフタレン、キノリン、イソキノリン、ピリジン、ピリミジン、ピリダジン、ピロール、オキサゾール、チアゾール、オキサジアゾール、チアジアゾール、フラン、又はチオフェン環である。金属は、40よりも大きな原子番号をもつ非放射性金属からなる群から選択される。
【0019】
第三の側面では、本発明はリン光化合物を提供する。本リン光化合物は、単座、二座、三座、四座、五座、又は六座配位子の中性金属錯体である。本配位子は、金属に直接結合した少なくとも1つの第一のアリール又はヘテロアリール環を含む。この第一の環は金属に直接結合した少なくとも1つの第一のアリール又はヘテロアリール環を含む。この第一の環は、前記金属に第一の窒素原子で配位したイミダゾールである。この第一の環は、両方のオルト位でH又はハライド(ハロゲン基)以外の基によって置換されており且つ金属に直接結合していない第二のアリール又はヘテロアリール環で置換されている。金属は、40よりも大きな原子番号をもつ非放射性金属からなる群から選択される。
【0020】
上記リン光化合物を組み込んだデバイスも提供する。
【0021】
本出願は、2005年10月4日に出願された、弁護士整理番号第10052/7601号の「高効率リン光OLEDのための電子妨害層(electron impeding layer)」と題した米国実用特許出願にも関連する。これらの出願の内容は、それら全体を参照により本願に援用する。一つの態様では、本発明は、基材上に以下の順で配置された、アノード;ホール輸送層;発光層ホストと発光ドーパントとを含む有機発光層;電子妨害層;電子輸送層;及びカソード、を含む有機発光デバイスを提供する。
【0022】
好ましくは、発光層ホストのHOMOは、発光層ドーパントのHOMOよりも、少なくとも約0.5eV低く、さらに好ましくは約0.5eV〜約0.8eV低い。電子妨害層は、本質的に、ホール輸送材料あるいはmCBPなどの同時二極性材料(ambipolar material)からなることが好ましい。
【0023】
好ましくは、本デバイスは青色光を放射する。具体的な好ましい態様においては、発光ドーパントは化合物1(compound 1)である。
【0024】
別の態様では、本発明は、アノード;カソード;前記アノードと前記カソードとの間に配置された有機発光層(前記有機発光層は発光層ホストと発光ドーパントとを含み、前記発光層ホストのHOMOは、前記発光ドーパントのHOMOよりも、少なくとも約0.5eV、好ましくは約0.5eV〜約0.8eV低い);前記有機発光層と前記カソードとの間に配置された第一の有機層;前記有機発光層と前記第一の有機層とに直接接触し且つそれらの間に配置された第二の有機層(第二の有機層が本質的にホール輸送材料又は同時二極性材料からなる);を含むOLEDを提供する。
【0025】
別の態様においては、本発明は、アノード;カソード;前記アノードと前記カソードとの間に配置された有機発光層(前記有機発光層は発光層ホストと発光ドーパントとを含み、前記発光層ホストのHOMOは、前記発光ドーパントのHOMOよりも、少なくとも約0.5eV、好ましくは約0.5eV〜約0.8eV低い);前記有機発光層と前記カソードとの間に配置された第一の有機層;前記有機発光層と前記第一の有機層とに直接接触し且つそれらの間に配置された第二の有機層(第二の有機層がBphenの電子移動度の0.001以下の相対電子移動度を有する);を含むOLEDを提供する。前記第二の有機層は、前記第一の有機層がAlqである類似のデバイスにその材料が用いられた場合に、前記第二の有機層の厚さを増大させることが前記第一の有機層からの発光を引き起こすような材料から本質的になることが好ましい。
【0026】
別の態様では、本発明は、アノード;カソード;前記アノードと前記カソードとの間に配置された有機発光層(前記有機発光層は発光層ホストと発光ドーパントとを含み、前記発光層ホストのHOMOは、前記発光ドーパントのHOMOよりも、少なくとも約0.5eV、好ましくは約0.5eV〜約0.8eV低い);及び、前記カソードと前記発光層との間に電子を蓄積するための手段、を含むOLEDを提供する。
【0027】
〔詳細な説明〕
一般に、OLEDは、アノードとカソードとの間に配置され且つアノードとカソードに電気的に接続された少なくとも1つの有機層を含む。電流が流されると、その有機層(1又は複数)に、アノードはホールを注入し且つカソードは電子を注入する。注入されたホールと電子は、それぞれ反対に帯電した電極に向かって移動する。電子とホールが同じ分子上に局在すると、励起電子状態をもつ局在化された電子−ホール対である「励起子」が形成される。励起子が発光機構を通じて緩和するときに、光が放射される。いくつかの場合には、励起子は、エキシマー又はエキシプレックス上に局在化されうる。無放射機構(例えば熱緩和)も起こりうるが、一般には望ましくないと考えられる。
【0028】
例えば、米国特許第4,769,292号明細書(これはその全体を参照により本願に援用する)に開示されたように、初期のOLEDは、一重項状態から光を放射する発光分子を用いた。蛍光発光は一般に10ナノ秒未満のタイムフレームで生じる。
【0029】
さらに最近、三重項状態からの発光(リン光)をする発光材料を有するOLEDが実証された。Baldoら, “Highly Efficient Phosphorescent Emission from Organic Electroluminescent Devices(有機エレクトロルミネッセンスデバイスからの高効率リン光発光)”, Nature, vol. 395, 151-154, 1998; (“Baldo-I”)及びBaldoら, “Very high-efficiency green organic light-emitting devices based on electrophosphorescence(エレクトロフォスフォレッセンスに基づく非常に高効率の緑色有機発光デバイス)”, Appl. Phys. Lett., vol. 75, No.3, 4-6 (1999) (“Baldo-II”)、これらはそれら全体を参照により本願に援用する。リン光(フォスフォレッセンス)は、「禁制」遷移と言われることができ、なぜならこの遷移はスピン状態の変化を必要とし、量子力学は、そのような遷移が好ましくないことを示しているからである。結果として、リン光は一般に少なくとも10ナノ秒を超えるタイムフレーム、典型的には100ナノ秒より長いタイムフレームで生じる。リン光のもともとの放射寿命が長すぎる場合は、三重項は無放射機構によって緩和し、全く光が放射されない可能性がある。有機リン光も、非常に低温において、非共有電子対をもつヘテロ原子を含む分子でしばしば観測される。2,2’-ビピリジンはそのような分子である。無放射緩和機構は典型的には温度依存性であり、液体窒素温度でリン光を示す有機材料は、典型的には、室温においてはリン光を示さない。しかし、Baldoによって実証されたように、この問題は、室温でリン光放射するリン光化合物を選択することによって解決しうる。代表的な発光層には、米国特許第6,303,238号明細書;同6,310,360号明細書;同6,830,828号明細書;及び同6,835,469号明細書;米国特許出願公開第2002−0182441号明細書;及び国際公開WO02/074015号パンフレットに開示されているようなドープされていないか又はドープされているリン光有機金属材
料が含まれる。
【0030】
一般に、OLED中の励起子は、約3:1の割合で、すなわち、75%の三重項と35%の一重項が作られると考えられている。Adachiら, “Nearly 100% Internal Phosphorescent Efficiency In An Organic Light Emitting Device(有機発光デバイスにおける、ほぼ100%の内部リン光効率)” J. Appl. Phys., 90, 5048 (2001)(その全体を参照により本願に援用する)を参照されたい。多くの場合、一重項励起子はそのエネルギーを「項間交差」によって三重項励起状態へ容易に移しうるが、三重項励起子はそのエネルギーを一重項励起状態へ容易には移し得ない。結果として、100%の内部量子効率は、リン光OLEDについて理論的に可能である。蛍光デバイスにおいては、三重項励起子のエネルギーは、デバイスを加熱する無放射緩和機構で失われ、非常に低い内部量子効率をもたらす。三重項励起状態から発光するリン光材料を用いるOLEDは、例えば、米国特許第6,303,238号明細書中(その全体を参照により本願に援用する)に開示されている。
【0031】
リン光は、三重項励起状態から中間の非三重項励起状態(ここから発光緩和が起こる)への遷移によって進む。例えば、ランタノイド元素に配位した有機分子は、ランタノイド金属上に局在化した励起状態からしばしばリン光を発する。しかし、そのような材料は三重項から直接リン光を発するのではなく、代わりに、ランタノイド金属イオン上に集中した原子励起状態から発光する。ユーロピウムジケトネート錯体は、これらのタイプの化学種の一つのグループを示す。
【0032】
三重項からのリン光は、大きな原子番号の原子に非常に近接して有機分子を閉じ込める、好ましくは結合によって閉じ込めることによって蛍光以上に強めることができる。重原子効果とよばれるこの現象は、スピン軌道カップリングとして知られる機構によって作り出される。そのようなリン光遷移は、トリス(2-フェニルピリジン)イリジウム(III)などの有機金属分子の励起金属から配位子への電荷移動(metal-to-ligand charge transfer, MLCT)から観測されうる。理論に拘束されることを望むものではないが、有機金属錯体中の有機金属-炭素結合は、大きな原子番号の原子に対する有機分子の望ましい近接性を達成する特に好ましい方法であると考えられる。特に、本出願との関連において、有機金属錯体中の有機炭素-金属結合の存在が、大きなMLCT特性を促進でき、高い効率のデバイスの製造に有用でありうる。
【0033】
本明細書で用いるように「三重項エネルギー」とは、与えられた材料のリン光スペクトル中で認識可能な最も高いエネルギー的特徴部分に対応するエネルギーをいう。この最も高いエネルギー的特徴部分は、リン光スペクトル中に最大強度を有するピークである必要はなく、例えば、そのようなピークの高エネルギー側の明確なショルダーの極大であることもできる。
【0034】
本明細書で用いるように「有機金属」の語は、当業者に一般に理解されているとおり、且つ、例えば、Gary L. Miessler及びDonald A. Tarrによる「Inorganic Chemistry」(第2版)、Prentice Hall (1998)に与えられているとおりである。したがって、有機金属の用語は、炭素-金属結合を通して金属に結合している有機基をもつ化合物をいう。このクラスは、それ自体、ヘテロ原子からの供与結合のみを有する物質である配位化合物、例えば、アミン、ハロゲン化物、擬ハロゲン化物(シュードハライド)(CN等)などの金属錯体、を含まない。実際には、有機金属化合物は、有機種への1つ以上の炭素-金属結合に加えて、ヘテロ原子からの1つ以上の供与結合を含むことができる。有機種への炭素-金属結合は、金属と有機基(例えば、フェニル、アルキル、アルケニルなど)の炭素原子との間の直接結合をいうが、「無機炭素」(例えば、CN又はCOの炭素)への金属結合はいわない。
【0035】
図1は、有機発光デバイス100を示す。図は必ずしも縮小して描かれてはいない。デバイス100は、基材110、アノード115、ホール注入層120、ホール輸送層125、電子阻止層(electron blocking layer)130、発光層135、ホール阻止層140、電子輸送層145、電子注入層150、保護層155、カソード160を含むことができる。カソード160は、第一の導電層162と第二の導電層164を有する複合カソードである。デバイス100は、記載した層を順番に堆積させることによって作製できる。
【0036】
基材110は、所望の構造特性をもたらす任意の適切な基材であってよい。基材110は柔軟性又は剛性でありうる。基材110は、透明、半透明、又は不透明であってよい。プラスチック及びガラスは、好ましい剛性基材物質の例である。プラスチックと金属箔は、好ましい柔軟性基材物質の例である。基材110は、回路の作製を容易にするために半導体物質であることができる。例えば、基材110は、その基材上に次に堆積させたOLEDを制御可能な、基材上に回路を作製したシリコンウエハであることができる。その他の基材を用いることができる。基材110の材料と厚さは、所望する構造及び光学的特性を得るように選択できる。
【0037】
アノード115は、有機層にホールを輸送するために充分な導電性である任意の適切なアノードでありうる。アノード115の材料は、約4eVよりも大きな仕事関数を有することが好ましい(「高仕事関数材料」)。好ましいアノード材料には、導電性金属酸化物、例えば、インジウムスズオキシド(ITO)及びインジウム亜鉛オキシド(IZO)、アルミニウム亜鉛オキシド(AlZnO)、及び金属が含まれる。アノード115(及び基材110)は、ボトム発光デバイスを作るために充分透明であってよい。好ましい透明基材とアノードの組み合わせは、市販されている、ガラス又はプラスチック(基材)上に堆積されたITO(アノード)である。柔軟且つ透明な基材とアノードの組み合わせは、米国特許第5,844,363及び同6,602,540B2号公報(これらはその全体を参照により援用する)に開示されている。アノード115は、不透明及び/又は反射性でありうる。反射性アノード115は、デバイスの上端(トップ)から放射される光量を増大させるために、いくつかのトップ発光性デバイスに対して好ましい。アノード115の材料及び厚さは、所望する導電特性及び光学特性を得るように選択できる。アノード115が透明である場合、所望する導電性を付与するために充分厚く、なお所望する透明度を付与するために充分薄い、特定の材料のための厚さの範囲がありうる。その他のアノード材料と構造を用いることができる。
【0038】
ホール輸送層125は、ホールを輸送しうる材料を含むことができる。ホール輸送層130は真正(ドープされていない)、又はドープされていることができる。ドーピングは導電性を高めるために用いうる。α-NPDとTPDは、真正ホール輸送層の例である。p-ドープされたホール輸送層の例は、Forrestらの米国特許出願公開第2003-0230980号明細書(その全体を参照により本願に援用する)に記載されたように、50:1のモル比でm-MTADATAがF4-TCNQでドープされたものである。その他のホール輸送層が使用できる。
【0039】
発光層135は、アノード115とカソード160の間に電流が流された場合に、光を放射しうる有機材料を含みうる。発光層135は、蛍光発光材料を用いることもできるが、リン光発光材料を含むことが好ましい。リン光材料は、そのような材料に伴う高い発光効率のために好ましい。発光層135は、電子、ホール、及び/又は励起子をトラップしうる発光材料でドープされた、電子及び/又はホールを輸送しうるホスト材料を含むこともでき、それにより励起子は発光機構を通じて発光材料から緩和する。発光層135は、輸送及び発光特性を結合した単一材料を含むことができる。発光材料がドーパントであろうと主成分であろうと、発光層135はその他の材料、例えば、発光材料の発光を調節するドーパントなどを含むことができる。発光層135は、組み合わせて、光の所望のスペクトルを放射することができる複数の発光材料を含むことができる。リン光発光材料の例には、Ir(ppy)が含まれる。蛍光発光材料の例には、DCM及びDMQAが含まれる。ホスト材料の例には、Alq、CBP、及びmCPが含まれる。発光及びホスト材料の例は、Thompsonらの米国特許第6,303,238号明細書(その全体を参照により本願に援用する)に開示されている。発光材料は、様々な方法で発光層135中に含まれうる。例えば、発光性小分子はポリマー中に組み込まれうる。これは、いくつかの方法によって達成されうる:小分子を別個かつ明確な分子種としてポリマー中にドーピングすることによって;あるいは、小分子をポリマーの骨格中に組み込み、コポリマーを形成することによって;あるいは、小分子をポリマー上のペンダント基として結合することによって。その他の発光層材料及び構造を用いることができる。例えば、小分子発光材料は、デンドリマーのコアとして存在してもよい。
【0040】
多くの有用な発光材料は、金属中心に結合した1つ以上の配位子を含む。配位子は、それが有機金属発光材料の光活性特性に直接寄与する場合は、「光活性」ということができる。「光活性」配位子は、金属と結合して、光子を放出するときに、そこから及びそこへ電子が移動するエネルギー準位(複数)をもたらしうる。その他の配位子は「補助」ということができる。補助配位子は、例えば、光活性配位子のエネルギー準位を移動させることによって、分子の光活性特性を改変しうるが、補助配位子は発光に関与するエネルギー準位を直接提供はしない。1つの分子内で光活性である配位子は、別の分子において補助でありうる。光活性と補助のこれらの定義は、非制限的理論を意図するものである。
【0041】
電子輸送層145は、電子を輸送しうる材料を含みうる。電子輸送層145は、真正(非ドープ)であるか又はドープされていることができる。ドーピングは導電性を高めるために用いることができる。Alqは真正の電子輸送層の例である。n-ドープした電子輸送層の例は、Forrestらの米国特許出願公開第2003−0230980号公報(その全体を参照により本願に援用する)に公開された、1:1のモル比でBPhenがLiでドープされたものである。その他の電子輸送層を用いることができる。
【0042】
電子輸送層の電荷担体成分は、電子がカソードから電子輸送層のLUMO(最低空軌道)エネルギー準位に効率良く注入されうるように選択されうる。「電荷担体成分」は、実際に電子を輸送するLUMOエネルギー準位に関与しうる材料である。この成分はベース材料であることができ、あるいはドーパントであってよい。有機材料のLUMOエネルギー準位は、通常、その材料の電子親和力によって特徴づけられ、カソードの相対的電子注入効率は、通常、カソード材料の仕事関数によって特徴づけられる。このことは、電子輸送層と隣接するカソードの好ましい特性が、ETLの電荷担体成分の電子親和力とカソード材料の仕事関数によって特定されうることを意味する。特に、高い電子注入効率を達成するために、カソード材料の仕事関数は、電子輸送層の電荷担体成分の電子親和力よりも約0.75eVを超えて大きくないこと、さらに好ましくは約0.5eV以下を超えて大きくないことが好ましい。同様の考慮が、電子が注入される全ての層に適用される。
【0043】
カソード160は、カソード160が電子を伝導でき、且つそれらをデバイス100の有機層に注入できるように、当分野で公知の任意の好適な材料又は材料の組み合わせであってよい。カソード160は、透明又は不透明であってよく、反射性でもよい。金属及び金属酸化物が、好適なカソード材料の例である。カソード160は単一の層であることができ、あるいは複合構造をもっていてもよい。図1は、薄い金属層162と厚い導電性金属酸化物層164を有する複合カソード160を示している。複合カソードにおいて、厚い層164のための好ましい材料には、ITO、IZO、及び当分野で公知のその他の材料が含まれる。米国特許第5,703,436号、同5,707,745号、同6,548,956B2号、及び同6,576,134B2号(これらの全体を参照により本願に援用する)は、上に重ねた透明な電気伝導性のスパッタ蒸着したITO層をもつMg:Agなどの金属の薄層を有する複合カソードを含むカソードの例を開示している。下にある有機層と接触しているカソード160の部分は、それが単一層カソード160、複合カソードの薄層金属層162、あるいはいくらか別の部分であろうとなかろうと、約4eV未満の仕事関数を有する材料(「低仕事関数材料」)でできていることが好ましい。その他のカソード材料及び構造を用いることができる。
【0044】
阻止層は、発光層を離れる電荷担体(電子又はホール)及び/又は励起子の数を減らすために用いうる。電子阻止層130は、電子がホール輸送層125の方向に発光層135から離れることを阻止するために、発光層135とホール輸送層125の間に配置しうる。同様に、ホール阻止層140は、ホールが電子輸送層145の方向に発光層135から離れることを阻止するために、発光層135と電子輸送層145の間に配置しうる。阻止層は、励起子が発光層の外へ拡散することを阻止するために用いることもできる。阻止層の理論及び使用は、Forrestらの米国特許第6,097,147号明細書及び米国特許出願公開第2003−0230980にさらに詳細に記載されており、その全体を参照により本願に援用する。
【0045】
本明細書で用いるように、且つ当業者に理解されているように、「阻止層」の用語は、その層がデバイスを通る荷電担体及び/又は励起子の移動を顕著に防止する障壁を意味するが、その層が必ずしも荷電担体及び/又は励起子を完全に阻止することを示唆するものではない。デバイス中のそのような阻止層の存在は、阻止層をもたない類似のデバイスに比べて実質的により高い効率をもたらしうる。また、阻止層は、発光をOLEDの所望の領域に限定するために用いることもできる。
【0046】
一般に、注入層は一つの層(例えば、電極又は有機層)から隣接する有機層中への電荷担体の注入を向上させうる材料を含んで成る。注入層は、電荷輸送機能を行うこともできる。デバイス100において、ホール注入層120は、アノード115からホール輸送層125中へのホールの注入を向上させる任意の層であってよい。CuPcはITOアノード115、及びその他のアノードからのホール注入層として用いることができる材料の例である。デバイス100においては、電子注入層150は、電子輸送層145中への電子の注入を向上させる任意の層であってよい。LiF/Alは、隣接する層から電子輸送層への電子注入層として用いることができる材料の例である。その他の材料又は材料の組み合わせを、注入層に用いることができる。具体的なデバイスの構成に応じて、注入層は、デバイス100に示したものとは異なる位置に配置しうる。注入層のより多くの例は、Luらの米国特許出願第09/931,948号明細書に提供されており、その全体を参照により本願に援用する。ホール注入層は、溶液により堆積した材料、例えばスピンコーティングしたポリマー、例えばPEDOT:PSSを含むことができ、あるいはそれは気相蒸着した小分子材料、例えば、CuPc又はMTDATAであることができる。
【0047】
ホール注入層(HIL)は、アノード表面を平坦化又は濡らして、アノードからホール注入材料への効率的なホール注入をもたらしうる。ホール注入層は、本明細書に記載した相対的イオン化ポテンシャル(IP)エネルギーによって定義されるように、HILの片側に隣接するアノード層及びHILの反対側のホール輸送層と好ましく調和したHOMO(最高被占軌道)をもつ電荷担体成分を有してもよい。「電荷担体成分」は、実際にホールを輸送するHOMOエネルギー準位に関与する材料である。この成分はHILのベース材料であるか、又はそれはドーパントでありうる。ドープしたHILを用いることは、ドーパントをその電子的特性のために選択することを可能にし、ホストを、濡れ、柔軟性、靭性などのモルフォロジー特性のために選択することを可能にする。HIL材料についての好ましい特性は、ホールがアノードからHIL材料に効率的に注入されうるということである。特に、HILの電荷担体成分は、アノード材料のIPより約0.7eV以下の値大きなIPを有することが好ましい。電荷担体成分は、アノード材料よりも約0.5eV以下の値大きなIPを有することがさらに好ましい。同様の考慮が、ホールが注入される全ての層に適用される。HIL材料は、OLEDのホール輸送層に典型的に用いられる従来のホール輸送材料からさらに区別され、OLEDではそのようなHIL材料は、従来のホール輸送材料のホール伝導性よりも実質的に小さなホール伝導性をもちうる。本発明のHILの厚さは、アノード層の表面を平坦化又は濡らすのを助けるために充分厚いことができる。例えば、10nmほどの薄さのHILの厚さは、非常に滑らかなアノード表面のために許容可能である。しかし、アノード表面は非常に粗くなる傾向があるので、50nm以下のHILの厚さがいくつかの場合に望ましい可能性がある。
【0048】
保護層は、次の作製工程において下にある層を保護するために用いることができる。例えば、金属又は金属酸化物のトップ電極に用いる工程は有機層に損傷を与えるおそれがあり、保護層はそのような損傷を低減又は除去するために用いることができる。デバイス100において、保護層155はカソード160の作製時に下にある有機層への損傷を低減しうる。保護層はそれが輸送する担体の種類に対して高い担体移動度をもち(デバイス100では電子)、保護層がデバイス100の作動電圧を大きく増大させないことが好ましい。CuPc、BCP、及び様々な金属フタロシアニン類が、保護層に用いられうる材料の例である。その他の材料及び材料の組み合わせを用いることができる。保護層155の厚さは、有機保護層160が堆積された後に行う作製工程によって下にある層にほとんど、あるいは全く損傷がないように充分厚いが、デバイス100の作動電圧を大きく増大させるほどは厚くないことが好ましい。保護層155はその導電性を高めるためにドープできる。例えば、CuPc又はBCP保護層160は、Liでドープしうる。保護層のさらに詳細な説明は、Luらの米国特許出願第09/931,948号明細書に見ることができ、その全体を本願に援用する。
【0049】
図2は反転型OLED200を示す。このデバイスは、基材210、カソード215、発光層220、ホール輸送層225、及びアノード230を含む。デバイス200は記載した層を順に堆積させることによって作製できる。最も一般的なOLEDの構成はアノードの上に配置されたカソードをもち、デバイス200はアノード230の下に配置されたカソード215をもつので、デバイス200は「反転型」OLEDということができる。デバイス100に関して説明した材料と同様の材料を、デバイス200の対応する層に用いることができる。図2は、デバイス100の構造から、どのようにいくつかの層を除くことができるかの1つの例を提供している。
【0050】
図1及び2に図示した簡単な層状構造は非制限的な例として提供し、本発明の態様がその他のさまざまな構造と一緒に用いられうることが理解される。記載した具体的な材料及び構造は事実上の例であり、その他の材料及び構造を使用できる。機能的なOLEDは、記載した様々な層を別の方法で組み合わせることによって達成でき、あるいは、設計、性能、及びコスト要因に基づいて、層を完全に除外しうる。具体的に記載していないその他の層も含むことができる。具体的に記載した材料以外の材料を用いることができる。ここに提供した多くの例は単一材料を含むものとして様々な層を説明したが、材料の組み合わせ、例えば、ホストとドーパントの混合物、あるいはより一般的な混合物が使用できることが理解される。また、層はさまざまな副層をもつこともできる。本明細書で様々な層に付与した名称は、厳密に制限することを意図するものではない。例えば、デバイス200において、ホール輸送層225は、発光層220にホールを輸送し且つホールを注入し、ホール輸送層又はホール注入層として説明されうる。一つの態様において、OLEDはカソードとアノードの間に配置された「有機層」を有すると説明されうる。この有機層は、単一層を含んでもよく、あるいは、例えば、図1及び2について説明したように、様々な有機材料の複数層をさらに含んでもよい。
【0051】
Friendらの米国特許第5,247,190号明細書(その全体を参照により本願に援用する)に開示されているような高分子材料を含んでなるOLED(PLED)などの、具体的に記載していない構造及び材料も用いることができる。さらなる例として、単一の有機層を有するOLEDを用いることができる。OLEDは、例えば、Forrestらの米国特許第5,707,745号明細書(その全体を参照により本願に援用する)に記載されているように、積み重ねることができる。OLED構造は、図1及び2に図示した単純な層状構造から外れることができる。例えば、基材は、Forrestらの米国特許第6,091,195号明細書に記載されているようなメサ構造などの、アウトカップリングを向上させるための角度をつけた反射表面、及び/又はBulovicらの米国特許第5,834,893号明細書に記載されたようなピット構造を含むことができる(これらの特許明細書を参照により本願に援用する)。
【0052】
別途特定しない限り、さまざまな態様のいかなる層も、任意の適切な方法によって堆積されうる。有機層については、好ましい方法には、米国特許第6,013,982号明細書及び同6,087,196号明細書(これらの全体を参照により本願に援用する)に記載されているような、熱蒸発(熱蒸着)、インクジェット、例えば、Forrestらの米国特許第6,337,102号明細書(その全体を参照により本願に援用する)に記載されているような有機気相蒸着(OVPD)、及び米国特許出願第10/233,470(その全体を本願に援用する)に記載されているような有機気相ジェットプリンティング(OVJP)による堆積が含まれる。その他の適切な堆積方法には、スピンコーティング及びその他の溶液に基づく方法が含まれる。溶液に基づく方法は、窒素又は不活性雰囲気で行うことが好ましい。その他の層については、好ましい方法には、熱蒸着(熱蒸発)が含まれる。好ましいパターン作製方法には、マスクを通しての蒸着、米国特許第6,294,398号明細書及び同6,468,819号明細書(それら全体を本願に援用する)に記載されたようなコールドウェルディング、及びインクジェット及びOVJDなどの堆積方法のいくつかと組み合わされたパターン作成、が含まれる。その他の方法も使用できる。堆積される材料は、特定の堆積方法に適合するようにするために修飾しうる。例えば、分岐した又は分岐しておらず、好ましくは少なくとも3つの炭素を含むアルキル及びアリール基などの置換基を小分子に用いて、溶液加工される能力を高めることができる。20以上の炭素を有する置換基を用いてもよく、3〜20の炭素が好ましい範囲である。非対称構造を有する材料は、対称構造を有するものよりも、より良い溶液加工性をもつことができ、なぜなら非対称材料は再結晶する傾向がより低いからである。デンドリマー置換基は、小分子が溶液加工される能力を高めるために用いることができる。
【0053】
本明細書に開示する分子は、本発明の範囲から逸脱することなく、多くの様々な方法で置換されうる。例えば、置換基が追加された後で、二座配位子の1つ以上が一緒に連結されて、例えば、四座又は六座配位子を形成するように、3つの二座配位子を有する化合物に置換基を追加してもよい。その他のそのような連結を形成できる。「キレート効果」として当業者に一般に理解されているものによって、この種の連結は、連結がない類似の化合物と比べて安定性を増大させうると考えられる。
【0054】
本発明の態様に従って作製されたデバイスは、フラットパネルディスプレイ、コンピュータモニター、テレビ、広告板、室内又は屋外照明及び/又は信号の光源、ヘッドアップディスプレイ、完全に透明なディスプレイ、フレキシブルディスプレイ、レーザープリンタ、電話、携帯電話、携帯情報端末(PDA)、ラップトップコンピュータ、デジタルカメラ、ビデオカメラ、ビューファインダー、マイクロディスプレイ、車両、大面積壁、シアターもしくはスタジアムスクリーン、又は標識を含めた、広範囲の消費者製品中に組み込まれうる。様々な制御機構が、本発明に従って作製したデバイスを制御するために用いることができ、それにはパッシブマトリクス及びアクティブマトリクスが含まれる。多くのデバイスは、人に快適な温度範囲、例えば、18℃〜30℃、さらに好ましくは室温(20〜25℃)などでの使用が意図される。
【0055】
本明細書に記載した材料及び構造は、OLED以外のデバイスでの用途をもちうる。例えば、有機太陽電池及び有機光検出器などのその他のオプトエレクトロニクスデバイスが、本材料及び構造を利用しうる。さらに一般的には、有機デバイス、例えば有機トランジスタなどが、本材料と構造を利用しうる。
【0056】
「アリール」の語は、芳香族炭素環式の単一基をいう。別に特定しない限り、芳香族炭素環式単一基は、置換されているか、又は置換されていないことができる。置換基は、F、ヒドロカルビル、ヘテロ原子で置換されたヒドロカルビル、シアノなどであることができる。
【0057】
「ヒドロカルビル」基は、炭素原子と水素原子のみを含む、一価又は二価の、直鎖状、分枝状、又は環状の基を意味する。一価のヒドロカルビル基の例には、以下のものが含まれる:C〜C20アルキル;C〜C20アルキル、C〜Cシクロアルキル、及びアリールから選択される1つ以上の基で置換されたC〜C20アルキル;C〜Cシクロアルキル;C〜C20アルキル、C〜Cシクロアルキル、及びアリールから選択される1つ以上の基で置換されたC〜Cシクロアルキル;C〜C18アリール;及びC〜C20アルキル、C〜Cシクロアルキル、及びアリールから選択される1つ以上の基で置換されたC〜C18アリール。二価(架橋性)のヒドロカルビルの例には以下が含まれる:-CH2-;-CH2CH2-;-CH2CH2CH2-;及び1,2-フェニレン。
【0058】
「ヘテロ原子」は、炭素又は水素以外の原子をいう。ヘテロ原子の例には、酸素、窒素、リン、硫黄、セレン、ヒ素、塩素、臭素、ケイ素、及びフッ素が含まれる。
【0059】
「ヘテロアリール」は、芳香族であるヘテロ環式単一基をいう。他に特定されていない限り、芳香族ヘテロ環式単一基は、置換されているか、又は置換されていないことができる。置換基は、F、ヒドロカルビル、ヘテロ原子で置換されたヒドロカルビル、シアノなどであることができる。ヘテロアリールの例には、1-ピロリル、2-ピロリル、3-ピロリル、フリル、チエニル、インデニル、イミダゾリル、オキサゾリル、イソオキサゾリル、カルバゾリル、チアゾリル、ピリミジニル、ピリジル、ピリダジニル、ピラジニル、ベンゾチエニルなど、並びにそれらの置換誘導体、が含まれる。
【0060】
「オルト位」により、第一の環への第二の環の結合位置に隣接した、アリール又はヘテロアリール基上の位置を意味する。1位を介して結合した6員環アリール基(例えば2,6-ジメチルフェニル)の場合には、この2及び6位がオルト位である。1位を介して結合した5員環ヘテロアリール基(例えば、2,5-ジフェニルピロール-1-イル)の場合は、この2及び5位がオルト位である。本発明との関連では、2,3,4,5,7,8,9,10-オクタヒドロアントラセン-1-イルのように、結合位に隣接する炭素での環の縮合は、オルト置換の一つのタイプであると考えられる。
【0061】
理論に拘束されることを望むことなく、本発明者らは、ドーパントの分解と励起状態の消光がリン光デバイスの不具合における重要な因子であり、本発明のデバイスの高められた安定性は、第二の環を含むオルトジ置換アリール又はヘテロアリール基による立体効果と電子効果の組み合わせに起因する可能性があると考えている。これらの因子は、青色発光リン光材料にとって特に重要であると考えられる。
【0062】
本発明者らは、配置を変えることがより困難なドーパントが、より長い寿命をもちうると考えている。特に、オルトジ置換された第二の環による立体的嵩高さは、直接の分子内相互作用を通じて、又は間接的に、取り囲む固相マトリクスとの相互作用によって、ドーパントが配置を変えることをより困難にし、したがって、ドーパントが分解することをより困難にするようなやり方でドーパントを固定すると考えられる。これは、いくつかの分解経路が一つのステップとして分子の配置変更を含み、配置変更をより難しくすることが、分解を場合によっては遅くしうることによる。配置変更をより困難にする方法には、第二の環上の大きな置換基に特に伴う立体的嵩高さを増大することが含まれる。第二の環のオルト位のアリール又はヘテロアリール基の存在は、そのようなオルト置換をもたない分子と比較して分子を固定する分子内相互作用をもたらし、ある種の分子配置変更を防止し、それにより、特定の分解経路を防止し又はより困難にする。
【0063】
任意の大きな置換基は、位置に関わらず、その周囲の固体マトリクスと相互作用し、分子が配置変更することをより困難にできると考えられる。この機構は、固定化とは異なると考えられ、なぜなら、固定化はホストとの相互作用を当てにしているからである。
【0064】
本発明者らは、金属中心への不純物の接近を抑制することも寿命を長くしうると考えている。これは、いくらかの分解は、金属中心と不純物との化学反応によって引き起こされうるからである。オルト位でジ置換された第二の環に伴う立体的嵩高さは、金属中心への反応性不純物の接近も制限するであろう。そのような反応性不純物には、例えば、金属錯体と反応できて金属錯体の化学構造を変えうる水又は拡散性イオンが含まれる。第二の環のオルト位の置換基は、そのような不純物の接近を妨害する。任意の大きな基が、不純物の接近を妨害するために機能しうるが、環の特定の位置が、金属中心に対するさらに大きな保護をもたらすことができる。これに関して、オルト位は、金属中心の寿命を向上させるのに特に有効であることができ、なぜなら、これらの置換基は内側を向き、金属中心への接近を妨害する、大いに密集した環境を作り出すからである。
【0065】
加えて、本発明の化合物のオルト位の置換基は、ドーパントと消光剤との距離を長くすることによって、分解時に形成される不純物によるドーパントの励起状態の消光を最小限にもする。さらに、第二の環でのオルトジ置換を有する金属錯体の使用は、ドーパントとドーパントとの距離を長くすることによって、ドーパントからドーパントへのエネルギー移動を最小にし、それによって、分解に関連した消光性不純物への励起子の拡散を最小にする。
【0066】
オルトジ置換された第二の環をもつ化合物は、第一の環と第二の環との間の二面角を大きくし、それによって、第一の環から第二の環を実質的に非共役にするとも考えられる。そのような非共役に伴う電子的効果は以下のことを含むと考えられる:(i)オルト置換のない他の等価化合物と比較した、リン光発光のブルーシフト、及び(ii)一重項及び三重項エネルギーのデカップリング(非干渉)(それにより一重項励起状態のエネルギーを低くし、リン光発光をレッドシフトさせることなくドーパントの電気化学的ギャップを小さくすることができる)。一重項エネルギーを低くすることは、一重項励起状態の分解しやすさを低くすると予想され、それによって、向上したデバイス寿命がもたらされる。ドーパントの電気化学的ギャップの低下は、より低い作動電圧のOLEDデバイスの作製を可能にすると予想される。G98/B31yp/cep-31gベースセットを用いたガウシアン98を使った密度関数理論(Density Functional Theory: DFT)計算は、第二の環がアリール又はヘテロアリール環で置換された、あるいは電子吸引性基で置換された本発明の特定の化合物は、第二の環上に実質的に局在化されたLUMOと、金属上に実質的に局在化されたHOMOによって特徴づけられることを示している。これらの計算は、最低エネルギーの一重項遷移が、実質的に金属を中心とするHOMOから第二の環を中心とするLUMOに向かう特性をもつ一方で、最低エネルギー三重項遷移は、主に金属を中心とするHOMOから、金属に直接結合したこれらの環に局在化されたさらに準位の高い非占有軌道へのものである。そのようにして、これらの計算は、三重項エネルギーを低下させ且つ発光をレッドシフトさせることなく、ドーパントのLUMOエネルギーを低下させ、それにより一重項励起状態のエネルギーと電気化学的ギャップの両方を低下させることができることを示している。三重項エネルギーを低下させることなく、ドーパントの一重項励起状態のエネルギーを最小にする手段を提供することが、本発明の新規な特徴である。置換のパターンに応じて、分子のLUMOを第二の環に局在化させるか、又はHOMOを第二の環に局在化させ、どちらの場合にも、金属と金属上に直接結合している基の上に三重項遷移を局在化させながら一重項遷移を第二の環と結びつけることが可能であると予想される。LUMO又はHOMOが第二の環に局在化されるかどうかは、全体の分子の置換パターンに左右されることが理解される。しかし、通常は、アリール、ヘテロアリール、又は電子吸引性基での第二の環の置換は第二の環に伴う軌道のエネルギーを低くする傾向があり、その環上にLUMOを局在化させるために用いることができるが、電子供与性基での第二の環の置換はその環上にHOMOを局在化するために用いることができる。
【0067】
本発明との関連では、「Set1」によって、以下の構造d1〜d19を意味する。
【0068】
【化2A】

【0069】
【化2B】

【0070】
上の式中、R1a〜eはそれぞれ独立して、水素、ヒドロカルビル、ヘテロ原子で置換されたヒドロカルビル、シアノ、及びFからなる群から選択される。加えて、R1a〜eの任意の2つは連結されて環を形成してもよい。
【0071】
「Set2a」は、2,6-ジメチルフェニル、2,4,6-トリメチルフェニル、2,3,4,5,6-ペンタメチルフェニル、2,6-ジメチル-4-フェニルフェニル、2,6-ジメチル-4-(3,5-ジメチルフェニル)フェニル、2,6-ジメチル-4-(2,6-ジメチルフェニル)フェニル、2,6-ジメチル-4-(4-ピリジル)フェニル、2,6-ジメチル-4-(2,6-ジメチル-4-ピリジル)フェニル、2,4-ジメチル-3-ナフチル、2,6-ジメチル-4-シアノフェニル、2,6-ジメチル-4-(9-カルバゾリル)フェニル、2,6-ジメチル-4-(9-フェニル-3-カルバゾリル)フェニル、2,6-ジメチル-4-(2,6-ジメチル-4-シアノフェニル)フェニル、及び1,8-ジメチル-9-カルバゾリルからなる群を意味する。
【0072】
「Set2b」は、2,6-ジ-イソプロピルフェニル、2,4,6-トリ-イソプロピルフェニル、2,6-ジ-イソプロピル-4-フェニルフェニル、2,6-ジ-イソプロピル-4-(3,5-ジメチルフェニル)フェニル、2,6-ジ-イソプロピル-4-(2,6-ジメチルフェニル)フェニル、2,6-ジ-イソプロピル-4-(4-ピリジル)フェニル、2,6-ジ-イソプロピル-4-(2,6-ジメチル-4-ピリジル)フェニル、2,4-ジ-イソプロピル-3-ナフチル、2,6-ジ-イソプロピル-4-シアノフェニル、2,6-ジ-イソプロピル-4-(9-カルバゾリル)フェニル、2,6-ジ-イソプロピル-4-(9-フェニル-3-カルバゾリル)フェニル、2,6-ジ-イソプロピル-4-(2,6-ジメチル-4-シアノフェニル)フェニル、2,6-ジ-tert-ブチルフェニル、2,6-ジ-tert-ブチル-4-(3,5-ジメチルフェニル)フェニル、2,6-ビス(トリメチルシリル)フェニル、2,6-ビス(ジメチルフェニルシリル)フェニル、及び2,6-ビス(トリメチルシリル)-4-(3,5-ジメチルフェニル)フェニルからなる群を意味する。
【0073】
「Set2c」は、2,6-ジ-フェニルフェニル、2,6-ジ(4-イソプロピルフェニル)-4-イソプロピルフェニル、2,6-ジ(4-イソプロピルフェニル)-4-メチルフェニル、2,6-ジ(4-イソプロピルフェニル)-4-tert-ブチルフェニル、2,4,6-トリフェニルフェニル、2,6-ジ(4-イソプロピルフェニル)フェニル、2,6-ジ(3,5-ジメチルフェニル)フェニル、2,4,6-トリ(4-イソプロピルフェニル)フェニル、2,6-ジ(4-tert-ブチルフェニル)フェニル、2,6-ジ-(4-フルオロフェニル)フェニル、2,6-ジ-(9-カルバゾリル)-4-イソプロピルフェニル、2,6-ジ-(9-フェニル-3-カルバゾリル)-4-イソプロピルフェニル、2,6-ジ-(4-メトキシフェニル)フェニル、2,6-ジフェニル-4-フルオロフェニル、2,6-ジ-(2-トリフェニレニル)フェニル、2,6-ジ-(2-トリフェニレニル)-4-イソプロピルフェニル、2,6-ジ-(2,6-ジメチル-4-ピリジル)フェニル、2,6-ジ-(4-シアノフェニル)-4-イソプロピルフェニル、2,6-ジ-2-ナフチルフェニル、2,6-ジ-(4-フェニルフェニル)-4-イソプロピルフェニル、2,6-ジ-(3-フェニルフェニル)-4-イソプロピルフェニル、2,6-ジ-(4-ジフェニルアミノフェニル)フェニル、2,6-ジ-(4-ジメチルアミノフェニル)フェニル、2,6-ジ-(4-トリメチルシリルフェニル)フェニル、2,6-ジ-(4-トリフェニルシリルフェニル)フェニル、及び2,6-ジ-(4-ジフェニルメチルシリルフェニル)フェニルからなる群を意味する。
【0074】
「Set2d」は以下の構造c1〜c9を意味する。
【0075】
【化3】

【0076】
上記式中、R1a,eはそれぞれ独立して、2つ以上の炭素を含むヒドロカルビル、ヘテロ原子で置換されたヒドロカルビル、アリール、及びヘテロアリールからなる群から選択され;
1b〜dはそれぞれ独立して、H、F、シアノ、アルコキシ、アリールオキシ、ヒドロカルビル、ヘテロ原子で置換されたヒドロカルビル、アリール、及びヘテロアリールからなる群から選択され、加えて、R1b〜dの任意の2つが連結して環を形成してもよく;
Ar1,2はそれぞれ独立してアリール又はヘテロアリールである。
【0077】
「Set3a」は以下の構造f1〜f4を意味する。
【0078】
【化4】

【0079】
上記式中、ArSrは第二の環であり;
1a,bはそれぞれ独立して、水素、ヒドロカルビル、及びヘテロ原子で置換されたヒドロカルビル、シアノ、及びFからなる群から選択され、加えて、R1a,bは連結して環を形成してもよく;
2a,bはそれぞれ独立して、水素、ヒドロカルビル、ヘテロ原子で置換されたヒドロカルビル、シアノ、及びFからなる群から選択され、加えて、R2a,bは金属に結合した基を含んでいてもよい。
【0080】
「Set3b」は以下の構造f5〜f9を意味する。
【0081】
【化5】

【0082】
上記式中、ArSrは第二の環であり;
1a〜cはそれぞれ独立して、水素、ヒドロカルビル、及びヘテロ原子で置換されたヒドロカルビル、シアノ、及びFからなる群から選択され、加えて、R1a〜cの任意の2つが連結して環を形成してもよく;
2a,bはそれぞれ独立して、水素、ヒドロカルビル、ヘテロ原子で置換されたヒドロカルビル、シアノ、及びFからなる群から選択され、加えて、R2a,bは金属に結合した基を含んでいてもよい。
【0083】
「Set4」は以下の構造t1〜t10を意味する。
【0084】
【化6】

【0085】
上記式中、Arfrは第一の環であり;
Arはアリール又はヘテロアリールであり;
1a〜dはそれぞれ独立して、水素、ヒドロカルビル、及びヘテロ原子で置換されたヒドロカルビル、シアノ、及びFからなる群から選択され、加えて、R1a〜dの任意の2つが連結して環を形成してもよい。
【0086】
「Set5a」は以下の構造l1〜l7を意味する。
【0087】
【化7】

【0088】
上記式中、Arはアリール又はヘテロアリールである。
【0089】
「Set5b」は以下の構造l20〜l22を意味する。
【0090】
【化8】

【0091】
上記式中、R1a〜iはそれぞれ独立して、水素、ヒドロカルビル、ヘテロ原子で置換されたヒドロカルビル、シアノ、及びFからなる群から選択され、加えて、R1c〜iの任意の2つが連結して環を形成してもよく;
2a,bはそれぞれ独立して、2つ以上の炭素を含むヒドロカルビル、ヘテロ原子で置換されたヒドロカルビル、アリール、及びヘテロアリールからなる群から選択される。
【0092】
「Set5c」は以下の構造l40〜l46を意味する。
【0093】
【化9】

【0094】
上記式中、R1a〜iはそれぞれ独立して、水素、ヒドロカルビル、ヘテロ原子で置換されたヒドロカルビル、シアノ、及びFからなる群から選択され、加えて、R1c〜iの任意の2つが連結して環を形成してもよく;
Arはアリール又はヘテロアリールであり;
Ar3aは4-イソプロピルフェニルであり;
Ar3bは3,5-ジメチルフェニルである。
【0095】
「Set6a」は、以下の構造mc3、mc50、mc48、mc25、mc46、mc5、mc4、mc54、mc51、mc26a、mc26、mc39、mc49、mc6、mc9、mc8、mc4b、mc38b、mc15、mc26b、mc28b、mc32b、mc33b、mc34b、mc35b、mc29b、mc30b、mc31b、mc42b、mc43b、mc44b、及びmc45bを意味する。
【0096】
【化10】

【0097】
【化11】

【0098】
【化12】

【0099】
【化13】

【0100】
【化14】

【0101】
【化15】

【0102】
【化16】

式中、Arはアリール又はヘテロアリールであり;
mは、1、2、又は3であり;
nは、金属の原子価を満たすように選択された整数である。
【0103】
【化17】

【0104】
「Set6b」は、以下の構造mc37、oa9、oa4、oa6、oa8、u6、及びoa5を意味する。
【0105】
【化18】

【0106】
【化19】

上記式中、Ar3aは4-イソプロピルフェニルであり;
Ar3bは3,5-ジメチルフェニルである。
【0107】
「Set6c」は、以下の構造mc1、mc2、mc11、mc12、mc13、mc17、mc18、mc19、mc20、mc21、mc22、mc23、mc24、mc27、mc36、oa11、mc51b、mc52b、oa12、oa1、oa2、oa3、oa8b、mc14、mc16、mc46b、mc49b、mc52b、mc53b、及びmc51bを意味する。
【0108】
【化20】

【0109】
【化21】

【0110】
【化22】

【0111】
【化23】

【0112】
【化24】

【0113】
【化25】

【0114】
【化26】

【0115】
【化27】

【0116】
【化28】

【0117】
上記式中、R2a〜c及びR1a〜qはそれぞれ独立して、水素、ヒドロカルビル、ヘテロ原子で置換されたヒドロカルビル、シアノ、及びFからなる群から選択され、加えて、R2a〜c及びR1a〜qの任意の2つが連結して環を形成してもよく(ただし、R1a及びR2aが結合した場合は、その環は飽和環である。);
Ar1〜3はアリール又はヘテロアリールであり;
ArSrは第二の環であり;
Arは9-カルバゾリル又は置換9-カルバゾリルであり;
は同じであるか又は異なっていることができる補助配位子であり;
mは1、2、又は3であり;
nはMの原子価を満たすように選択される整数であり;
Mは、Re、Ru、Os、Rh、Ir、Pd、Pt、及びAuからなる群から選択される金属である。
上記アリール基は置換されていてもよいことが理解される。特定の好ましい態様では、第二の環のアリール又はヘテロアリール基の両方のオルト位は、アリール及びヘテロアリールからなる群から選択される置換基で置換されている。
【0118】
「Set6d」は、以下の構造mc40b及びmc41bを意味する。
【0119】
【化29】

【0120】
上記式中、R1a〜iはそれぞれ独立して、水素、ヒドロカルビル、ヘテロ原子で置換されたヒドロカルビル、シアノ、及びFからなる群から選択され、加えて、R1a〜iの任意の2つが連結して環を形成してもよく;
Ar1a,bは、アリール又はヘテロアリールである。
【0121】
「Set6e」は、以下の表2中の構造m1〜m72を意味する。ここで、gs1、gs2、及びgs3は、Set7で説明される一般構造であり、3,5-Me2Phは3,5-ジメチルフェニルを意味する。
【0122】
【表1A】

【0123】
【表1B】

【0124】
「Set7」は、以下の構造gs1〜gs3を意味する。
【0125】
【化30】

【0126】
上記式中、R1a〜fは、上の表2中で定義したとおりである。
【0127】
第一の側面では、本発明はリン光化合物を提供する。リン光化合物は単座、二座、三座、四座、五座、又は六座配位子の中性の金属錯体である。この配位子は、金属に直接結合した少なくも1つの第一のアリール又はヘテロアリール環を含む。この第一の環は、アリール及びヘテロアリール基からなる群から選択される置換基によって独立に両方のオルト位で置換されており且つ金属に直接結合していない第二のアリール又はヘテロアリール環によって置換されている。第二の環はさらに置換されていてもよく、この置換基のそれぞれは、独立して置換されているか又は置換されていないことができる。上記金属は、40より大きな原子番号をもつ非放射性金属からなる群から選択される。
【0128】
上記第一の側面の第一の好ましい態様では、金属は、Re、Ru、Os、Rh、Ir、Pd、Pt、Cu、及びAuからなる群から選択される。第二の好ましい態様では、金属は、Os、Ir、及びPtからなる群から選択される。第三の好ましい態様では、金属はIrである。
【0129】
第四の好ましい態様では、第二の環がアリール、ヘテロアリール、又は電子吸引性基で置換されている。「電子吸引性基」は、その基に対応するハメットの置換基定数が正の値をもつ基を意味する。ハメットの置換基定数は当業者に公知である(例えば、Hansch, C; Leo, A.; Taft, R. W.; Chem. Rev. 1991, Vol. 91, p. 165を参照されたい)。OLEDデバイスに適合するものとして、多くの電子吸引性基が文献に報告されている。そのような基が好ましい。そのような基の例には、シアノ、9-カルバゾリル、及び1-トリアゾリルが含まれる。
【0130】
第五の好ましい態様では、第二の環はトリフェニレン基で置換されている。
【0131】
第六の好ましい態様では、第二の環はカルバゾールを含む基で置換されている。
【0132】
第七の好ましい態様では、第二の環のオルト位の置換基は、1つ以上のジアリールアミノアリール基を含む。
【0133】
第八の好ましい態様では、上記化合物は、約480nm未満の波長において、リン光発光スペクトル中に最大エネルギーピークを有する。
【0134】
第九の好ましい態様では、上記化合物はホモレプティック(homoleptic)である。
【0135】
第十の好ましい態様では、上記化合物はヘテロレプティック(heteroleptic)である。
【0136】
第十一の好ましい態様では、上記化合物は昇華性である。「昇華性」は、気相加工したOLEDデバイス中に化合物が組み込まれうる上昇した温度において、化合物が充分な揮発性と熱安定性をもつことを意味する。典型的には、これは、約200〜約400℃の温度で少なくとも約数時間のあいだに及ぶ昇華において、約25%より高い収率の約98%を超える純度の昇華した材料が回収されうることを意味する。いくつかの場合では、上記化合物は工程中で溶融又は軟化する可能性があり、その場合その工程は蒸留に類似しうる。
【0137】
第十二の好ましい態様では、第二の環は第一の環の窒素原子に結合されている。
【0138】
第十三の好ましい態様では、第一の環はイミダゾール環である。第十四の好ましい態様では、第一の環はピラゾール環である。第十五の好ましい態様では、第一の環はトリアゾール環である。第十六の好ましい態様では、第一の環はピリジン環である。第十七の好ましい態様では、第一の環はベンゼン環である。
【0139】
第十八の好ましい態様では、第一の環は第三のアリール又はヘテロアリール環によって置換されており、これもまた金属に直接結合している。
【0140】
第十九の好ましい態様では、第一及び第三の環は共同でモノアニオン性二座配位子を含む。
【0141】
第二十の好ましい態様では、第三の環は、フェニル、ピリジル、チオフェニル、フラニル、ピロリル、トリアゾリル、及びピリミジルからなる群から選択される。
【0142】
第二十一の好ましい態様では、第三の環は1つ以上のフッ素基で置換されたフェニル環である。
【0143】
第二十二の好ましい態様では、第一及び第三の環は共同でモノアニオン性三座配位子を含む。
【0144】
第二十三の好ましい態様では、第一及び第三の環は共同で中性の二座配位子を含む。
【0145】
第二十四の好ましい態様では、第二の環のオルト位に結合した基は、上で定義したSet1から選択される。
【0146】
第二十五の好ましい態様では、第二の環は、上で定義したSet2c及び2dから選択される。
【0147】
第二十六の好ましい態様では、第一の環は、上で定義したSet3a及び3bから選択される。
【0148】
第二十七の好ましい態様では、第三の環は、上で定義したSet4から選択される。
【0149】
第二十八の好ましい態様では、配位子は、上で定義したSet5cから選択される。
【0150】
第二十九の好ましい態様では、金属錯体は、Set6cからの化合物mc2、Set6cからの化合物mc13、Set6cからの化合物mc17、Set6cからの化合物mc18、Set6cからの化合物mc19、Set6cからの化合物mc20、Set6cからの化合物mc21、Set6cからの化合物mc22、Set6cからの化合物mc23、Set6cからの化合物mc24、Set6cからの化合物mc36、Set6cからの化合物oa11、Set6cからの化合物mc51b、Set6cからの化合物mc52b、Set6cからの化合物oa12、Set6cからの化合物oa1、Set6cからの化合物oa2、Set6cからの化合物oa3、Set6cからの化合物oa8b、Set6cからの化合物mc46b、Set6cからの化合物mc49b、Set6cからの化合物mc52b、Set6cからの化合物mc53b、Set6cからの化合物mc51b、Set6dからの化合物mc40b、及びSet6dからの化合物mc41bからなる群から選択される。
【0151】
第三十の好ましい態様では、金属錯体は、二座のモノアニオン性のN,N-供与性配位子(ドナー配位子)を含む。
【0152】
第三十一の好ましい態様では、金属錯体はカルベン供与体を含む。
【0153】
第三十二の好ましい態様では、上記カルベン供与体は、二座のモノアニオン性配位子の一部である。
【0154】
第三十三の態様では、第二の環はフッ素以外の基で置換されている。
【0155】
第三十四の態様では、第二の環に対応するアレン又はヘテロアレンの三重項エネルギーが、約2.5eVよりも大きい。「第二の環に対応するアレン又はヘテロアレン」は、第一の環の代わりに水素原子を第二の環に付けることによって得られる分子を意味する。例えば、第二の環が2,6-ジメチルフェニルである場合、対応するアレンは1,3-ジメチルベンゼンになる。同様に、第二の環が2,6-ジメチル-4-フェニルフェニルである場合は、対応するアレンは、1,5-ジメチル-3-フェニルベンゼンになる。一般のアレン及びヘテロアレンの三重項エネルギーは、「Handbook of Photochemistry」第2版(S. L. Murov, I. Carmichael, G. L. Hug編;Dekker, 1993, New York)を含めた様々な参考文献で見つけることができるか、あるいは当業者に公知の方法、例えば、G98/B31yp/cep-31g basis setを備えたGaussian 98を使用する密度関数理論(DFT)計算によって、計算することができる。約2.5eVより大きな三重項エネルギーは、約500nmよりも短い三重項遷移波長に相当する。理論に拘束されることは望まないが、本発明者らは、いくつかの場合において、第二の環の過度に低い三重項エネルギーが、リン光発光をレッドシフトさせるか、あるいは放射量子収率を低下させるか、あるいはその両方を行うと考えている。
【0156】
第三十五の好ましい態様では、第二の環に対応するアレン又はヘテロアレンの分子量は、約230g/molより大きい。
【0157】
第三十六の好ましい態様では、第二の環に対応するアレン又はヘテロアレンの分子量は、約430g/molより大きい。
【0158】
第三十七の好ましい態様では、第二の環に対応するアレン又はヘテロアレンの分子量は、約530g/molより大きい。
【0159】
第三十八の好ましい態様では、第二の環に対応するアレン又はヘテロアレンの分子量は、約750g/molより大きい。
【0160】
第三十九の好ましい態様では、計算された一重項−三重項ギャップは、約0.4eV未満である。「計算された一重項−三重項ギャップ」は、G98/B31yp/cep-31g basis setを備えたGaussian 98を使用する密度関数理論(DFT)法によって計算された、金属錯体の一番低い一重項励起状態と一番低い三重項励起状態との間のエネルギーの差を意味する。第四十の好ましい態様では、この計算された一重項−三重項ギャップは約0.3eV未満である。第四十一の好ましい態様では、計算された一重項−三重項ギャップは、約0.2eV未満である。第四十二の好ましい態様では、計算された一重項−三重項ギャップは、約0.1eV未満である。
【0161】
第四十三の好ましい態様では、配位子の還元電位は、第二の環の代わりにメチル基を有する対応する配位子の還元電位よりも、絶対値が少なくとも約0.1V小さなマイナスの値である。「配位子の還元電位」は、配位子に対応する中性化合物についての、溶液中での電気化学的還元電位を意味する。配位子がN-アリール-2-フェニルイミダゾールから誘導されたモノアニオン性の二座供与体である場合は、「配位子に対応する中性化合物」はN-アリール-2-フェニルイミダゾールである。より一般的には、配位子が中性供与体である場合は、「配位子に対応する中性化合物」と配位子は同じ化合物、あるいは互変異性体である。配位子がモノアニオン性供与体である場合は、「配位子に対応する中性化合物」は、金属錯体中で金属に結合し且つ形式的な負電荷をもっている配位子の原子が、配位子に対応する中性化合物においては金属の代わりにプロトンをもっている化合物である。
【0162】
第四十四の好ましい態様では、配位子の還元電位が、第二の環の代わりにメチル基を有する、対応する配位子の還元電位よりも、絶対値が少なくとも約0.2V小さなマイナスの値である。第四十五の好ましい態様では、配位子の還元電位は、第二の環の代わりにメチル基を有する、対応する配位子の還元電位よりも、絶対値が少なくとも約0.3V小さなマイナスの値である。第四十六の好ましい態様では、配位子の還元電位は、第二の環の代わりにメチル基を有する、対応する配位子の還元電位よりも、絶対値が少なくとも約0.4V小さなマイナスの値である。第四十七の好ましい態様では、配位子の還元電位は、第二の環の代わりにメチル基を有する、対応する配位子の還元電位よりも、絶対値が少なくとも約0.5V小さなマイナスの値である。
【0163】
第四十八の好ましい態様では、ΔE(デルタE)は約0.6eVよりも小さい。ここで、ΔE=(eV単位での三重項エネルギー)−(eV単位での修正された電気化学ギャップ)。ここで、eV単位での修正された電気化学ギャップは、金属錯体の酸化電位と、配位子に対応する中性化合物の還元電位との間の電位差を横切る1つの電子に関連づけられるエネルギー差に等しい。第四十九の好ましい態様では、ΔEは約0.5eVよりも小さい。第五十の好ましい態様では、ΔEは約0.4eVよりも小さい。第五十一の好ましい態様では、ΔEは約0.3eVよりも小さい。第五十二の好ましい態様では、ΔEは約0.2eVよりも小さい。
【0164】
第二の側面では、本発明はリン光化合物を提供する。このリン光化合物は、単座、二座、三座、四座、五座、又は六座配位子の中性金属錯体である。配位子は、金属に直接結合した少なくとも1つの第一のアリール又はヘテロアリール環を含む。第一の環は、両方のオルト位でH又はハライド(ハロゲン基)以外の基によって置換されており且つ金属に直接結合していない第二のアリール又はヘテロアリール環で置換されている。この第一の環は、イミダゾール、ベンゼン、ナフタレン、キノリン、イソキノリン、ピリジン、ピリミジン、ピリダジン、ピロール、オキサゾール、チアゾール、オキサジアゾール、チアジアゾール、フラン、又はチオフェン環である。金属は、40より大きな原子番号をもつ非放射性金属からなる群から選択される。
【0165】
第二の側面の第一の好ましい態様では、第一の環は、金属に第一の窒素で配位しているイミダゾールである。第二の好ましい態様では、第二の環は、第一の環の第二の窒素に結合している。
【0166】
第三の好ましい態様では、金属は、Re、Ru、Os、Rh、Ir、Pd、Pt、Cu、及びAuからなる群から選択される。第四の好ましい態様では、金属は、Os、Ir、及びPtからなる群から選択される。第五の好ましい態様では、金属はIrである。
【0167】
第六の好ましい態様では、第二の環は、1つ以上のアリール、ヘテロアリール、又は電子吸引性基で置換されている。
【0168】
第七の好ましい態様では、第二の環は、トリフェニレン基で置換されている。
【0169】
第八の好ましい態様では、第二の環は、カルバゾールを含む基で置換されている。
【0170】
第九の好ましい態様では、前記のH又はハライド以外の基はアルキル基である。
【0171】
第十の好ましい態様では、前記のH又はハライド以外の基は2つ以上の炭素を含むアルキル基である。
【0172】
第十一の好ましい態様では、前記のH又はハライド以外の基はアリール基である。
【0173】
第十二の好ましい態様では、前記のH又はハライド以外の基はヘテロアリール基である。
【0174】
第十三の好ましい態様では、前記のH又はハライド以外の基は、1つ以上のジアリールアミノアリール基を含む。
【0175】
第十四の好ましい態様では、本化合物は、約480nmより短い波長において、リン光発光スペクトル中の最も高いエネルギーピークを有する。
【0176】
第十五の好ましい態様では、本化合物はホモレプティックである。
【0177】
第十六の好ましい態様では、本化合物はヘテロレプティックである。
【0178】
第十七の好ましい態様では、本化合物は昇華性である。
【0179】
第十八の好ましい態様では、第一の環は、同様に金属に直接結合した第三のアリール又はヘテロアリール環で置換されている。
【0180】
第十九の好ましい態様では、第一及び第三の環は共同でモノアニオン性の二座配位子を含んでいる。
【0181】
第二十の好ましい態様では、上記第三の環は、ベンゼン、ナフタレン、キノリン、イソキノリン、ピリジン、ピリミジン、ピリダジン、ピロール、オキサゾール、チアゾール、オキサジアゾール、チアジアゾール、フラン、又はチオフェン環である。
【0182】
第二十一の好ましい態様では、第一及び第三の環は共同でモノアニオン性の三座配位子を含む。
【0183】
第二十二の好ましい態様では、第一及び第三の環は共同で中性の二座配位子を含む。
【0184】
第二十三の好ましい態様では、水素又はハライド以外の基は、(i)メチル、エチル、n-プロピル、イソプロピル、及びtert-ブチルからなる基、又は(ii)上で定義したSet1、から選択される。
【0185】
第二十四の好ましい態様では、第二の環は、上で定義したSet2a〜2dから選択される。
【0186】
第二十五の好ましい態様では、第一の環は、上で定義したSet3aから選択される。
【0187】
第二十六の好ましい態様では、第三の環は、上で定義したSet4から選択される。
【0188】
第二十七の好ましい態様では、配位子は、上で定義したSet5a〜5cから選択される。
【0189】
第二十八の好ましい態様では、金属錯体は、上で定義したSet6a〜6c及び6eから選択される。
【0190】
第二十九の好ましい態様では、第一の環はベンゼン環である。
【0191】
第三十の好ましい態様では、第一の環はナフタレン環である。
【0192】
第三十一の好ましい態様では、第一の環はキノリン環である。
【0193】
第三十二の好ましい態様では、第一の環はイソキノリン環である。
【0194】
第三十三の好ましい態様では、第一の環はピリジン環である。
【0195】
第三十四の好ましい態様では、第一の環はピリミジン環である。
【0196】
第三十五の好ましい態様では、第一の環はピリダジン環である。
【0197】
第三十六の好ましい態様では、第一の環はピロール環である。
【0198】
第三十七の好ましい態様では、第一の環はオキサゾール環である。
【0199】
第三十八の好ましい態様では、第一の環はチアゾール環である。
【0200】
第三十九の好ましい態様では、第一の環はオキサジアゾール環である。
【0201】
第四十の好ましい態様では、第一の環はチアジアゾール環である。
【0202】
第四十一の好ましい態様では、第一の環はフラン環である。
【0203】
第四十二の好ましい態様では、第一の環はチオフェン環である。
【0204】
第四十三の好ましい態様では、金属錯体は、二座のモノアニオン性のN,N-供与体配位子(ドナー)を含む。
【0205】
第四十四の好ましい態様では、金属錯体は、カルベン供与体(ドナー)を含む。
【0206】
第四十五の好ましい態様では、カルベン供与体は、二座のモノアニオン性配位子の一部である。
【0207】
第四十六の好ましい態様では、第二の環はフッ素(フルオリド)以外の基で置換されている。
【0208】
第四十七の好ましい態様では、第二の環に対応するアレン又はヘテロアレンの三重項エネルギーは、約2.5eVより大きい。
【0209】
第四十八の好ましい態様では、第二の環に対応するアレン又はヘテロアレンの分子量は、約230g/molより大きい。第四十九の好ましい態様では、第二の環に対応するアレン又はヘテロアレンの分子量は約430g/molより大きい。第五十の好ましい態様では、第二の環に対応するアレン又はヘテロアレンの分子量は約530g/molより大きい。第五十一の好ましい態様では、第二の環に対応するアレン又はヘテロアレンの分子量は約750g/molより大きい。
【0210】
第五十二の好ましい態様では、上記の計算された一重項−三重項ギャップは約0.4eVより小さい。第五十三の好ましい態様では、計算された一重項−三重項ギャップは約0.3eVより小さい。第五十四の好ましい態様では、計算された一重項−三重項ギャップは約0.2eVより小さい。第五十五の好ましい態様では、計算された一重項−三重項ギャップは約0.1eVより小さい。
【0211】
第五十六の好ましい態様では、配位子の還元電位は、第二の環の代わりにメチル基を有する対応する配位子の還元電位よりも絶対値が少なくとも約0.1V小さなマイナスの値である。第五十七の好ましい態様では、配位子の還元電位は、第二の環の代わりにメチル基を有する対応する配位子の還元電位よりも絶対値が少なくとも約0.2V小さなマイナスの値である。第五十八の好ましい態様では、配位子の還元電位は、第二の環の代わりにメチル基を有する対応する配位子の還元電位よりも絶対値が少なくとも約0.3V小さなマイナスの値である。第五十九の好ましい態様では、配位子の還元電位は、第二の環の代わりにメチル基を有する対応する配位子の還元電位よりも絶対値が少なくとも約0.4V小さなマイナスの値である。第六十の好ましい態様では、配位子の還元電位は、第二の環の代わりにメチル基を有する対応する配位子の還元電位よりも絶対値が少なくとも約0.5V小さなマイナスの値である。
【0212】
第六十一の好ましい態様では、ΔE(デルタE)は約0.6eVよりも小さい。ここで、ΔE=(eV単位での三重項エネルギー)−(eV単位での修正された電気化学ギャップ)。ここで、eV単位での修正された電気化学ギャップは、金属錯体の酸化電位と、配位子に対応する中性化合物の還元電位との間の電位差を横切る1つの電子に関連づけられるエネルギー差に等しい。第六十二の好ましい態様では、ΔEは約0.5eVよりも小さい。第六十三の好ましい態様では、ΔEは約0.4eVよりも小さい。第六十四の好ましい態様では、ΔEは約0.3eVよりも小さい。第六十五の好ましい態様では、ΔEは約0.2eVよりも小さい。
【0213】
第三の側面では、本発明はリン光化合物を提供する。このリン光化合物は、単座、二座、三座、四座、五座、又は六座配位子の中性金属錯体である。配位子は、金属に直接結合した少なくとも1つの第一のアリール又はヘテロアリール環を含む。この第一の環は、金属に第一の窒素で配位したイミダゾールである。なお別の好ましい態様では、第二の環が、第一の環の第二の窒素原子に結合している。第一の環は、両方のオルト位でH又はハライド以外の基によって置換されており且つ金属に直接結合していない第二のアリール又はヘテロアリール環によって置換されている。金属は、40より大きな原子番号をもつ非放射性金属からなる群から選択される。
【0214】
第一の好ましい態様では、第二の環は、第一の環の第二の窒素に結合している。
【0215】
第二の好ましい態様では、金属は、Re、Ru、Os、Rh、Ir、Pd、Pt、Cu、及びAuからなる群から選択される。第三の好ましい態様では、金属は、Os、Ir、及びPtからなる群から選択される。第四の好ましい態様では、金属はIrである。
【0216】
第五の好ましい態様では、第二の環は1つ以上のアリール、ヘテロアリール、又は電子吸引性基によって置換されている。
【0217】
第六の好ましい態様では、H又はハライド以外の基は、アルキル基である。適切なアルキル基の例には、メチル、エチル、n-プロピル、iso-プロピル、sec-ブチル、tert-ブチル、2-エチルヘキシル、及びシクロヘキシルが含まれる。第七の好ましい態様では、アルキル基は2つ以上の炭素原子を含む。
【0218】
第八の好ましい態様では、H又はハライド以外の基は、アリール基である。第九の好ましい態様では、H又はハライド以外の基は、ヘテロアリール基である。
【0219】
第十の好ましい態様では、本化合物は、約480nm未満の波長において、リン光発光スペクトル中に最大エネルギーピークを有する。
【0220】
第十一の好ましい態様では、本化合物はホモレプティック(homoleptic)である。
【0221】
第十二の好ましい態様では、本化合物はヘテロレプティック(heteroleptic)である。
【0222】
第十三の好ましい態様では、本化合物は昇華性である。
【0223】
第十四の好ましい態様では、第一の環は、これもまた金属に直接結合している第三のアリール又はヘテロアリール環で置換されている。
【0224】
第十五の好ましい態様では、第一と第三の環は共同でモノアニオン性の二座配位子を含む。
【0225】
第十六の好ましい態様では、第三の環は、フェニル、ピリジル、チオフェニル、フラニル、ピロリル、チアゾリル、及びピリミジルからなる群から選択される。
【0226】
第十七の好ましい態様では、第一と第三の環は共同でモノアニオン性の三座配位子を含む。
【0227】
第十八の好ましい態様では、第一と第三の環は共同で中性の二座配位子を含む。
【0228】
第十九の好ましい態様では、第二の環のオルト位に結合した基は、(i)メチル、エチル、n-プロピル、イソプロピル、及びtert-ブチルからなる群、又は(ii)Set1、から選択される。
【0229】
第二十の好ましい態様では、第二の環はSet2a〜2dから選択される。
【0230】
第二十一の好ましい態様では、第三の環はSet3aから選択される。
【0231】
第二十二の好ましい態様では、第三の環はSet4から選択される。
【0232】
第二十三の好ましい態様では、配位子はSet5a〜5cから選択される。
【0233】
第二十四の好ましい態様では、金属錯体はSet6a〜6c及び6eから選択される。
【0234】
第二十五の好ましい態様では、金属錯体は二座のモノアニオン性のN,N-供与体配位子を含む。
【0235】
第二十六の好ましい態様では、金属錯体はカルベン供与体を含む。第二十七の好ましい態様では、そのカルベン供与体は、二座のモノアニオン性配位子の一部である。
【0236】
第二十八の好ましい態様では、第二の環は、フッ素(フルオリド)以外の基で置換されている。
【0237】
第二十九の好ましい態様では、第二の環に対応するアレン又はヘテロアレンの三重項エネルギーは、約2.5eVよりも大きい。
【0238】
第三十の好ましい態様では、第二の環に対応するアレン又はヘテロアレンの分子量は、約230g/molより大きい。第三十一の好ましい態様では、第二の環に対応するアレン又はヘテロアレンの分子量は、約430g/molより大きい。第三十二の好ましい態様では、第二の環に対応するアレン又はヘテロアレンの分子量は、約530g/molより大きい。第三十三の好ましい態様では、第二の環に対応するアレン又はヘテロアレンの分子量は、約750g/molより大きい。
【0239】
第三十四の好ましい態様では、上記の計算された一重項−三重項ギャップは約0.4eVより小さい。第三十五の好ましい態様では、計算された一重項−三重項ギャップは約0.3eVより小さい。第三十六の好ましい態様では、計算された一重項−三重項ギャップは約0.2eVより小さい。第三十七の好ましい態様では、計算された一重項−三重項ギャップは約0.1eVより小さい。
【0240】
第三十八の好ましい態様では、配位子の還元電位は、第二の環の代わりにメチル基を有する対応する配位子の還元電位よりも絶対値が少なくとも約0.1V小さなマイナスの値である。第三十九の好ましい態様では、配位子の還元電位は、第二の環の代わりにメチル基を有する対応する配位子の還元電位よりも絶対値が少なくとも約0.2V小さなマイナスの値である。第四十の好ましい態様では、配位子の還元電位は、第二の環の代わりにメチル基を有する対応する配位子の還元電位よりも絶対値が少なくとも約0.3V小さなマイナスの値である。第四十一の好ましい態様では、配位子の還元電位は、第二の環の代わりにメチル基を有する対応する配位子の還元電位よりも絶対値が少なくとも約0.4V小さなマイナスの値である。第四十二の好ましい態様では、配位子の還元電位は、第二の環の代わりにメチル基を有する対応する配位子の還元電位よりも絶対値が少なくとも約0.5V小さなマイナスの値である。
【0241】
第四十三の好ましい態様では、ΔE(デルタE)は約0.6eVよりも小さい。ここで、ΔE=(eV単位での三重項エネルギー)−(eV単位での修正された電気化学ギャップ)。ここで、eV単位での修正された電気化学ギャップは、金属錯体の酸化電位と、配位子に対応する中性化合物の還元電位との間の電位差を横切る1つの電子に関連づけられるエネルギー差に等しい。第四十四の好ましい態様では、ΔEは約0.5eVよりも小さい。第四十五の好ましい態様では、ΔEは約0.4eVよりも小さい。第四十六の好ましい態様では、ΔEは約0.3eVよりも小さい。第四十七の好ましい態様では、ΔEは約0.2eVよりも小さい。
【0242】
本明細書に記載した化合物は、OLEDデバイスの発光層の発光性リン光材料として特に有用である。これらのデバイスは典型的には、アノード、カソード、及び発光層を含む。発光層はアノードとカソードの間に配置される。発光層は、本発明のリン光化合物を含み、任意選択によりホストを含んでいても又は含んでいなくてもよい。
【0243】
一つの態様では、本発明は、OLEDが電子過剰発光層を有する場合に生じる問題を解決するデバイスを提供する。電子過剰発光層は、ホールが発光層のカソード側に向かって移動するよりも、電子が発光層のアノード側に向かってより早く移動する場合に生じる。特に問題になる電子過剰発光層の一つのタイプは、ホールトラップであり、これはいくつかの青色リン光デバイスで起こる。発光層中のホールトラップは、発光層ドーパントのHOMOよりも、発光層ホストのHOMOが、少なくとも約0.5eV、好ましくは約0.5eV〜約0.8eV低い場合に実現されうる。ホールがそのような発光層に入る場合、ホールは、ホール輸送層/発光層の界面近くのドーパント分子上に蓄積される。これは、次に、再結合をホール輸送層/発光層界面近くに局在化させ、そこで励起子がホール輸送層によって消光されうる。再結合の局在化は、当分野で公知の手法によって、例えば米国特許出願番号第11/110,776(その全体を参照により本願に援用する)に記載されたプローブドープされた層を用いること、によって測定できる。ホール輸送層近くの局在化を避けるためには、ホールを、すなわち再結合を、もっと発光層中に移動させることが望ましい。ホール移動は、電子妨害層(electron impeding layer)を挿入すること、LUMOバリアーを作ること、実際に不十分な電子輸送体である電子輸送層を用いること、発光層とカソードの間に厚い有機層を挿入すること、不十分な電子輸送体である発光層ホスト材料を選択すること、発光層又は輸送層の電子移動度を変えるためのドーパントを選択すること、あるいは発光層の電子密度を低下させること、を含むが、これらに限定されない様々な構造上の特性によって達成できる。
【0244】
ホールをさらに発光層中に引きつける一つの方法は、発光層とカソードとの間に電子を蓄積するための手段を含めることである。電子の蓄積は、発光層を横切る電場を再配分して、再結合をホール輸送層/発光層界面から遠ざける。電子を蓄積するための手段は、例えば、電子妨害層でありうる。
【0245】
したがって、一つの態様では、本発明は、アノード;カソード;前記アノードとカソードの間に配置された有機発光層(前記有機発光層は発光層ホストと発光性ドーパントを含み、前記発光層ホストのHOMOが前記発光性ドーパントのHOMOよりも少なくとも約0.5eV、好ましくは約0.5〜約0.8eV低い);及び前記カソードと発光層の間に電子を蓄積するための手段、を含むOLEDを提供する。電子は、第一と第二の有機層の間の界面で蓄積されることが好ましい。
【0246】
好ましい態様では、本発明は、基材上に以下の順に配置された、アノード;ホール輸送層;発光層ホスト及び発光性ドーパントを含む有機発光層;電子妨害層;電子輸送層;及びカソード、を含む有機発光デバイスを提供する。
【0247】
電子妨害層(electron impeding layer (IMP))は、発光層(EML)への電子の輸送を遅くし、主に電子からなる電流をもち、かつ無視できるほど小さなホール電流しかもたない、発光層とカソードとの間の、デバイス中の層として定義される。IMPの臨界的な厚さ(〜50Å)より上では、電子による電流が低下して、ETL中でホール−電子の再結合が生じうる。ETLが発光性の場合は、この再結合がETLからの望まない発光をもたらす。ホール阻止層(hole blocking layer (HBL))はIMPと区別できるが、それはより厚さのあるHBLは、一般にETLで再結合が生じる範囲において電子流を抑制しないからである。電子妨害層の厚さを厚くすることによる発光スペクトルと、ホール阻止層の厚さを厚くすること得られるものとの間の対比を、図12及び図13に示す。実施例2を参照されたい。
【0248】
IMP層は、一般に、典型的なホール阻止層(HBL)、例えば、BAlq、HPT、又はBAlqよりも小さな相対的電子伝導度(relative electron conductivity)を有する。IMP層は、Bphenの電子移動度の0.001以下の、好ましくはBphenの電子移動度の0.0005以下の、さらに好ましくはBphenの電子移動度の0.0001以下の相対的電子伝導度を有することが好ましい。IMPにとって好ましい材料には、ホール輸送材料及び同時二極性(両極性)材料が含まれる。アノード側の発光性HTLと、カソード側の発光性ETLによって挟まれた対象材料を有する試験用OLEDを作製することによって、その材料をホール輸送性又は両極性として特性づけることができる。電圧を印加した場合に、ホール輸送材料を含むデバイスは、特徴的なETL ELが優勢なELスペクトルを示す。電圧を印加した場合に、両極性材料を含むデバイスは、HTL及びETL層の両方からの実質的な発光を含むELスペクトルを示す。ホール輸送材料又は両極性材料としての材料の特性付けのために適した試験デバイスは、例えば、CuPc(100Å)/NPD(300Å)/試験材料(300Å)/BAlq(400Å)/LiF(10Å)/Al(1000Å)、又はCuPc(100Å)/NPD(300Å)/試験材料(300Å)/Alq(400Å)/LiF(10Å)/Al(1000Å)、として作製できる。
【0249】
電子妨害層のために適した材料にはmCBPが含まれ、これは、mCP又はmCBPである発光層ホスト及び化合物1〜5の一つである発光性ドーパントなどの多くの発光層材料と組み合わせて用いることができる。表3及び図52を参照されたい。本出願は、2005年5月6日に出願した米国仮出願番号第60/678,170号、2005年7月25日に出願した米国仮出願第60/701,929号、2005年9月20日に出願した「IMPROVED STABILITY OLED MATERIALS AND DEVICES(安定性の向上したOLED材料及びデバイス)」の標題の米国仮出願(弁護士整理番号第10052/76103)、及び2005年10月4日に出願した「IMPROVED STABILITY OLED MATERIALS AND DEVICES(安定性の向上したOLED材料及びデバイス)」の標題の米国実用特許出願(弁護士整理番号第10052/76104)に関連する。これらの出願の内容をその全体を参照により本願に援用する。
【0250】
絶対的電子伝導度又は移動度の測定は、研究室及びその他の試験条件のあいだで変動する傾向があるので、同じ試験装置で測定された2つの材料の電子移動度を比較することが一般的に、より信頼できる。すなわち、電子移動度の値が公表されているBphenなどの一般的な参照物質に対して、新しい材料を試験する。比較測定は、例えば、Yasuda, T. et al., Jpn. J. Appl. Phys., Vol. 41 (9):5626-5629 (2002), Kulkarni, A. et al., Chem. Mater., 16:4556-4573 (2004), Naka, S., Applied Physics Letters, 76 (2):197-199 (2000), 及びStrohriegl, P., et al., Adv. Mater., 14 (20):1439-1452 (2002)などの文献に報告された方法に準拠して実施できる。材料の電荷担体移動度は、適切な試験方法、例えば、標準的手法に準拠した、飛行時間型(TOF)、空間電荷制限電流(SCLC)測定、又は電界効果(FE)法を適用することによって見積もることができる。
【0251】
当業者は、電子伝導度の対比を実現し、したがって本発明に有用である材料のその他の組み合わせが理解できよう。例示の組み合わせによって実証されたように、電子妨害層は発光層ホストと同じ材料であることができる。
【0252】
まとめると、電子妨害層は、発光層とカソードの間の層であり、以下の特性の1つ以上を示す:
a)Alqなどの潜在的発光性電子輸送層と組み合わせてOLEDに用いた場合に、より厚さのあるIMP層に対して充分な高電圧が印加されたときに、電子輸送層において発光が生じる。その電子輸送層は、ホールがその電子輸送層に押し込められた場合に、典型的に発光する材料ではなくてもよい。したがって、一つの態様では、本デバイスは、第一の有機層がAlqである同様のデバイスに特定の材料を用いた場合に、第二の有機層の厚さの増大が第一の有機層からの発光を引き起こすような材料から実質的になる有機層を含む。
b)電子妨害材料は、典型的且つ特定のホール阻止材料、例えば、Bphen、BAlq、HPT、又はBAlqよりも小さな、又は実質的に小さな相対的電子移動度及び/又は電子伝導度を有することができる。IMP層は、Bphenの電子移動度の0.001以下、好ましくはBphenの電子移動度の0.0005以下、さらに好ましくはBphenの電子移動度の0.0001以下の相対的電子伝導度を有することが好ましい。
c)電子妨害材料は、ホール輸送材料、すなわち、電子移動度よりも大きなホール移動度をもつ材料、であることができる。したがって、一つの態様では、本デバイスは、電子移動度よりも大きなホール移動度をもつ材料、例えば、TCTA、Irppz、NPD、TPD、mCP、及びそれらの誘導体から本質的になる有機層を含む。
d)電子妨害材料は両極性材料(二極性材料)であることができる。したがって、一つの態様では、本デバイスは両極性材料(例えばmCBP)から本質的になる有機層を含む。
【0253】
好ましい態様では、発光性ドーパントは約−5eV又はそれより大きなHOMOを有する。別の好ましい態様では、電子妨害層材料のHOMOは、発光性ドーパントのHOMOよりも少なくとも約0.5低い。図62を参照されたい。なお別の好ましい態様では、電子妨害層材料のバンドギャップは、発光性ドーパントのバンドギャップよりも大きい。図63a及び63bは、例示の電子妨害層を有するデバイスについてのエネルギー準位ダイヤグラムを示している。
【0254】
好ましい態様では、電子妨害層は添加剤を含まない層(neat layer)である。
【0255】
電子妨害層は、約20Å〜約75Å、好ましくは約50Åの厚さを有することが好ましい。電子妨害層が薄すぎる場合には、この層は電子の流れに対する連続的妨害を提供できないおそれがある。電子妨害層が厚すぎる場合には、余計な厚さが電子の流れに対して大きすぎる妨害をもたらし、第一の有機層中での励起子形成をもたらすおそれがある。
【0256】
一つの態様では、本発明は、青色を発光するデバイスを提供する。好ましい態様では、発光性ドーパントは、約500nm未満、好ましくは450nm未満の、発光スペクトル中のピークを有する。放射される光は、(X≦0.2、Y≦0.3)のCIE座標をもつことが好ましい。特に好ましい態様では、発光性ドーパントは、本明細書で化合物1と称するトリスN-2,6-ジメチルフェニル-2-フェニルイミダゾールである。
【0257】
好ましい態様では、本デバイスは、電子を蓄積するための手段をもたない以外は同等のデバイス、例えば、電子妨害層が電子輸送層で置き換えられている以外は同等のデバイスと比較して高い効率を示す。本発明のデバイスは、約5%より大きな未修正の外部量子効率を有することが好ましい。好ましい態様では、本デバイスは、高い効率、高い電圧、及び、電子を蓄積するための手段をもたない以外、例えば電子妨害層をもたない以外は同等のデバイスと比較して同じか又はより良い寿命を示す。
【0258】
別の態様では、本OLEDは、アノード;カソード;前記アノードと前記カソードの間に配置された有機発光層(前記有機発光層は発光層ホスト及び発光性ドーパントを含み、前記発光層ホストのHOMOは、前記発光性ドーパントのHOMOよりも、少なくとも約0.5eV低く、好ましくは約0.5eV〜約0.8eV低い);前記有機発光層と前記カソードの間に配置された第一の有機層;前記有機発光層と前記第一の有機層との間に、且つそれらに直接接触して配置された第二の有機層、を含み;前記第二の有機層は、ホール輸送材料又は両極性(ambipolar)材料から本質的になる。
【0259】
本明細書に記載した様々な態様は例示のみのためであり、本発明の範囲を限定することを意図していないことが理解される。例えば、本発明の精神から離れることなく、本明細書に記載した多くの材料及び構造は、別の材料及び構造で置き換えられうる。本発明が機能する理由としての様々な理論は、本発明を限定することを意図するものではないことが理解される。
【0260】
〔材料の定義〕
本明細書で用いるように、材料を参照する略号は以下のとおりである。
CBP: 4,4’-N,N-ジカルバゾール-ビフェニル
m−MTDATA: 4,4’,4’’-トリス(3-メチルフェニルフェニルアミノ)トリフェニルアミン
Alq: 8-トリス-ヒドロキシキノリンアルミニウム
Bphen: 4,7-ジフェニル-1,10-フェナントロリン
n−BPhen: n-ドープされたBPhen(リチウムでドープ)
−TCNQ: テトラフルオロ-テトラシアノ-キノジメタン
p−MTDATA:p−ドープされたm−MTDATA(F−TCNQでドープ)
Ir(ppy):トリス(2-フェニルピリジン)-イリジウム
Ir(ppz):トリス(1-フェニルピラゾロト,N,C(2’))イリジウム(III)
BCP: 2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン
TAZ: 3-フェニル-4-(1’-ナフチル)-5-フェニル-1,2,4-トリアゾール
CuPc: 銅フタロシアニン
ITO: インジウムスズオキシド
NPD: N,N’-ジフェニル-N,N’-ジ(1-ナフチル)-ベンジジン
TPD: N,N’-ジフェニル-N,N’-ジ(3-トリル)-ベンジジン
HPT: 2,3,6,7,10,11-ヘキサフェニルトリフェニレン
BAlq: アルミニウム(III)ビス(2-メチル-8-ヒドロキシキノリナート)4-フェニルフェノラート
mCP: 1,3-N,N-ジカルバゾール-ベンゼン
DCM: 4-(ジシアノエチレン)-6-(4-ジメチルアミノスチリル-2-メチル)-4H-ピラン
DMQA: N,N’-ジメチルキナクリドン
PEDOT:PSS: ポリスチレンスルホネート(PSS)を含むポリ(3,4-エチレンジオキシチオフェン)の水性分散物
【0261】
〔実施例〕
本発明の具体的な代表的態様を以下に説明し、それにはどのようにそのような態様のものを作りうるかも含まれる。特定の方法、材料、条件、工程パラメータ、装置などは、本発明の範囲を必ずしも限定するものではないことが理解される。
【0262】
〔実施例1 fac-mc3の合成〕
【化31】

【0263】
50mLのシュレンクチューブフラスコに、N-(2,6-ジメチルフェニル)-2-フェニルイミダゾール(5.30 g、21 mmol)とトリス(アセチルアセトナート)イリジウム(III)(1.96 g、4.0 mmol)を入れた。この反応混合物を窒素雰囲気下で撹拌し、240℃で48時間加熱した。冷却後、固化した混合物を、最初に無水エタノールで、次にヘキサンで洗浄した。残留物をシリカゲルカラムでさらに精製して、fac-mc3(3.10 g)を得た。生成物を減圧昇華によってさらに精製した。1H及びMSの結果は、所望の化合物であることを裏付けた。発光のλmax = 476、504 nm (CH2Cl2溶液、室温)。CIE = (0.21、0.43)、Eox = 0.05 V。Epc = -2.85 Vでの非可逆的還元(対Fc+/Fc、0.10 MのnBu4NPF6溶液(DMF)中、Ptの作用電極及び補助電極及び非水Ag/Ag+参照電極、並びに100 mVs-1のスキャン速度)。
【0264】
〔実施例2 fac-mc25の合成〕
【化32】

【0265】
50mLのシュレンクチューブフラスコに、N-(2,6-ジメチルフェニル)-2-(4-フルオロフェニル)イミダゾール(8.50g、32 mmol)とトリス(アセチルアセトナート)イリジウム(III)(3.14 g、6.4 mmol)を入れた。この反応混合物を窒素雰囲気下で撹拌し、240℃で48時間加熱した。冷却後、固化した混合物を、最初に無水エタノールで、次にヘキサンで洗浄した。残留物をシリカゲルカラムでさらに精製して、fac-mc25(1.60 g)を得た。生成物を減圧昇華によってさらに精製した。1H及びMSの結果は、所望の化合物であることを裏付けた。発光のλmax = 456、486 nm (CH2Cl2溶液、室温)。CIE = (0.20、0.32)。
【0266】
〔実施例3 fac-mc6の合成〕
【化33】

【0267】
50mLのシュレンクチューブフラスコに、N-(2,6-ジイソプロピルフェニル)-2-フェニルイミダゾール(7.60 g、25 mmol)、トリス(アセチルアセトナート)イリジウム(III)(2.45 g、5.0 mmol)、及びトリデカン(1 mL)を入れた。この反応混合物を窒素雰囲気下で撹拌し、240℃で48時間加熱した。冷却後、固化した混合物を、最初に無水エタノールで、次にヘキサンで洗浄した。残留物をシリカゲルカラムでさらに精製して、fac-mc6(1.5 g)を得た。生成物を減圧昇華によってさらに精製した。1H及びMSの結果は、所望の化合物であることを裏付けた。発光のλmax = 476、504 nm (CH2Cl2溶液、室温)。CIE = (0.22、0.43)。
【0268】
〔実施例4 fac-mc4の合成〕
【化34】

【0269】
二口の50mLの丸底フラスコに、N-(2,6-ジメチル-4-フェニルベンゼン)-2-フェニルイミダゾール(4.95 g、15.3 mmol)とトリス(アセチルアセトナート)イリジウム(III)(1.25 g、2.54 mmol)を入れた。この反応混合物を弱い窒素流下で撹拌し、且つ230℃で20時間加熱した。冷却後、固化した混合物を、塩化メチレンに溶かし、100mLのフラスコに移し、光に当てることなく溶媒留去した。20%EtOAc/ヘキサンを溶離液として用いて、残留物をシリカゲル(トリエチルアミンで処理したもの)によるクロマトグラフィーでさらに精製し、fac-mc4(〜1.0 g)を得た。この生成物は次にジエチルエーテルから再結晶した。このドーパントの昇華の試みは、この化合物の熱特性のために成功しなかった。1H及びMSの結果は、化合物構造を裏付けた。発光のλmax = 475、505 nm (CH2Cl2溶液、室温)。CIE = (0.20、0.41)、Eox = 0.05 V。Epc = -2.9 Vでの偽可逆的還元(対Fc+/Fc、0.10 MのnBu4NPF6溶液(DMF)中、Ptの作用電極及び補助電極及び非水Ag/Ag+参照電極、並びに100 mVs-1のスキャン速度)。
【0270】
〔実施例5 mc3−Clの合成〕
【化35】

【0271】
50mLの丸底フラスコに、1.26 gの2-フェニル-3-(2,6-ジメチルフェニル)-イミダゾリン、938 mgのIrCl、及び2-エトキシエタノール(24 mL)と水(6 mL)の混合物を入れた。この反応混合物を100℃に24時間加熱した。反応混合物を室温に冷却し、所望の生成物を濾過によって単離した。
【0272】
〔実施例6 mc26の合成〕
【化36】

【0273】
25mLの丸底フラスコに、57 mgの酸化銀(I)、82 mgのヨウ化1-(3,4-ジメチルフェニル)-3-メチル-ベンゾイミダゾレート、118 mgのhi1、及び10 mLのジクロロエタンを入れた。反応物をアルミニウムホイルで光から保護しながら、加熱マントルで75℃に6時間、暗所で窒素下にて加熱かつ撹拌した。反応混合物を室温に冷却し、減圧下で濃縮した。溶離液としてジクロロメタンを用いてセライトを通しての濾過を行い、銀(I)塩を除去した。黄色溶液を得、溶離液としてジクロロメタンを用いてシリカゲルのフラッシュカラムクロマトグラフィーによってさらに精製した。所望の生成物を単離した。
【0274】
〔実施例7 fac-mc46の合成〕
【化37】

【0275】
[ステップ1]
丸底フラスコに、Pd(OAc)2(134 mg、0.6 mmole)、mc46i−1(7.86 g、24 mmole)、フェニルボロン酸(3.7 g、28.8 mmole)、K2CO3の2M溶液(32.4ml)、トリフェニルホスフィン(630 mg、2.4 mmole)、及び50mlのジメトキシエタンの溶液を入れた。反応混合物を加熱して17時間還流させた。次に、混合物を水で希釈し、水層をEtOAcで抽出した。有機層を食塩水で洗浄し、乾燥させた(MgSO4)。溶媒の除去後、残留物をシリカゲルのカラムクロマトグラフィー(ヘキサン中10%EtOAc)によって精製し、mc46i−2(7 g、90%)を得た。
【0276】
[ステップ2]
二口の50mL丸底フラスコに、mc46i−2(1 g、3 mmol)とトリス(アセチルアセトアナート)イリジウム(III)(377 mg、0.77 mmol)を入れた。反応混合物を軽い窒素気流下で撹拌し且つ200℃で20時間加熱した。冷却後、固化した混合物を塩化メチレンで溶かし、100 mLフラスコに移し、光に当てずに溶媒留去した。残留物を、溶離液として20%EtOAc/ヘキサンを用いて(トリエチルアミンで処理した)シリカゲルカラムクロマトグラフィーでさらに精製してfac-mc46(338 mg)を得た。1H及びMSの結果は本化合物の構造を裏付けた。発光のλmax = 481、511 nm (塩化メチレン溶液、室温)。CIE = (0.21、0.46)、Eox = 0.09 V。Epc = -3.1 Vにて非可逆的還元(対Fc+/Fc、0.10 MのnBu4NPF6溶液(DMF)中、Ptの作用電極及び補助電極及び非水Ag/Ag+参照電極、並びに100 mVs-1のスキャン速度)。
【0277】
〔実施例8 mc47の合成〕
【化38】

【0278】
50mL丸底フラスコに、mc3−Cl(162 mg、1.12 mmol)、トリフルオロメタンスルホン酸銀(576 mg、2.24 mmol)、10 mlのメタノール及び10 mlのジクロロメタンを入れた。反応混合物を室温で2時間撹拌した。反応混合物を濾過し、濾液を乾燥するまで濃縮した。残留物を、2-ピラゾピリジン(325 mg、2.24 mmole)、水素化ナトリウム(ミネラルオイル中69%について94.2 mg、2.35 mmole)及び20 mlの無水アセトニトリルを入れた50mLの丸底フラスコに移した。反応混合物を軽い窒素気流下で撹拌し且つ81℃で20時間加熱した。冷却後、反応混合物を乾燥するまで濃縮した。残留物を溶離液として40%EtOAc/塩化メチレンを用いて、(トリエチルアミンで処理した)シリカゲルカラムクロマトグラフィーでさらに精製して、mc47(700 mg)を得た。1H及びMSの結果は、本化合物の構造を裏付けた。発光のλmax = 467、494 nm (塩化メチレン溶液、室温)。CIE = (0.20、0.40)、Eox = 0.38 V(i)、Epc = -3.06 Vにて非可逆的還元(対Fc+/Fc、0.10 MのnBu4NPF6溶液(DMF)中、Ptの作用電極及び補助電極及び非水Ag/Ag+参照電極、並びに100 mVs-1のスキャン速度)。
【0279】
〔実施例9 mc54の合成〕
【化39】

【0280】
一口50mL丸底フラスコに、N-(2,6-ジメチル-4-(3,5-ジメチルフェニル)ベンゼン)-2-フェニルイミダゾール(4.5g、12.8 mmol)及びトリス(アセチルアセトナート)イリジウム(III)(1.57g、3.2 mmol)を入れた。この反応混合物を、窒素雰囲気下で撹拌し且つ200℃で60時間加熱した。冷却後、固化した混合物を塩化メチレンで溶かし、溶離液として20%ジクロロメタン/ヘキサンを用いて、(トリエチルアミンで処理した)シリカゲルカラムクロマトグラフィーで精製した。溶媒を除去し、生成物を次にジクロロメタン/メタノールから再結晶し、濾過して、1.4gを得た。この物質を熱い酢酸エチル中にスラリー化し、濾過して、1.2gの明るい黄色の固体を得た。この物質を昇華によってさらに精製した。1H及びMSの結果は、本化合物の構造を裏付けた。発光のλmax = 476 nm (塩化メチレン溶液、室温)。CIE = (0.23、0.43)。
【0281】
〔実施例10 mc48〕
【化40】

【0282】
[ステップ1]
3000mlの一口丸底フラスコに、ペンタメチルベンゼン(61.2 g、0.414 mol)と1 Lのジクロロメタンを入れた。この混合物を氷浴で冷却し、ニトロニウムテトラフルオロボレート(50g、0.376 mol)を分割して加えた。混合物を室温まで温め、16時間撹拌した。反応物を氷浴で冷却し、1リットルの水で反応停止させた。層を分離させ、有機層を硫酸マグネシウムで乾燥させ、濾過した。溶媒をロータリーエバポレーター蒸発によって除去し、生成物を蒸留によって精製した。
【0283】
[ステップ2]
2000mlの一口丸底フラスコに、50gの1-ニトロ-2,3,4,5,6-ペンタメチルベンゼンと1000mLのメタノールを入れた。50gの塩化アンモニウムと200mlの水の溶液を次に添加した。次いで、亜鉛末(50 g)を分割して加えた。この混合物を20時間撹拌した。固体を濾過し、溶媒を母液から除去した。生成物を溶離液としてジクロロメタンを用いてシリカゲルカラムによって精製した。良好なフラクションを集め、ペンタメチルアニリンを白色固体として得た。
【0284】
[ステップ3]
1000mlの一口丸底フラスコに、ペンタメチルアニリン(36 g、0.221 mol)、グリオキサール40%水溶液(40 g、0.221 mol)、及び300 mlのメタノールを入れた。この混合物を室温で20時間撹拌し、次にベンズアルデヒド(47 g、0.442 mol)と塩化アンモニウム(23.6 g、0.442 mol)を添加した。この混合物を1時間加熱還流し、次に30 mlのリン酸を添加した。反応物を24時間加熱還流し、次に室温に冷却した。メタノールをロータリーエバポレーターによって除去した。酢酸エチル(500 ml)を添加し、混合物を水酸化ナトリウムと水で塩基性にした。層を分離し、有機層を食塩水で洗浄し、硫酸マグネシウムで乾燥し、溶媒を除去した。混合物を、溶離液として80%ヘキサン/酢酸エチルから50%ヘキサン/酢酸エチルへの濃度勾配を用いたシリカゲルカラムによって精製した。良好なフラクションを集め、溶媒をロータリーエバポレーターによって除去した。固体を減圧蒸留によってさらに精製して、N-(2,3,4,5,6-ペンタメチルベンゼン)-2-フェニルイミダゾールを得た。
【0285】
[ステップ4]
50mLの一口丸底フラスコに、N-(2,3,4,5,6-ペンタメチルベンゼン)-2-フェニルイミダゾール(5.5 g、18.9 mmol)とトリス(アセチルアセトナート)イリジウム(III)(2.3 g、4.7 mmol)を入れた。反応混合物を弱い窒素気流下で撹拌し、200℃に60時間加熱した。冷却後、固化した混合物をジクロロメタンで溶かし、溶離液としてジクロロメタンを用いて、(トリエチルアミンで処理した)シリカゲルカラムクロマトグラフィーで精製した。良好なフラクションを集めて溶媒を留去した。この物質をジクロロメタンに溶かし、溶離液として50%ジクロロメタン/ヘキサンを用いて、(トリエチルアミンで処理した)シリカゲルカラムクロマトグラフィーで単離した。生成物をクロロベンゼンとヘキサンから結晶化させて、明るい黄色の固体として0.85 gのmc48を得た。この物質を昇華によってさらに精製した。1H及びMSの結果は、本化合物の構造を裏付けた。発光のλmax = 476 nm (塩化メチレン溶液、室温)。CIE = (0.23、0.43)。
【0286】
〔実施例11 mc49i−1の合成〕
【化41】

【0287】
50mLの一口丸底フラスコに、N-(2,6-ジメチル-4-ブロモベンゼン)-2-フェニルイミダゾール(3.0 g、9.2 mmol)とトリス(アセチルアセトナート)イリジウム(III)(1.12 g、2.3 mmol)を入れた。反応混合物を弱い窒素気流下で撹拌し、200℃に48時間加熱した。冷却後、固化した混合物をジクロロメタンで溶かし、溶離液として20%ジクロロメタン/ヘキサンを用いて、(トリエチルアミンで処理した)シリカゲルカラムクロマトグラフィーで精製した。良好なフラクションを集めて溶媒をロータリーエバポレーターで留去した。生成物をクロロベンゼン/メタノールから結晶化させて、濾過によって0.17 gのmc49i−1を得た。
【0288】
〔実施例12 mc49の合成〕
【化42】

【0289】
100mLの一口丸底フラスコに、mc49i−1(0.15 g、0.13 mmol)、4-ピリジンボロン酸(0.06 g、0.39 mmol)、酢酸パラジウム(2 mg、9x10-6 mol)、トリフェニルホスフィン(10 mg、4x10-5 mmol)、炭酸カルシウム(0.14 g、1 mmol)、20 mlの1,2-ジメトキシエタン、及び10 mlの水を入れた。混合物を6時間加熱還流させ、次に室温に冷却した。混合物をジクロロメタンと水で抽出した。有機層を硫酸マグネシウムで乾燥し、濾過した。溶媒を除去し、生成物を95%酢酸エチル/メタノールを溶離液として用いる(トリエチルアミンで処理した)シリカゲルカラムで精製した。生成物をジクロロメタン/ヘキサンから結晶化させた。
【0290】
〔実施例13 mc50の合成〕
【化43】

【0291】
50mLの丸底フラスコに、N-(2,6-ジメチルフェニル)-2-(p-トリルイミダゾール(4.50 g、19 mmol)とトリス(アセチルアセトナート)イリジウム(III)(1.87 g、3.81 mmol)を入れた。反応混合物を弱い窒素気流下で撹拌し、砂浴中で200℃に96時間加熱した。冷却後、固化した混合物を塩化メチレンで溶かし、100 mLフラスコに移し、光に暴露することなく溶媒留去した。残留物を、溶離液として10%塩化メチレン/ヘキサンを用いて、(トリエチルアミンで処理した)シリカゲルカラムクロマトグラフィーでさらに精製して、fac-トリス[N-(2,6-ジメチルフェニル)-2-p-トリルイミダゾール]イリジウム(III)(1.2 g)を得た。この生成物を次に塩化メチレン/ヘキサンから再結晶して、黄色結晶として0.80 gを得た。生成物の昇華によって黄色結晶として0.42 gを得た。NMR及びMSの結果は、本化合物の構造を裏付けた。発光のλmax = 472, 502 nm (塩化メチレン溶液、室温)。CIE = (0.21、0.40)。Tg = 363.8℃、Eox = 0.04 V、Ered = 検出されず(対Fc+/Fc、0.10 MのnBu4NPF6溶液(DMF)中、Ptの作用電極及び補助電極及び非水Ag/Ag+参照電極、並びに100 mVs-1のスキャン速度)。
【0292】
〔実施例14 mc51の合成〕
【化44】

【0293】
[ステップ1]
1L丸底フラスコ中で、500 mLのメタノール中の55.0 g(275 mmol)の4-ブロモ-2,6-ジメチルアニリンと39.0 gのグリオキサール(40%溶液、275 mmol)を16時間撹拌した。次に、68.3 gの4-フルオロベンズアルデヒド(550 ml)と29.4 g(550 mmol)の塩化アンモニウムを添加し、混合物を2時間還流させた。38.5 mLのリン酸(85%)を10分間かけて滴下して加えて、混合物を18時間還流させ続けた。次にこの混合物のメタノールを留去し、残留物を700 mLの水に注いだ。50%NaOHをpH=9まで添加し、次に混合物を分液ロート中で酢酸エチルを用いて3回抽出した。一緒にした有機層を無水MgSO4上で乾燥させ、濾過し、溶媒を留去して暗色残留物を得た。この配位子を、20%酢酸エチル/ヘキサン−30%酢酸エチル/ヘキサンの勾配を用いてシリカの大きなカラムで精製した。生成物フラクションを溶媒留去し、残留物をクーゲルロール蒸留により蒸留した。得られた生成物はヘキサンから再結晶して、12.5 gのN-(4-ブロモ-2,6-ジメチルフェニル)-2-(4-フルオロフェニル)イミダゾールをきれいな白色固体として得た。MSで確認した。
【0294】
[ステップ2]
8.5 g(24.6 mmol)のN-(4-ブロモ-2,6-ジメチルフェニル)-2-(4-フルオロフェニル)イミダゾール、4.43 g(29.5 mmol)の3,5-ジメチルフェニルボロン酸、0.17 g(0.74 mmol)の酢酸パラジウム(II)、9.17 g(66.5 mmol)炭酸カリウム、及び0.65 g(2.46 mmol)のトリフェニルホスフィンを、350 mLの1,2-ジメトキシエタンと130 mLの水中で、N2雰囲気下、18時間還流させた。次に、冷却した混合物を分液ロートに移し、水を除去した。次に、有機物質を酢酸エチルで増やし、水から抽出した。有機層を無水MgSO4上で乾燥させ、濾過し、溶媒を留去して明るい色の残留物を得た。次に、この残留物を、50%酢酸エチル/ヘキサンを溶離液として用いるシリカゲルカラムで精製した。純粋なフラクションを溶媒留去し、固体をヘキサンで濾過器に集めて、8.34 gのN-(2,6-ジメチル-4-{3,5-ジメチルフェニル}フェニル)-2-(4-フルオロフェニル)イミダゾールを明るい白色固体として得た。MSで確認した。
【0295】
[ステップ3]
50 mLの丸底フラスコにN-(2,6-ジメチル-4-{3,5-ジメチルフェニル}フェニル)-2-(4-フルオロフェニル)イミダゾール(6.30 g、17 mmol)と、トリス(アセチルアセトナート)イリジウム(III)(1.67 g、3.48 mmol)を入れた。この反応混合物を弱い窒素気流下で撹拌し、砂浴中で180℃に48時間加熱した。冷却後、固化した混合物を塩化メチレンで溶かし、100 mlフラスコに移し、光に暴露することなく溶媒留去した。残留物を、溶離液として20%塩化メチレン/ヘキサンを用いて、(トリエチルアミンで処理した)シリカゲルカラムクロマトグラフィーでさらに精製して、fac-トリス[N-(2,6-ジメチル-4-{3,5-ジメチルフェニル}フェニル)-2-(4-フルオロフェニル)イミダゾール]イリジウム(III)(1.7 g)を得た。このクロマトグラフィーを繰り返して1.13 gの生成物を得た。この生成物を次に塩化メチレン/ヘキサン、塩化メチレン/メタノール、最後に塩化メチレン/ヘキサンから3回再結晶して、黄色固体として0.75 gのmc51を得た。生成物の昇華によって極くわずかな量の精製された物質が得られたが、これは本工程でこの固体が溶融物になり分解するからである。NMRとMSはこの化合物の構造を裏付けた。発光のλmax = 454, 786 nm (塩化メチレン溶液、室温)。CIE = (0.19、0.33)。
【0296】
〔実施例15 mc52の合成〕
【化45】

【0297】
[ステップ1]
100 mLの丸底フラスコに、5.0 g(14.2 mmol)のN-(2,6-ジメチル-4-(3,5-ジメチルフェニル)ベンゼン-2-フェニルイミダゾールと、50 mLの2-メトキシエタノールと10 mLの水中の2.55 g(7.1 mmol)の塩化イリジウム水和物を入れた。この混合物をN2雰囲気下で17時間還流させた。次にこの混合物を冷却し、固体をフィルター上に集め、メタノールとヘキサンですすいだ。得られた塩素架橋ダイマーの量は6.32 gであり、さらに精製することなく次のステップで用いた。
【0298】
[ステップ2]
100 mLの丸底フラスコ中で、3.0 g(1.62 mmol)の塩素架橋ダイマーを、60 mLの1,2-ジクロロエタン中に溶かした。1.12 g(4.83 mmol)の酸化銀を次に添加し、混合物をN2雰囲気下で10分間還流させた。1.08 g(3.22 mmol)の1-フェニル-3-メチル-ベンゾイミダゾレートアイオダイドをこの混合物に添加し、混合物を1分間加熱して還流させ、続いて冷却した。次に混合物を濾過し、固体を塩化メチレンですすいだ。次に濾液を蒸発させて、残渣を40%塩化メチレン/ヘキサンを用いて(トリエチルアミンで処理した)シリカゲルカラムで精製した。純粋なフラクションを溶媒留去し、固体を塩化メチレン/ヘキサンから再結晶し、〜1.8 gのer-ビス[N-(2,6-ジメチル-4-{3,5-ジメチルフェニル}フェニル)-2-フェニルイミダゾール]-N-フェニル-3-メチルベンゾイミダゾールイリジウム(III)を得た。この固体を次に石英試験槽中にて1.5 Lのアセトニトリル中で撹拌し、N2雰囲気下、レイオネット(rayonet)反応器中で254 nmのUV光で光異性化させた。72時間後、fac異性体への光異性化が完了し、mc52が得られた。
【0299】
〔実施例16 mc37の合成〕
【化46】

【0300】
EtOH(400 mL)中の2,6-ジブロモ-4-イソプロピルアニリン(87.9 g、0.3 mol)を、室温にて終夜、40%グリオキサール水溶液(43.5 g、0.3 mol)で処理した。暗褐色の混合物が形成された。200 mLのH2O中のNH4Cl(32.1 g、0.6 mol)を添加し、次に4-フルオロベンズアルデヒド(63.6 g、0.6 mol)を添加した。得られた混合物を2時間還流させた。H3PO4(42 mL、85%)を10分間にわたって添加した。次に混合物を4日間、還流させながら撹拌した。ほとんどのEtOHを除去した後、暗色残留物を氷(300 g)に注ぎ、pH9まで50%KOH水溶液で中和した(約90 mL)。得られた混合物をEtOAcで抽出した。有機層を一緒にし、NaHCO3溶液で一回洗浄し、乾燥(Na2SO4)した。溶媒を除去し、残留物をアルドリッチ・クーゲルロールで、最初135℃で全ての低沸点不純物を除去し、次に210℃でフラクションを集めた。得られた粗生成物は、溶離液としてEtOAc/ヘキサン(1:4)を用いるシリカゲルカラムによってさらに精製できる。収量は8.0 gである。この配位子はGC-MSによって確かめた。
【0301】
[ステップ2]
500 mL丸底フラスコに、上記フェニルイミダゾール(8.0 g、18 mmol)、フェニルボロン酸(5.4 g、44 mmol)、酢酸パラジウム(II)(0.25 g、1.1 mmol)、トリフェニルホスフィン(1.2 g、4.4 mmol)、炭酸ナトリウム(12.6 g、119 mmol)、及び200 mLのDMEと100 mLの水を入れた。反応物を加熱して還流させて、窒素雰囲気下で12時間撹拌した。混合物を酢酸エチルで抽出し、シリカゲルカラムによってさらに精製した。収量は5.2 gである。この配位子はGC-MSで確かめた。
【0302】
[ステップ3]
N-(2,6-ジフェニル-4-イソプロピルフェニル)-2-(4-フルオロフェニル)イミダゾール(0.43 g、1.0 mmol)、及びトリス(アセチルアセトナート)イリジウム(III)(0.12 g、0.25 mmol)を、5 mLのエチレングリコールの入ったフラスコに添加した。反応混合物を加熱して還流させ、24時間、窒素雰囲気下で撹拌した。冷却後、生成した沈殿物を濾過し、メタノールで洗浄した。残留物をCH2Cl2で抽出し、シリカゲルカラムによってさらに精製して、fac-トリス[N-(2,6-ジフェニル-4-イソプロピルフェニル)-2-(4-フルオロフェニル)イミダゾール]イリジウム(III)(0.15 g)を得た。1H NMRの結果は、所望の化合物であることを裏付けた。発光のλmax = 460、490 nm。CIE = (0.20、0.34)。Eox = 0.18 V (r)。Ered = -3.00 V(q)(対Fc+/Fc)。
【0303】
〔実施例17 oa9の合成〕
【化47】

【0304】
[ステップ1]
EtOH(400 mL)中の2,6-ジブロモアニリン(87.9 g、0.3 mol)を、室温で終夜、40%グリオキサール水溶液(43.5 g、0.3 mol)で処理した。暗褐色混合物が形成された。200 mLのH2O中のNH4Cl(32.1 g、0.6 mL)を添加し、次に4-フルオロベンズアルデヒド(63.6 g、0.6 mol)を添加した。得られた混合物を2時間還流させた。H3PO4(42 mL、85%)を10分間にわたって添加した。この混合物を次に4日間還流させ撹拌した。ほとんどのEtOHを除去した後、暗色残留物を氷(300 g)に注ぎ、pH9になるまで50%KOH水溶液(約90 mL)で中和した。得られた溶液をEtOAcで抽出した。有機層を一緒に合わせて、一回NaHCO3溶液で洗浄し、乾燥した(Na2SO4)。溶媒を除去し、残留物をアルドリッチ・クーゲルロールで蒸留した。最初に135℃で低沸点不純物を除去し、次に220℃でフラクションを集めた。得られた粗生成物を溶離液としてEtOAc/ヘキサン(1:4)を用いたシリカゲルカラムによってさらに精製できる。収量は7.5 gだった。この配位子はGC-MSで確認した。
【0305】
[ステップ2]
500 mLの丸底フラスコに上記のフェニルイミダゾール(7.5 g、19 mmol)、フェニルボロン酸(6.1 g、50 mmol)、酢酸パラジウム(II)(0.28 g、1.25 mmol)、トリフェニルホスフィン(1.3 g、5.0 mmol)、炭酸ナトリウム(14.3 g、135 mmol)、及び200 mLのDMEと100 mLの水を入れた。反応物を加熱して還流し、窒素雰囲気下で12時間撹拌した。混合物を酢酸エチルで抽出し、シリカゲルカラムによってさらに精製して所望の配位子5.0 gを得、この構造はGC-MSによって裏付けられた。
【0306】
[ステップ3]
N-(2,6-ジフェニルフェニル)-2-(4-フルオロフェニル)イミダゾール(3.9 g、10 mmol)とトリス(アセチルアセトナート)イリジウム(III)(1.2 g、2.5 mmol)を、40 mLのエチレングリコールのはいったフラスコに添加した。反応混合物を加熱還流し、窒素雰囲気下で24時間撹拌した。冷却後、形成された沈殿物を濾過し、エタノールで洗浄した。残留物をCH2Cl2で抽出し、シリカゲルカラムによってさらに精製してoa9(2.3 g)を得た。1H NMRにより構造が裏付けられた。λmax 発光= 462、492 nm。CIE = (0.21、0.36)。
【0307】
〔oa8の合成〕
【化48】

【0308】
[ステップ1]
EtOH(500 mL)中の2,4,6-トリブロモアニリン(98.9 g、0.3 mol)を、終夜、室温で、40%グリオキサール水溶液(43.5 g、0.3 mol)で処理した。暗褐色混合物が形成された。固体NH4Cl(32.1 g、0.6 mol)を添加し、次に4-フルオロベンズアルデヒド(63.6 g、0.6 mol)を添加した。得られた混合物を2時間還流させた。H3PO4(42 mL、85%)を10分間にわたって添加した。混合物を次に4日間還流させながら撹拌した。EtOHのほとんどを除去した後、暗色残留物を氷(300 g)上に注ぎ、pH9になるまで50%KOH水溶液(約90 mL)で中和した。得られた混合物をEtOAcで抽出した。有機相を一緒に合わせ、NaHCO3溶液で一回洗浄し、乾燥させた(Na2SO4)。溶媒を除去し、残留物をアルドリッチ・クーゲルロールで蒸留した。最初に135℃で低沸点不純物を除去し、次に240℃でフラクションを集めた。得られた粗生成物は、溶離液としてEtOAc/ヘキサン(1:4)を用いてシリカゲルカラムによってさらに生成できる。収量は3.0gだった。この配位子はGC-MSによって確かめた。
【0309】
[ステップ2]
500 mL丸底フラスコに、上記フェニルイミダゾール(4.0 g、8.5 mmol)、4-イソプロピルフェニルボロン酸(5.0 g、30.5 mmol)、酢酸パラジウム(II)(0.17 g、0.76 mmol)、トリフェニルホスフィン(0.79 g、0.30 mmol)、炭酸ナトリウム(8.73 g、82 mmol)、及び200 mLのDMEと100 mLの水を入れた。反応物を加熱して還流させて、窒素雰囲気下で12時間撹拌した。混合物を酢酸エチルで抽出し、シリカゲルカラムによってさらに精製した。収量は4.0 gだった。この配位子はGC-MSで確かめた。
【0310】
[ステップ3]
40 mLのエチレングリコールを入れたフラスコに、N-(2,4,6-トリ(4-イソプロピルフェニル)フェニル)-2-(4-フルオロフェニル)イミダゾール(3.3 g、5.6 mmol)とトリス(アセチルアセトナート)イリジウム(III)(0.68 g、1.4 mmol)を添加した。この反応混合物を加熱還流させ、窒素雰囲気下で24時間撹拌した。冷却後、固化した混合物を濾過し、エタノールで洗浄した。残留物をCH2Cl2で抽出し、シリカゲルカラムクロマトグラフィーでさらに精製して、oa8(1.0 g)を得た。1H NMRの結果は、所望の化合物であることを裏付けた。λmax発光= 460, 490 nm。CIE = (0.20、0.35)。Eox = 0.24 V、Ered = -2.80 V (q)(対Fc+/Fc、0.10 MのnBu4NPF6溶液(DMF)中、Ptの作用電極及び補助電極及び非水Ag/Ag+参照電極、並びに100 mVs-1のスキャン速度)。
【0311】
〔ii1の合成〕
【化49】

【0312】
[ステップ1]
250 mlのフラスコに、4-フェニルイミダゾール(7.08 g、49.12 mmol)、2-ヨード-m-キシレン(9.5 g、40.93 mmole)、銅(5.721 g、90.046 mmole)、18-クラウン-6(1.081 g、4.09 mmole)、K2CO3(21.49 g、155.53 mmole)、及びテトラヒドロナフタレン(90 ml)を入れた。反応物を180℃に68時間加熱した。次に反応混合物を、セライトを通して濾過し、濾液を乾燥するまで濃縮した。残留物をクーゲルロール蒸留器にかけて、4 gの配位子を得た(39%)。
【0313】
25 mLのフラスコに、配位子(0.82 g、3.339 mmole)、IrCl3(0.61 g、1.67 mmole)、水(2 ml)、及び2-エトキシエタノール(8 ml)を入れた。反応混合物を20時間、100℃に加熱した。次に反応物を濾過し、沈殿物を集めて塩素架橋ダイマー(0.78 g、65%)を得た。
【0314】
[ステップ3]
50 mLの丸底フラスコに、ダイマー(400 mg、0.277 mmol)、トリフルオロメタンスルホン酸銀(142 mg、0.55 mmol)、10 mlのメタノール、及び10 mlのジクロロメタンを入れた。反応混合物を室温で2時間撹拌した。反応混合物を濾過し、濾液を乾燥するまで濃縮した。残留物を、カリウムテトラピラゾボレート(176 mg、0.554 mmole)と20 mlの無水アセトニトリルを入れた50 mL丸底フラスコに移した。反応混合物を弱い窒素気流下で撹拌し、20時間、81℃に加熱した。冷却後、反応混合物を乾燥するまで濃縮した。残留物を、溶離液として40%ヘプタン/塩化メチレンを用いたクロマトグラフィー(Al2O3、塩基性)でさらに精製して、目的化合物を得た(200 mg、37%)。1H及びMSの結果は、この化合物の構造を裏付けた。発光のλmax= 427, 457, 483 nm(塩化メチレン溶液、室温)。
【0315】
〔実施例20 mc46aの合成〕
【化50】

【0316】
[ステップ1]
N-2,6-ジブロモフェニル-2-フェニルイミダゾール類を調製するための一般的手順通りである。
【0317】
[ステップ2]
Pd(OAc)2(188 mg、0.84 mmole)、ジブロモ化合物(5.12 g、12.9 mmole)、3.5-ジメチルフェニルボロン酸(5.1 g、34 mmole)、K2CO3の2M溶液(45.9 ml)、トリフェニルホスフィン(881 mg、3.36 mmole)、及び90 mlのジメトキシエタンの溶液を、丸底フラスコに入れた。この反応混合物を、17時間、加熱し還流させた。次に、混合物を水で希釈し、水層をEtOAcで抽出した。有機層を食塩水で洗い、乾燥させた(MgSO4)。溶媒を除去後、残留物をシリカゲルのカラムクロマトグラフィー(ヘキサン中10% EtOAc)で精製して、配位子(4g、70%)を得た。
【0318】
[ステップ3]
50 mLの二口丸底フラスコに、配位子(4g、9.15 mmol)とトリス(アセチルアセトナート)イリジウム(III)(1.12 g、2.28 mmol)を入れた。反応混合物を弱い窒素気流下で撹拌し、20時間、200℃で加熱した。冷却後、固化した混合物を塩化メチレンで溶かし、100 mLのフラスコに移し、光に暴露させることなく溶媒留去した。残留物を、溶離液として20%EtOAc/ヘキサンを用いる(トリエチルアミンで処理した)シリカゲルカラムクロマトグラフィーによって精製し、fac-トリス錯体(1g)を得た。1H及びMSの結果はこの化合物の構造を裏付けた。発光のλmax = 466, 492 nm(塩化メチレン溶液、室温)。CIE = (0.21、0.38)。Eox = 0.17 V(対Fc+/Fc、0.10 MのnBu4NPF6溶液(DMF)中、Ptの作用電極及び補助電極及び非水Ag/Ag+参照電極、並びに100 mVs-1のスキャン速度)。
【0319】
〔実施例21 mc48fの合成〕
【化51】

【0320】
[ステップ1]
200 mlのキシレンと、N-(2-クロロエチル)-4-フルオロベンズアミド(18.5 g、92 mmol)を、1000 mlの丸底フラスコに入れた。五塩化リン(28.7 g、138 mmol)をゆっくり添加し、次に混合物を1時間加熱し還流させた。ペンタメチルアニリン(15 g、92 mmol)を次に添加し、混合物を18時間加熱還流させた。冷却後、形成された固体を減圧濾過によって集めた。固体を、ジクロロメタン、水、及び水酸化アンモニウムの混合物に溶かした。ジクロロメタン層を分離し、水で洗浄し、硫酸マグネシウム上で乾燥させた。混合物を濾過し、溶媒を除去し、N-(2,3,4,5,6-ペンタメチル-ベンゼン)-2-(4-フルオロフェニル)イミダゾリジンを減圧蒸留で精製した。
【0321】
[ステップ2]
N-(2,3,4,5,6-ペンタメチル-ベンゼン)-2-(4-フルオロフェニル)イミダゾリジン(10 g、34 mmol)を200 mlのアセトニトリルに溶かした。モンモリロナイトK10上の33%過マンガン酸カリウム(24 g、34 mmolのKMnO4)の細かく砕いた混合物を少しずつ添加した。混合物を室温で4時間撹拌し、次にエタノールで反応停止させた。30分間撹拌後、混合物をセライトを通して濾過し、次に溶媒をロータリーエバポレーターによって濾液から除去した。生成物を酢酸エチルに溶かし、希酢酸溶液で洗浄することによって精製した。相分離後、酢酸エチル層を水で洗浄し、次に硫酸マグネシウム上で乾燥させた。混合物を濾過し、溶媒を除去した。N-(2,3,4,5,6-ペンタメチル-ベンゼン)-2-(4-フルオロフェニル)イミダゾールを、溶離液として70%ヘキサン/酢酸エチルを用いるカラムクロマトグラフィーでさらに精製した。良好なフラクションを集めて、溶媒を除去した。
【0322】
[ステップ3]
N-(2,3,4,5,6-ペンタメチル-ベンゼン)-2-(4-フルオロフェニル)イミダゾール(5 g、16.2 mmol)と、トリス(アセチルアセトナート)イリジウム(III)(1.6 g、3.2 mmol)を50 ml丸底フラスコに入れ、窒素雰囲気下で200℃に48時間加熱した。冷却後、固化した混合物をジクロロメタンに溶かし、溶離液として30%ジクロロメタン/ヘキサンを用いる(トリエチルアミンで処理した)シリカゲルのカラムクロマトグラフィーで精製した。良好なフラクションを集めて溶媒留去した。生成物を酢酸エチルから結晶化させた。
【0323】
〔実施例22 oa8cの合成〕
【化52】

【0324】
[ステップ1]
N-(2,4,6-トリフェニルベンゼン)-2-(4-フルオロフェニル)イミダゾール(2.5 g、5.4 mmol)と三塩化イリジウム(III)(0.97 g、2.7 mmol)を、25 mlの2-メトキシエタノール及び10 mlの水のなかで、24時間、加熱し還流させた。冷却後、固体を濾過し、メタノールで洗浄した。
【0325】
[ステップ2]
塩素架橋ダイマー(2.0 g、0.86 mmol)を100 mlの1,2-ジクロロエタン中に溶かし、加熱して還流させた。酸化銀(0.8 g、3.4 mmol)を添加し、次に1-フェニル-3-メチル-イミダゾリウムアイオダイド(0.50 g、1.7 mmol)を添加した。混合物を、約20分間加熱して還流させた。次に濾液を溶媒留去し、残留物を、溶離液としてジクロロメタンを用いる(トリエチルアミンで処理した)シリカゲルカラムで精製した。純粋なフラクションを溶媒留去し、固体を塩化メチレン/ヘキサンから再結晶した。
【0326】
〔実施例23 oa8cの合成〕
【化53】

【0327】
[ステップ1: N-(2-クロロエチル)-4-フルオロベンズアミドの合成]
1 Lの丸底フラスコ中で、500 mLの水に50.4 gの水酸化ナトリウム(1.26 mol)を溶かした(〜10%溶液)。66.5 g(0.574 mol)の2-クロロエチルアミン塩酸塩を次に添加し、この溶液を、塩が完全に溶けるまで氷浴中で0℃で撹拌した。次に、100 g(0.631 mol)の4-フルオロベンゾイルクロライドを、激しく撹拌している溶液中に滴下ロートから滴下して添加した。添加後、溶液を0℃で1時間撹拌し、次に室温で1時間撹拌した。次に、濁った混合物を濾過して水を除去し、固体をエーテルで洗浄し、次に濾過して〜118gの(わずかに湿った)粗製ベンズアミドを得た(あるいは、この固体を塩化メチレンに溶かし、硫酸マグネシウムで乾燥し、濾過し、溶媒留去して、固体から水を完全に除去することもできる)。これらの固体を120 mLのEtOAc/200 mLのヘキサンから再結晶し、ヘキサン洗浄及び乾燥後、88.2 gの結晶性のN-(2-クロロエチル)-4-フルオロベンズアミドを得た(最初の水母液から追加の6.22 gのベンズアミドが再結晶された)。NMRはこの化合物の構造を裏付けた(81.4%合計収率)。
【0328】
[ステップ2: N-(2,4,6-トリブロモフェニル)-2-(4-フルオロフェニル)イミダゾリン]
撹拌棒を備えた、乾燥した3 L丸底フラスコに、55.6 g(0.276 mol)のN-(2-クロロエチル)-4-フルオロベンズアミドを添加した。次に、この固体をN2雰囲気で600 mLの無水キシレン中に溶かし、軽く加熱した。86.1 g(0.413 mol)の五塩化リンを次に添加し、混合物をN2下で2時間還流させた(PCl5を完全に溶かした)。この溶液をつぎに冷却し、100 g(0.303 mol)のトリブロモアニリンを添加した(加えて、発生するHClガスを中和するために、冷却器に塩基トラップを取り付けた。この混合物を20時間還流させた。溶液を次に冷却し、イミダゾリンをフィルター上に集め、トルエンで、次にヘキサンで洗浄した。この固体を次に塩化メチレンに溶かし、希NH4OHで2回抽出した。有機層をMgSO4上で乾燥させ、濾過し、溶媒を蒸発させて〜65 gのイミダゾリンを得た。塩化メチレン/ヘキサンから再結晶を行った。NMRはこの化合物の構造を裏付けた。
【0329】
[ステップ3: N-(2,4,6-トリブロモフェニル)-2-(4-フルオロフェニル)イミダゾリンの芳香族化]
59.2 g(0.124 mol)のN-(2,4,6-トリブロモフェニル)-2-(4-フルオロフェニル)イミダゾリンを、撹拌棒を備えた2Lフラスコに入れた。〜1L MeCNを添加し、混合物を、固体が溶けるまで室温で撹拌した。33% KMnO4/モンモリロナイト(0.248 mol)を、撹拌した混合物に2、3時間にわたって少しずつ添加した。終夜撹拌した後、混合物を200 mLのEtOHで反応停止し、次に、セライトマットの上に注いで酸化剤を除去した。濾液を溶媒留去し、残留物を、溶離液として20% EtOAc/MeCl2を用いるシリカゲルカラムで精製した。生成物のフラクションを溶媒留去して18.8 gの粗製イミダゾールを得、MeCl2/ヘキサンから再結晶した(17.4 g、29.4%収率)。生成物はNMRによって確かめた。
【0330】
[ステップ4: N-(2,4,6-トリフェニルフェニル)-2-(4-フルオロフェニル)イミダゾールの合成]
13.36 g(28.1 mmol)のN-(2,4,6-トリブロモフェニル)-2-(4-フルオロフェニル)イミダゾール、14.1 g(104 mmol)のフェニルボロン酸、2.21 g(8.40 mmol)のトリフェニルホスフィン、0.63 g(2.81 mmol)のPd(II)アセテート、及び31.4 g(228 mmol)の炭酸カルシウムを、撹拌棒を備えた2L丸底フラスコに入れ、800 mL DME/400 mLの水中で、N2雰囲気下、終夜で還流させた。次に混合物を冷却し、分液ロートに入れ、水を除去した。有機混合物を次に800 mLのEtOAcで増やし、2回の400 mLの水で抽出した。有機層を次にMgSO4上で乾燥させ、濾過し、溶媒を蒸発させた。次に、残留物を200 mLのMeCl2で溶かし、シリカ上に乾燥させた。このシリカを、シリカゲルカラムの一番上に層状にし、これを30% EtOAc/ヘキサン−50% EtOAc/ヘキサンの勾配で溶出した。純粋なフラクションから、溶媒留去後に、CH2Cl2/ヘキサンからの再結晶で、9.3 gのN-(2,4,6-トリフェニルフェニル)-2-(4-フルオロフェニル)イミダゾールを得た(71.0%収率)。生成物はNMRで確認した。
【0331】
[ステップ5: oa8cを形成するための連結反応]
上記ステップで得られた配位子を用い、20の手順に従ってoa8cを調製した。
【0332】
〔デバイス作製例〕
【0333】
以下の手順を用いて、図3に示した化合物を用いてOLEDデバイスを作製した。
【0334】
出発する基材は、Colorado Concept Coatings LLCから購入した、80 nmの厚さのインジウムスズオキシド(ITO)でコーティングされ且つシート抵抗が<25オーム/角のガラス基板だった。全ての続く薄膜は、<10-6Torrの圧力における熱蒸着によって堆積させた。カソードは、10ÅのLiFと続く1000ÅのAlからなる。全てのデバイスは、作製後直ちに窒素グローブボックス中にて、ガラスの蓋で密封し、エポキシ樹脂でシールし、かつ湿気吸収剤をパッケージ内に組み込んだ。
【0335】
デバイス作製前に、基板は石鹸溶液中での超音波処理によって洗浄し、脱イオン水で濯ぎ、イソプロパノール中で煮沸した。洗浄工程後、基板はN2気流下で乾燥させ、次にO2プラズマとUVオゾン処理を行った。
【0336】
OLEDの有機層は、室温で、<10-6Torrの圧力にて、基板上に、抵抗で加熱したアルミナるつぼからの熱蒸発によって順次堆積させた。単一成分層の速度は、基板近くに配置した1つのInficon厚さモニターで制御した。各材料の具体的速度は、以下の表1に示した。2成分発光層については、ドーパントの速度は、ドーパント蒸発源近くに配置した追加の結晶モニターで制御した。この追加のモニターは、ホストの主な流れには曝さなかった。
【0337】
【表2】

【0338】
図4、5、24、33、43、及び45には、作製したデバイスの構成を示した。この構成はデバイスBを例にした、以下のフォーマットで報告される。

デバイスB:CuPc(100)/NPD(300)/CBP:cmpd A(6%, 300)/HPT(100)/BAlq2(300)

材料CuPc、NPD、CBP、HPT、及びBAlq2の定義は、すでに上で示した。化合物A(「cmpd A」と略記する)の構造は、図3に示した。括弧内の数値は、オングストロームでの層の厚さを示し、cmpd Aの後のパーセント割合は、その層中の化合物Aの重量パーセントを示す。
【0339】
電流-電圧測定は、Keithley source meter(モデル2400)を用いて行った。スペクトル及び光強度は、PhotoResearch 705 Model Spectrophotometerと較正した光ダイオードを用いて測定した。図6〜23、25〜32、34〜42、44、及び46〜48には、本デバイスの性能を示した。
【0340】
実施例24と25のデバイスは、高真空(<10-7Torr)中での熱蒸着によって作製した。アノード電極は約800Åのインジウムスズオキシド(ITO)である。有機層は、0.3〜3.0Å/sの速度で堆積させた。カソードは、0.1Å/sで堆積させた10ÅのLiFと、その次に2Å/sで堆積させた1000ÅのAlとからなる。全てのデバイスは、作製後直ちに窒素グローブボックス(<1ppmのH2O及びO2)中にて、ガラスの蓋で密封し、エポキシ樹脂でシールし、かつ湿気吸収剤をパッケージ内に組み込んだ。発光ドーパントの例を図52に示す。
【0341】
〔実施例24〕
本発明の具体的なデバイスの例(数字が太字で示されたもの)、並びに比較デバイスを、表3に示した。具体的な方法、材料、条件、プロセスパラメータ、装置などは、本発明の範囲を必ずしも制限するものではないことが理解される。
【0342】
【表3】

【0343】
図53は、ドーパント化合物1を用いたデバイスのなかで、電子妨害層(electron impeding layer)のない比較デバイス(白抜き記号で示した、デバイス2、4、及び7)と比べて、電子妨害層を含むデバイス例(デバイス1、3、5、6、及び8)については、外部量子効率がより高いことを示している。図54は、比較デバイス2及び4と比べて、例示デバイス1、3、及び5が同じか又はより長い寿命をもつことを示している。
【0344】
図55は、ドーパント化合物2を用いたデバイスについては、電子妨害層をもたないデバイス10と比べて、電子妨害層を含む例示デバイス9は外部量子効率がより高いことを示している。
【0345】
図56は、ドーパント化合物3を用いたデバイスの中でも、電子妨害層をもたない比較デバイス13と比べて、電子妨害層を含む例示デバイス(デバイス11及び12)については外部量子効率がより高いことを示している。
【0346】
図57は、ドーパント化合物4を用いたデバイスの中でも、電子妨害層をもたない比較デバイス15と比べて、電子妨害層を含む例示デバイス(デバイス14及び16)では外部量子効率がより高いことを示している。図58は、比較デバイスと比べて、実施例のデバイスが同じか又はより良い寿命をもつことを示している。
【0347】
図59は、ドーパント化合物5を用いたデバイスについて、電子妨害層をもたない比較デバイス18と比べて、電子妨害層を含む例示デバイス17については外部量子効率がより高いことを示している。
【0348】
〔実施例25〕
実施例のデバイスA〜Dは、様々な厚さの電子妨害層(electron impeding layer)を含んでいる。比較デバイスE及びFは、様々な厚さのホール阻止層(hole blocking layer)を含んでいる。
【0349】
【表4】

【0350】
図60は、電子妨害層の厚さが増大するにつれて、電子輸送層中での発光量が増大することを示している。
【0351】
図61は、ホール阻止層の厚さが増大するにつれても、発光は移動しないことを示している。
【0352】
上記刊行物、特許、及び特許出願の全ては、各個別の刊行物、特許、又は特許出願がその全体を参照により援用されることが特定して且つ個別に示されているのと同様な程度で、それら全体を参照により本願に援用する。
【0353】
本発明を、具体例且つ好ましい態様に関して説明したが、本発明はこれらの例と態様に制限されないことが理解される。特許請求の範囲に記載した本発明は、したがって、当業者には明らかであるように、本明細書に記載した具体例及び好ましい態様からの変形を含む。
【図面の簡単な説明】
【0354】
【図1】図1は、別個の電子輸送層、ホール輸送層、及び発光層、並びにその他の層を有する有機発光デバイスを示す。
【図2】図2は、別個の電子輸送層をもたない反転型有機発光デバイスを示す。
【図3】図3は、以下の図で用いる化合物の定義を示す。
【図4】図4は、作製したデバイスを示す。
【図5】図5は、作製したデバイスを示す。
【図6】図6は、デバイスV及びTについて、5mA/cmの電流密度で、時間の関数として、規格化された発光を示す。
【図7】図7は、デバイスV及びXIについて、10mA/cmの電流密度で、時間の関数として、規格化された発光を示す。
【図8】図8は、デバイスV及びPPについて、10mA/cmの電流密度で、時間の関数として、規格化された発光を示す。
【図9】図9は、デバイスLLL及びXIについて、5mA/cmの電流密度で、時間の関数として、規格化された発光を示す。
【図10】図10は、デバイスA及びBについて、IV、量子効率(QE)対電流(J)、及びスペクトルデータを示す。
【図11】図11は、デバイスC及びDについて、IV、量子効率(QE)対電流(J)、及びスペクトルデータを示す。
【図12】図12は、デバイスE及びFについて、IV、量子効率(QE)対電流(J)、及びスペクトルデータを示す。
【図13】図13は、デバイスG、H、I、及びJについて、IV、量子効率(QE)対電流(J)、及びスペクトルデータを示す。
【図14】図14は、デバイスK〜Qについて、IV、量子効率(QE)対電流(J)、及びスペクトルデータを示す。
【図15】図15は、デバイスR及びSについて、IV、量子効率(QE)対電流(J)、及びスペクトルデータを示す。
【図16】図16は、デバイスT及びUについて、IV、量子効率(QE)対電流(J)、及びスペクトルデータを示す。
【図17】図17は、デバイスV及びWについて、IV、量子効率(QE)対電流(J)、及びスペクトルデータを示す。
【図18】図18は、デバイスXについて、IV、量子効率(QE)対電流(J)、及びスペクトルデータを示す。
【図19】図19は、デバイスA、B、E、F、及びIについて、5mA/cmの電流密度で、時間の関数として、規格化された発光を示す。
【図20】図20は、デバイスK、L、N、O、P、及びQについて、5mA/cmの電流密度で、時間の関数として、規格化された発光を示す。
【図21】図21は、デバイスK、R、L、S、及びMについて、5mA/cmの電流密度で、時間の関数として、規格化された発光を示す。
【図22】図22は、デバイスH、J、V、及びTについて、5mA/cmの電流密度で、時間の関数として、規格化された発光を示す。
【図23】図23は、デバイスU、W、及びXについて、5mA/cmの電流密度で、時間の関数として、規格化された発光を示す。
【図24】図24は、作製したデバイスを示す。
【図25】図25は、デバイスZ、BB、及びEEについて、IV、量子効率(QE)対電流(J)、及びスペクトルデータを示す。
【図26】図26は、デバイスBBについて、10mA/cmの電流密度で、時間の関数として、規格化された発光を示す。
【図27】図27は、デバイスEEについて、10mA/cmの電流密度で、時間の関数として、規格化された発光を示す。
【図28】図28は、デバイスZについて、5mA/cmの電流密度で、時間の関数として、規格化された発光を示す。
【図29】図29は、デバイスFF、GG、HH、及びIIについて、IV、量子効率(QE)対電流(J)、及びスペクトルデータを示す。
【図30】図30は、デバイスFF及びGGについて、10mA/cmの電流密度で、時間の関数として、規格化された発光を示す。
【図31】図31は、デバイスHH及びIIについて、40mA/cmの電流密度で、時間の関数として、規格化された発光を示す。
【図32】図32は、デバイスJJ及びKKについて、IV、量子効率(QE)対電流(J)、及びスペクトルデータを示す。
【図33】図33は作製したデバイスを示す。
【図34】図34は、デバイスMM、NN,OO、PP、及びRRについて、IV、量子効率(QE)対電流(J)、及びスペクトルデータを示す。
【図35】図35は、デバイスUU、VV,WW、及びXXについて、IV、量子効率(QE)対電流(J)、及びスペクトルデータを示す。
【図36】図36は、デバイスMM、NN、OO、及びPPについて、10mA/cmの電流密度で、時間の関数として、規格化された発光を示す。
【図37】図37は、デバイスUU、VV、及びWWについて、10mA/cmの電流密度で、時間の関数として、規格化された発光を示す。
【図38】図38は、デバイスYY、ZZ、AAA、及びBBBについて、IV、量子効率(QE)対電流(J)、及びスペクトルデータを示す。
【図39】図39は、デバイスYY、ZZ、及びAAAについて、10mA/cmの電流密度で、時間の関数として、規格化された発光を示す。
【図40】図40は、デバイスCCC、DDD、EEE、FFF、GGG、及びHHHについて、IV、量子効率(QE)対電流(J)、及びスペクトルデータを示す。
【図41】図41は、デバイスEEE、GGG、及びHHHについて、10mA/cmの電流密度で、時間の関数として、規格化された発光を示す。
【図42】図42は、デバイスEEE、CCC、及びFFFについて、10mA/cmの電流密度で、時間の関数として、規格化された発光を示す。
【図43】図43は、作製したデバイスを示す。
【図44】図44は、デバイスIII、JJJ、及びKKKについて、IV、量子効率(QE)対電流(J)、及びスペクトルデータを示す。
【図45】図45は、作製したデバイスを示す。
【図46】図46は、デバイスGG及びNNNについて、10mA/cmの電流密度で、時間の関数として、規格化された発光を示す。
【図47】図47は、デバイスLLL及びMMMについて、IV、量子効率(QE)対電流(J)、及びスペクトルデータを示す。
【図48】図48は、デバイスMMM及びNNNについて、10mA/cmの電流密度で、時間の関数として、規格化された発光を示す。
【図49】図49は、デバイスXIIについて、IV、量子効率(QE)対電流(J)、及びスペクトルデータを示す。
【図50】図50は、デバイスNNNについて、IV、量子効率(QE)対電流(J)、及びスペクトルデータを示す。
【図51】図51は、電子妨害層を含む有機発光デバイスを示す。
【図52】図52は、化合物1〜5の構造を示す。
【図53】図53は、化合物1のデバイスについて、外部量子効率 対 電流密度を示す。
【図54】図54は、化合物1のデバイスについて、10mA/cmの電流密度で、室温における寿命を示す。
【図55】図55は、化合物2のデバイスについて、外部量子効率 対 電流密度を示す。
【図56】図56は、化合物3のデバイスについて、外部量子効率 対 電流密度を示す。
【図57】図57は、化合物4のデバイスについて、外部量子効率 対 電流密度を示す。
【図58】図58は、化合物4のデバイスについて、10mA/cmの電流密度で、室温における寿命を示す。
【図59】図59は、化合物5のデバイスについて、外部量子効率 対 電流密度を示す。
【図60】図60は、電子妨害層の厚さが増大したときのデバイスの発光を示す。
【図61】図61は、ホール阻止層の厚さが増大したときのデバイスの発光を示す。
【図62】図62は、電子妨害層を有するデバイスについての典型的なHOMOエネルギー準位を示す。
【図63a】図63aは、電子妨害層を有するデバイスを示す。
【図63b】図63bは、電子妨害層を有するデバイスについてのエネルギー準位を示す。
【符号の説明】
【0355】
100・・・デバイス、110・・・基材、115・・・アノード、120・・・ホール注入層、125・・・ホール輸送層、130・・・電子阻止層(electron blocking layer)、135・・・発光層、140・・・ホール阻止層、145・・・電子輸送層、150・・・電子注入層、155・・・保護層、160・・・カソード、162・・・第一の導電層、164・・・第二の導電層、200・・・デバイス、210・・・基材、215・・・カソード、220・・・発光層、225・・・ホール輸送層、230・・・アノード

【特許請求の範囲】
【請求項1】
単座、二座、三座、四座、五座、又は六座の配位子の中性金属錯体であるリン光化合物であって、
前記配位子は、前記金属に直接結合した少なくとも1つの第一のアリール又はヘテロアリール環を含み、
前記第一の環は、アリール及びヘテロアリール基からなる群から独立して選択される置換基によって両方のオルト位で置換されており且つ前記金属に直接結合していない第二のアリール又はヘテロアリール環で置換されており、
前記金属錯体が有機金属錯体であり、かつ
前記金属が、40よりも大きな原子番号をもつ非放射性金属からなる群から選択される、リン光化合物。
【請求項2】
前記金属が、Re、Ru、Os、Rh、Ir、Pd、Pt、Cu、及びAuからなる群から選択される、請求項1に記載の化合物。
【請求項3】
前記金属が、Os、Ir、及びPtからなる群から選択される、請求項2に記載の化合物。
【請求項4】
前記金属がIrである、請求項3に記載の化合物。
【請求項5】
前記第二の環が、1つ以上のアリール、ヘテロアリール、又は電子吸引性基によってさらに置換されている、請求項1に記載の化合物。
【請求項6】
前記第二の環がトリフェニレン基で置換されている、請求項5に記載の化合物。
【請求項7】
前記第二の環が、カルバゾールを含む基で置換されている、請求項5に記載の化合物。
【請求項8】
前記第二の環のオルト位の置換基が、ジアリールアミノアリール基である、請求項1に記載の化合物。
【請求項9】
約480nm未満の波長に、リン光発光スペクトルにおける最大のエネルギーピークを有する、請求項1に記載の化合物。
【請求項10】
ホモレプティック化合物である、請求項1記載の化合物。
【請求項11】
ヘテロレプティック化合物である、請求項1記載の化合物。
【請求項12】
昇華性化合物である、請求項1記載の化合物。
【請求項13】
前記第二の環が、第一の環の窒素原子に結合している、請求項1に記載の化合物。
【請求項14】
前記第一の環がイミダゾール環である、請求項1に記載の化合物。
【請求項15】
前記第一の環がピラゾール環である、請求項1に記載の化合物。
【請求項16】
前記第一の環がトリアゾール環である、請求項1に記載の化合物。
【請求項17】
前記第一の環がピリジン環である、請求項1に記載の化合物。
【請求項18】
前記第一の環がベンゼン環である、請求項1に記載の化合物。
【請求項19】
前記第一の環が、前記金属に直接結合している第三のアリール又はヘテロアリール環によって置換されている、請求項1に記載の化合物。
【請求項20】
前記第一及び第三の環が共同でモノアニオン性二座配位子を含む、請求項19に記載の化合物。
【請求項21】
前記第三の環が、フェニル、ピリジル、チオフェニル、フラニル、ピロリル、チアゾリル、及びピリミジルからなる群から選択される、請求項19に記載の化合物。
【請求項22】
前記第三の環が、1つ又は2つのフッ素基によって置換されているフェニル環である、請求項19に記載の化合物。
【請求項23】
前記第一及び第三の環がモノアニオン性三座配位子内に含まれている、請求項19に記載の化合物。
【請求項24】
前記第一及び第三の環が共同で中性の二座配位子を含む、請求項19に記載の化合物。
【請求項25】
前記第二の環のオルト位に結合した基がSet1から選択される、請求項1に記載の化合物。
【請求項26】
前記第二の環がSet2c及び2dから選択される、請求項1に記載の化合物。
【請求項27】
前記第一の環がSet3a〜3bから選択される、請求項1に記載の化合物。
【請求項28】
前記第三の環がSet4から選択される、請求項19に記載の化合物。
【請求項29】
前記配位子がSet5cから選択される、請求項1に記載の化合物。
【請求項30】
前記金属錯体が、Set6cからの化合物mc2、Set6cからの化合物mc13、Set6cからの化合物mc17、Set6cからの化合物mc18、Set6cからの化合物mc19、Set6cからの化合物mc20、Set6cからの化合物mc21、Set6cからの化合物mc22、Set6cからの化合物mc23、Set6cからの化合物mc24、Set6cからの化合物mc36、Set6cからの化合物oa11、
Set6cからの化合物mc51b、Set6cからの化合物mc52b、Set6cからの化合物oa12、Set6cからの化合物oa1、Set6cからの化合物oa2、Set6cからの化合物oa3、Set6cからの化合物oa8b、Set6cからの化合物mc46b、Set6cからの化合物mc49b、Set6cからの化合物mc52b、Set6cからの化合物mc53b、Set6cからの化合物mc51b、Set6dからの化合物mc40b、及びSet6dからの化合物mc41b、からなる群から選択される、請求項1に記載の化合物。
【請求項31】
前記金属錯体が、二座のモノアニオン性のN,N-供与性配位子を含む、請求項1に記載の化合物。
【請求項32】
前記金属錯体がカルベン供与体を含む、請求項1に記載の化合物。
【請求項33】
前記カルベン供与体が二座のモノアニオン性配位子の一部である、請求項32に記載の化合物。
【請求項34】
前記第二の環がフッ素以外の基で置換されている、請求項1に記載の化合物。
【請求項35】
前記第二の環に対応するアレン又はヘテロアレンの三重項エネルギーが約2.5eVよりも大きい、請求項1に記載した化合物。
【請求項36】
前記第二の環に対応するアレン又はヘテロアレンの分子量が約230g/molより大きい、請求項1に記載の化合物。
【請求項37】
前記第二の環に対応するアレン又はヘテロアレンの分子量が約430g/molより大きい、請求項1に記載の化合物。
【請求項38】
前記第二の環に対応するアレン又はヘテロアレンの分子量が約530g/molより大きい、請求項1に記載の化合物。
【請求項39】
前記第二の環に対応するアレン又はヘテロアレンの分子量が約750g/molより大きい、請求項1に記載の化合物。
【請求項40】
計算された一重項−三重項ギャップが約0.4eV未満である、請求項1に記載の化合物。
【請求項41】
前記の計算された一重項−三重項ギャップが約0.3eV未満である、請求項1に記載の化合物。
【請求項42】
前記の計算された一重項−三重項ギャップが約0.2eV未満である、請求項1に記載の化合物。
【請求項43】
前記の計算された一重項−三重項ギャップが約0.1eV未満である、請求項1に記載の化合物。
【請求項44】
前記配位子の還元電位が、前記第二の環の代わりにメチル基を有する対応する配位子の還元電位よりも、絶対値が少なくとも約0.1V小さなマイナスの値である、請求項1に記載の化合物。
【請求項45】
前記配位子の還元電位が、前記第二の環の代わりにメチル基を有する対応する配位子の還元電位よりも、絶対値が少なくとも約0.2V小さなマイナスの値である、請求項1に記載の化合物。
【請求項46】
前記配位子の還元電位が、前記第二の環の代わりにメチル基を有する対応する配位子の還元電位よりも、絶対値が少なくとも約0.3V小さなマイナスの値である、請求項1に記載の化合物。
【請求項47】
前記配位子の還元電位が、前記第二の環の代わりにメチル基を有する対応する配位子の還元電位よりも、絶対値が少なくとも約0.4V小さなマイナスの値である、請求項1に記載の化合物。
【請求項48】
前記配位子の還元電位が、前記第二の環の代わりにメチル基を有する対応する配位子の還元電位よりも、絶対値が少なくとも約0.5V小さなマイナスの値である、請求項1に記載の化合物。
【請求項49】
ΔE(デルタE)が約0.6eVよりも小さい、請求項1に記載の化合物であって、
ここで、
ΔE(デルタE)=(三重項エネルギー)−(修正された電気化学ギャップ)
であり、
前記三重項エネルギーが、前記金属錯体のリン光発光スペクトルの最大のエネルギーピークのエネルギー(eV単位)であり、
前記の修正された電気化学ギャップが、前記金属錯体の酸化電位と、前記配位子に対応する中性化合物の還元電位との間の差である、
請求項1に記載の化合物。
【請求項50】
前記ΔEが約0.5eVよりも小さい、請求項49に記載の化合物。
【請求項51】
前記ΔEが約0.4eVよりも小さい、請求項49に記載の化合物。
【請求項52】
前記ΔEが約0.3eVよりも小さい、請求項49に記載の化合物。
【請求項53】
前記ΔEが約0.2eVよりも小さい、請求項49に記載の化合物。
【請求項54】
アノードと、カソードと、発光層とを含む有機発光デバイスであって、前記発光層が前記アノードと前記カソードとの間に配置されており、前記発光層が請求項1に記載のリン光化合物を含み且つ任意選択によるホストを含んでも又は含まなくてもよい、有機発光デバイス。
【請求項55】
単座、二座、三座、四座、五座、又は六座の配位子の中性金属錯体であるリン光化合物であって、
前記配位子が、前記金属に直接結合した少なくとも1つの第一のアリール又はヘテロアリール環を含み;
前記第一の環が、両方のオルト位でH又はハライド以外の基によって置換されており且つ前記金属に直接結合していない第二のアリール又はヘテロアリール環で置換されており;
前記第一の環が、イミダゾール、ベンゼン、ナフタレン、キノリン、イソキノリン、ピリジン、ピリミジン、ピリダジン、ピロール、オキサゾール、チアゾール、オキサジアゾール、チアジアゾール、フラン、又はチオフェン環であり;
前記金属錯体が有機金属錯体であり;かつ
前記金属が、40よりも大きな原子番号をもつ非放射性金属からなる群から選択される、リン光化合物。
【請求項56】
前記第一の環が、前記金属に第一の窒素を介して配位したイミダゾールである、請求項55に記載の化合物。
【請求項57】
前記第二の環が、前記第一の環の第二の窒素に結合している、請求項56に記載の化合物。
【請求項58】
前記金属が、Re、Ru、Os、Rh、Ir、Pd、Pt、Cu、及びAuからなる群から選択される、請求項55に記載の化合物。
【請求項59】
前記金属が、Os、Ir、及びPtからなる群から選択される、請求項58に記載の化合物。
【請求項60】
前記金属がIrである、請求項59に記載の化合物。
【請求項61】
前記第二の環が1つ以上のアリール、ヘテロアリール、又は電子吸引性基で置換されている、請求項55に記載の化合物。
【請求項62】
前記第二の環がトリフェニレン基で置換されている、請求項55に記載の化合物。
【請求項63】
前記第二の環がカルバゾールを含む基で置換されている、請求項55に記載の化合物。
【請求項64】
前記のH又はハライド以外の基がアルキル基である、請求項55に記載の化合物。
【請求項65】
前記のH又はハライド以外の基が、2つ以上の炭素を含むアルキル基である、請求項64に記載の化合物。
【請求項66】
H又はハライド以外の基がアリール基である、請求項55に記載の化合物。
【請求項67】
H又はハライド以外の基がヘテロアリール基である、請求項55に記載の化合物。
【請求項68】
H又はハライド以外の基がジアリールアミノアリール基である、請求項55に記載の化合物。
【請求項69】
約480nm未満の波長に、リン光発光スペクトルにおける最大のエネルギーピークを有する、請求項55に記載の化合物。
【請求項70】
ホモレプティック化合物である、請求項55に記載の化合物。
【請求項71】
ヘテロレプティック化合物である、請求項55に記載の化合物。
【請求項72】
昇華性化合物である、請求項55に記載の化合物。
【請求項73】
前記第一の環が、前記金属に直接結合した第三のアリール又はヘテロアリール環で置換されている、請求項55に記載の化合物。
【請求項74】
前記第一及び第三の環が共同でモノアニオン性二座配位子を含む、請求項73に記載の化合物。
【請求項75】
前記第三の環が、ベンゼン、ナフタレン、キノリン、イソキノリン、ピリジン、ピリミジン、ピリダジン、ピロール、オキサゾール、チアゾール、オキサジアゾール、チアジアゾール、フラン、又はチオフェン環である、請求項74に記載の化合物。
【請求項76】
前記第一及び第三の環が共同でモノアニオン性三座配位子を含む、請求項73に記載の化合物。
【請求項77】
前記第一及び第三の環が共同で中性の二座配位子を含む、請求項74に記載の化合物。
【請求項78】
前記のH又はハライド以外の基が、(i)メチル、エチル、n-プロピル、イソプロピル、及びtert-ブチルからなる群、又は(ii)Set1のいずれかから選択される、請求項55に記載の化合物。
【請求項79】
前記第二の環がSet2a〜2dから選択される、請求項55に記載の化合物。
【請求項80】
前記第一の環がSet3aから選択される、請求項55に記載の化合物。
【請求項81】
前記第三の環がSet4から選択される、請求項73に記載の化合物。
【請求項82】
前記配位子がSet5a〜5cから選択される、請求項55に記載の化合物。
【請求項83】
前記金属錯体がSet6a〜6c及び6eから選択される、請求項55に記載の化合物。
【請求項84】
前記第一の環がベンゼン環である、請求項55に記載の化合物。
【請求項85】
前記第一の環がナフタレン環である、請求項55に記載の化合物。
【請求項86】
前記第一の環がキノリン環である、請求項55に記載の化合物。
【請求項87】
前記第一の環がイソキノリン環である、請求項55に記載の化合物。
【請求項88】
前記第一の環がピリジン環である、請求項55に記載の化合物。
【請求項89】
前記第一の環がピリミジン環である、請求項55に記載の化合物。
【請求項90】
前記第一の環がピリダジン環である、請求項55に記載の化合物。
【請求項91】
前記第一の環がピロール環である、請求項55に記載の化合物。
【請求項92】
前記第一の環がオキサゾール環である、請求項55に記載の化合物。
【請求項93】
前記第一の環がチアゾール環である、請求項55に記載の化合物。
【請求項94】
前記第一の環がオキサジアゾール環である、請求項55に記載の化合物。
【請求項95】
前記第一の環がチアジアゾール環である、請求項55に記載の化合物。
【請求項96】
前記第一の環がフラン環である、請求項55に記載の化合物。
【請求項97】
前記第一の環がチオフェン環である、請求項55に記載の化合物。
【請求項98】
前記金属錯体が、二座のモノアニオン性のN,N-供与性配位子を含む、請求項55に記載の化合物。
【請求項99】
前記金属錯体がカルベン供与体を含む、請求項55に記載の化合物。
【請求項100】
前記カルベン供与体が、二座のモノアニオン性配位子の一部である、請求項99に記載の化合物。
【請求項101】
前記第二の環がフッ素以外の基で置換された、請求項55に記載の化合物。
【請求項102】
前記第二の環に対応するアレン又はヘテロアレンの三重項エネルギーが約2.5eVよりも大きい、請求項55に記載の化合物。
【請求項103】
前記第二の環に対応するアレン又はヘテロアレンの分子量が約230g/molより大きい、請求項55に記載の化合物。
【請求項104】
前記第二の環に対応するアレン又はヘテロアレンの分子量が約430g/molより大きい、請求項55に記載の化合物。
【請求項105】
前記第二の環に対応するアレン又はヘテロアレンの分子量が約530g/molより大きい、請求項55に記載の化合物。
【請求項106】
前記第二の環に対応するアレン又はヘテロアレンの分子量が約750g/molより大きい、請求項55に記載の化合物。
【請求項107】
計算された一重項−三重項ギャップが約0.4eV未満である、請求項55に記載の化合物。
【請求項108】
前記の計算された一重項−三重項ギャップが約0.3eV未満である、請求項55に記載の化合物。
【請求項109】
前記の計算された一重項−三重項ギャップが約0.2eV未満である、請求項55に記載の化合物。
【請求項110】
前記の計算された一重項−三重項ギャップが約0.1eV未満である、請求項55に記載の化合物。
【請求項111】
前記配位子の還元電位が、前記第二の環の代わりにメチル基を有する対応する配位子の還元電位よりも、絶対値が少なくとも約0.1V小さなマイナスの値である、請求項55に記載の化合物。
【請求項112】
前記配位子の還元電位が、前記第二の環の代わりにメチル基を有する対応する配位子の還元電位よりも、絶対値が少なくとも約0.2V小さなマイナスの値である、請求項55に記載の化合物。
【請求項113】
前記配位子の還元電位が、前記第二の環の代わりにメチル基を有する対応する配位子の還元電位よりも、絶対値が少なくとも約0.3V小さなマイナスの値である、請求項55に記載の化合物。
【請求項114】
前記配位子の還元電位が、前記第二の環の代わりにメチル基を有する対応する配位子の還元電位よりも、絶対値が少なくとも約0.4V小さなマイナスの値である、請求項55に記載の化合物。
【請求項115】
前記配位子の還元電位が、前記第二の環の代わりにメチル基を有する対応する配位子の還元電位よりも、絶対値が少なくとも約0.5V小さなマイナスの値である、請求項55に記載の化合物。
【請求項116】
ΔE(デルタE)が約0.6eVよりも小さい、請求項55に記載の化合物であって、
ここで、
ΔE(デルタE)=(三重項エネルギー)−(修正された電気化学ギャップ)
であり、
前記三重項エネルギーが、前記金属錯体のリン光発光スペクトルにおける最大のエネルギーピークのエネルギー(eV単位)であり、
前記の修正された電気化学ギャップが、前記金属錯体の酸化電位と、前記配位子に対応する中性化合物の還元電位との間の差である、
請求項55に記載の化合物。
【請求項117】
前記ΔEが約0.5eVよりも小さい、請求項116に記載の化合物。
【請求項118】
前記ΔEが約0.4eVよりも小さい、請求項116に記載の化合物。
【請求項119】
前記ΔEが約0.3eVよりも小さい、請求項116に記載の化合物。
【請求項120】
前記ΔEが約0.2eVよりも小さい、請求項116に記載の化合物。
【請求項121】
アノードと、カソードと、発光層とを含む有機発光デバイスであって、前記発光層が前記アノードと前記カソードとの間に配置されており、前記発光層が請求項55に記載のリン光化合物を含み且つ任意選択によるホストを含んでも又は含まなくてもよい、有機発光デバイス。
【請求項122】
単座、二座、三座、四座、五座、又は六座の配位子の中性金属錯体であるリン光化合物であって、
前記配位子が、前記金属に直接結合した少なくとも1つの第一のアリール又はヘテロアリール環を含み;
前記第一の環が、両方のオルト位でH又はハライド以外の基によって置換されており且つ前記金属に直接結合していない第二のアリール又はヘテロアリール環で置換されており;
前記第一の環が、前記金属に第一の窒素原子を介して配位しているイミダゾールであり;
前記金属錯体が有機金属錯体であり;かつ
前記金属が、40よりも大きな原子番号をもつ非放射性金属からなる群から選択される、リン光化合物。
【請求項123】
前記第二の環が、前記第一の環の第二の窒素原子に結合している、請求項122に記載の化合物。
【請求項124】
前記金属が、Re、Ru、Os、Rh、Ir、Pd、Pt、Cu、及びAuからなる群から選択される、請求項122に記載の化合物。
【請求項125】
前記金属が、Os、Ir、及びPtからなる群から選択される、請求項122に記載の化合物。
【請求項126】
前記金属がIrである、請求項122に記載の化合物。
【請求項127】
前記第二の環が、アリール、ヘテロアリール、又は電子吸引性基で置換されている、請求項122に記載の化合物。
【請求項128】
前記のH又はハライド以外の基がアルキル基である、請求項122に記載の化合物。
【請求項129】
前記のH又はハライド以外の基が、2つ以上の炭素を含むアルキル基である、請求項122に記載の化合物。
【請求項130】
前記のH又はハライド以外の基がアリール基である、請求項122に記載の化合物。
【請求項131】
前記のH又はハライド以外の基がヘテロアリール基である、請求項122に記載の化合物。
【請求項132】
約480nm未満の波長に、リン光発光スペクトルにおける最大のエネルギーピークを有する、請求項122に記載の化合物。
【請求項133】
ホモレプティック化合物である、請求項122に記載の化合物。
【請求項134】
ヘテロレプティック化合物である、請求項122に記載の化合物。
【請求項135】
昇華性化合物である、請求項122に記載の化合物。
【請求項136】
前記第一の環が、前記金属に直接結合した第三のアリール又はヘテロアリール環で置換されている、請求項122に記載の化合物。
【請求項137】
前記第一及び第三の環が共同でモノアニオン性二座配位子を含む、請求項136に記載の化合物。
【請求項138】
前記第三の環が、フェニル、ピリジル、チオフェニル、フラニル、ピロリル、チアゾリル、及びピリミジルからなる群から選択される、請求項137に記載の化合物。
【請求項139】
前記第一及び第三の環が共同でモノアニオン性三座配位子を含む、請求項136に記載の化合物。
【請求項140】
前記第一及び第三の環が共同で中性の二座配位子を含む、請求項136に記載の化合物。
【請求項141】
前記第二の環のオルト位に結合した基が、(i)メチル、エチル、n-プロピル、イソプロピル、及びtert-ブチルからなる群、又は(ii)Set1のいずれかから選択される、請求項122に記載の化合物。
【請求項142】
前記第二の環がSet2a〜2dから選択される、請求項122に記載の化合物。
【請求項143】
前記第一の環がSet3aから選択される、請求項122に記載の化合物。
【請求項144】
前記第三の環がSet4から選択される、請求項122に記載の化合物。
【請求項145】
前記配位子がSet5a〜5cから選択される、請求項122に記載の化合物。
【請求項146】
前記金属錯体がSet6a〜6c及び6eから選択される、請求項122に記載の化合物。
【請求項147】
前記金属錯体が、二座のモノアニオン性のN,N-供与性配位子を含む、請求項122に記載の化合物。
【請求項148】
前記金属錯体がカルベン供与体を含む、請求項122に記載の化合物。
【請求項149】
前記カルベン供与体が、二座のモノアニオン性配位子の一部である、請求項148に記載の化合物。
【請求項150】
前記第二の環がフッ素以外の基で置換された、請求項122に記載の化合物。
【請求項151】
前記第二の環に対応するアレン又はヘテロアレンの三重項エネルギーが約2.5eVよりも大きい、請求項122に記載した化合物。
【請求項152】
前記第二の環に対応するアレン又はヘテロアレンの分子量が約230g/molより大きい、請求項122に記載の化合物。
【請求項153】
前記第二の環に対応するアレン又はヘテロアレンの分子量が約430g/molより大きい、請求項122に記載の化合物。
【請求項154】
前記第二の環に対応するアレン又はヘテロアレンの分子量が約530g/molより大きい、請求項122に記載の化合物。
【請求項155】
前記第二の環に対応するアレン又はヘテロアレンの分子量が約750g/molより大きい、請求項122に記載の化合物。
【請求項156】
計算された一重項−三重項ギャップが約0.4eV未満である、請求項122に記載の化合物。
【請求項157】
前記の計算された一重項−三重項ギャップが約0.3eV未満である、請求項122に記載の化合物。
【請求項158】
前記の計算された一重項−三重項ギャップが約0.2eV未満である、請求項122に記載の化合物。
【請求項159】
前記の計算された一重項−三重項ギャップが約0.1eV未満である、請求項122に記載の化合物。
【請求項160】
前記配位子の還元電位が、前記第二の環の代わりにメチル基を有する対応する配位子の還元電位よりも、絶対値が少なくとも約0.1V小さなマイナスの値である、請求項122に記載の化合物。
【請求項161】
前記配位子の還元電位が、前記第二の環の代わりにメチル基を有する対応する配位子の還元電位よりも、絶対値が少なくとも約0.2V小さなマイナスの値である、請求項122に記載の化合物。
【請求項162】
前記配位子の還元電位が、前記第二の環の代わりにメチル基を有する対応する配位子の還元電位よりも、絶対値が少なくとも約0.3V小さなマイナスの値である、請求項122に記載の化合物。
【請求項163】
前記配位子の還元電位が、前記第二の環の代わりにメチル基を有する対応する配位子の還元電位よりも、絶対値が少なくとも約0.4V小さなマイナスの値である、請求項122に記載の化合物。
【請求項164】
前記配位子の還元電位が、前記第二の環の代わりにメチル基を有する対応する配位子の還元電位よりも、絶対値が少なくとも約0.5V小さなマイナスの値である、請求項122に記載の化合物。
【請求項165】
ΔE(デルタE)が約0.6eVよりも小さい、請求項122に記載の化合物であって、
ここで、
ΔE(デルタE)=(三重項エネルギー)−(修正された電気化学ギャップ)
であり、
前記三重項エネルギーが、前記金属錯体のリン光発光スペクトルにおける最大のエネルギーピークのエネルギー(eV単位)であり、
前記の修正された電気化学ギャップが、前記金属錯体の酸化電位と、前記配位子に対応する中性化合物の還元電位との間の差である、
請求項122に記載の化合物。
【請求項166】
前記ΔEが約0.5eVよりも小さい、請求項165に記載の化合物。
【請求項167】
前記ΔEが約0.4eVよりも小さい、請求項165に記載の化合物。
【請求項168】
前記ΔEが約0.3eVよりも小さい、請求項165に記載の化合物。
【請求項169】
前記ΔEが約0.2eVよりも小さい、請求項165に記載の化合物。
【請求項170】
アノードと、カソードと、発光層とを含む有機発光デバイスであって、前記発光層が前記アノードと前記カソードとの間に配置されており、前記発光層が請求項122に記載のリン光化合物を含み且つ任意選択によるホストを含んでも又は含まなくてもよい、有機発光デバイス。
【請求項171】
アノードと、カソードと、発光層とを含む有機発光デバイスであって、前記発光層が前記アノードと前記カソードとの間に配置されており、前記発光層が以下の:
【化1】

【化2】

【化3】

【化4】

からなる群から選択される少なくとも1つのリン光化合物を含み且つ任意選択によりホストを含んでも又は含まなくてもよい、有機発光デバイス。
【請求項172】
前記の少なくとも1つのリン光化合物が、
【化5】

である、請求項171に記載の有機発光デバイス。
【請求項173】
以下のステップ:
e)基材上に第一の有機積層物を作製するステップ;
f)前記第一の有機積層物の上に反射性導電層を堆積させるステップ;及び
g)前記反射性の接続電極の上に第二の有機積層物を作製するステップ
を含む有機発光デバイスの製造方法であって、
前記反射性導電層が、第一の有機積層物と第二の有機積層物の間に配置されかつそれらに電気的に接続されており、かつ
前記第一の有機積層物、前記第二の有機積層物、又は前記第一の有機積層物と前記第二の有機積層物の両方が、以下の:
【化6】

【化7】

【化8】

【化9】

の群から選択される少なくとも1つのリン光化合物を含み且つ任意選択によりホストを含んでも又は含まなくてもよい、有機発光デバイスの製造方法。
【請求項174】
前記の少なくとも1つのリン光化合物が、
【化10】

である、請求項173に記載の製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate

【図26】
image rotate

【図27】
image rotate

【図28】
image rotate

【図29】
image rotate

【図30】
image rotate

【図31】
image rotate

【図32】
image rotate

【図33】
image rotate

【図34】
image rotate

【図35】
image rotate

【図36】
image rotate

【図37】
image rotate

【図38】
image rotate

【図39】
image rotate

【図40】
image rotate

【図41】
image rotate

【図42】
image rotate

【図43】
image rotate

【図44】
image rotate

【図45】
image rotate

【図46】
image rotate

【図47】
image rotate

【図48】
image rotate

【図49】
image rotate

【図50】
image rotate

【図51】
image rotate

【図52】
image rotate

【図53】
image rotate

【図54】
image rotate

【図55】
image rotate

【図56】
image rotate

【図57】
image rotate

【図58】
image rotate

【図59】
image rotate

【図60】
image rotate

【図61】
image rotate

【図62】
image rotate

【図63a】
image rotate

【図63b】
image rotate


【公表番号】特表2008−542203(P2008−542203A)
【公表日】平成20年11月27日(2008.11.27)
【国際特許分類】
【出願番号】特願2008−510235(P2008−510235)
【出願日】平成18年5月4日(2006.5.4)
【国際出願番号】PCT/US2006/017286
【国際公開番号】WO2006/121811
【国際公開日】平成18年11月16日(2006.11.16)
【出願人】(503055897)ユニバーサル ディスプレイ コーポレイション (61)
【Fターム(参考)】