説明

導管と一体構造のマニホルドを有する熱交換器システム

【課題】ガスタービンエンジンの高温抽気の流れを冷却する小型で軽量の熱交換器システムの提供。
【解決手段】熱交換器システム20は、導管壁外面42及び導管壁内面44を含む導管壁24を有する導管22と;導管壁内面44に接合された熱交換器部分シェル46とを含む。熱交換器部分シェル46及び導管壁内面44のシェル部分48は熱交換器32を構成する。熱交換器入口マニホルド38は、導管壁外面42に接合された平坦でない入口材料シート56により規定される。熱交換器出口マニホルド40は、導管壁外面42に接合された平坦でない出口材料シート66により規定される。熱交換器入口開口部64は、入口マニホルド38と熱交換器32との間で導管壁24を貫通し、熱交換器出口開口部74は、出口マニホルド40と熱交換器32との間で導管壁24を貫通する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、入口マニホルド及び出口マニホルドを通って流れる流体を加熱又は冷却するために、導管の内部を流れる流体を使用する熱交換器システムに関し、特に、入口マニホルド、出口マニホルド及び熱交換器が導管の壁と一体である熱交換器システムに関する。
【背景技術】
【0002】
航空機構造においては、ガスタービンエンジンの1つの部品から高温空気の連続する流れが抽気され、冷却され、特定のユーザ用途に提供される。高温の抽気を冷却するために、熱交換器システムが使用されてもよい。
【0003】
高温の抽気を冷却するための好適な媒体は、ガスタービンファン導管を通って流れるエンジンバイパス空気である。抽気とバイパス空気との間で熱を交換する熱交換器システムの設計にはいくつかの制限がある。熱交換器へ高温の抽気を搬送する入口マニホルド、熱交換器自体及び冷却された抽気を熱交換器から搬送する出口マニホルドが全体を通して発生する圧力降下は、余り大きくてはならない。圧力降下が大きすぎると、ユーザ用途に到達したとき、冷却された抽気は適正な機能を実現するのに十分な圧力を示さなくなる。重量及び大きさも厳密な制限条件を課す。全ての航空機構造と同様に、熱交換器システムを可能な限り軽量に保つことが重要である。更に、熱交換器システムはガスタービンエンジンのエンベロープの大きさを著しく増加してはならず、他の航空機システムを収容する設置スペースを残すために、システムは可能な限り小さいことが望ましい。
【0004】
熱交換器において、寸法の変化は重大な問題になりうる。寸法変化をもたらす原因は2つある。エンジンの構成要素の大きさは、ガスタービンエンジンが動力を供給されたときに発生する機械的荷重によって変化する。エンジンの構成要素の大きさは、使用中の温度変化によっても変化する。熱交換器構造においては、それらの寸法変化を考慮に入れなければならない。適切に考慮しなければ、寸法変化の結果として発生する応力及び歪みが熱交換器ユニットの早期故障を引き起こす場合がある。温度の異なるガスがごく近接して存在し且つ時間の経過に伴ってガスの相対温度が変化する熱交換システムにおいては、熱によって誘発される応力及び歪みは特に考慮すべき問題である。
【特許文献1】米国特許第6,422,020号公報
【特許文献2】米国特許第5,317,877号公報
【発明の開示】
【発明が解決しようとする課題】
【0005】
高温の抽気の流れを冷却する小型で軽量の熱交換器システムが必要とされる。
【課題を解決するための手段】
【0006】
本発明は、抽気を冷却するという必要を満たし、関連する利点を提供する。
【0007】
本発明は、高温ガスからガスタービンエンジンバイパス導管を流れる低温ガスへ熱を交換する熱交換器システムを提供する。熱交換器システムは導管の壁に直接装着され、熱交換器及びマニホルドは導管と一体である。すなわち、導管壁はマニホルド及び熱交換器の壁の一部を形成し、それにより重量を相当に節減する。熱交換器システムを通過するガスの圧力降下は小さく、システムは小型である。この種の熱交換器システムは、航空機及び他の用途の双方において必要とされる他の種類の熱交換器に適用されてもよい。
【0008】
本発明によれば、熱交換器システムは、導管壁外面及び導管壁内面を含む導管壁を有する導管を具備する。熱交換器部分シェルは、熱交換器部分シェル及び導管壁内面のシェル部分が熱交換器を構成するように、導管壁内面に接合される。熱交換器入口マニホルドは導管壁に沿った入口場所に配置され、入口マニホルドの一部を規定する細長く平坦でない入口材料シートを具備する。細長く平坦でない入口材料シート及び導管壁外面の入口マニホルド部分が入口マニホルドを規定するように、入口材料シートは導管壁外面に接合される。熱交換器入口開口部は、入口マニホルドと熱交換器との間で導管壁を貫通する。熱交換器出口マニホルドは導管壁に沿った出口場所に配置され、出口マニホルドの一部を規定する細長く平坦でない出口材料シートを具備する。細長く平坦でない出口材料シート及び導管壁外面の出口マニホルド部分が出口マニホルドを規定するように、出口材料シートは導管壁外面に接合される。熱交換器出口開口部は、出口マニホルドと熱交換器との間で導管壁を貫通する。
【0009】
1つの形態においては、平坦でない入口材料シートは2つの入口マニホルド側縁部を有し、各入口マニホルド側縁部は導管壁外面に接合される。平坦でない出口材料シートは2つの出口マニホルド側縁部を有し、各出口マニホルド側縁部は導管壁外面に接合される。別の形態においては、平坦でない入口材料シート及び平坦でない出口材料シートは同一の材料シートである。
【0010】
好適な適用用途においては、導管は流体流れ導管であり、ガスタービンエンジンにおける空気バイパス導管などのガス流導管であるのが最も好ましい。導管は、その長さに沿った各場所においてほぼ円筒形の形状を有する。導管は、導管を通過する流体流れ方向を有し、入口マニホルドの長手方向は流体流れ方向に対して垂直である。出口マニホルドの長手方向も流体流れ方向に対して垂直である。本発明の適用用途に対しては、そのような垂直の方向が好ましいが、他の構成も使用可能である。
【0011】
好適な適用用途においては、入口材料シートは金属から製造され、入口材料シートは導管壁外面に溶接される。出口材料シートは金属から製造され、出口材料シートは導管壁外面に溶接される。熱交換器部分シェルは金属から製造され、導管壁内面にボルト留めされる。しかし、それらの種々の構成要素に対しては、他の材料及び他の接合技術が使用されてもよい。
【0012】
構成要素は任意の使用可能な種類の金属から製造されてもよく、その例はチタン系合金、ニッケル系合金、コバルト系合金、アルミニウム系合金、マグネシウム系合金及び金属複合材料である。構成要素は非金属であってもよく、その例はポリマー、ガラス繊維及びカーボン/エポキシ複合材料などの非金属複合材料並びにセラミックである。適切であれば、溶接が使用されてもよいが、ボルト留め、ねじ留め、他の種類の機械式ファスナ、リベット留め、ろう付け、接着剤及び一体係留などの他の接合技術が採用されてもよい。構成要素は同一の材料から製造されてもよく、異なる材料から製造されてもよい。
【0013】
マニホルドは導管壁外面に固定されてもよいが、導管壁の外側部分に一体に形成されてもよい。いずれの場合にも、マニホルドは導管壁と一体である。導管壁に固定される場合、入口マニホルド側縁部は平坦でない入口材料シートの側縁部であり、出口マニホルド側縁部は平坦でない出口材料シートの側縁部である。一体形成の場合には、平坦でない入口材料シートは入口マニホルド側縁部を越えて延出し、平坦でない出口材料シートは出口マニホルド側縁部を越えて延出する。
【0014】
熱交換器部分シェルは、ボルトなどの複数の機械式ファスナによって導管壁内面に接合されるのが好ましい。通常、熱交換器部分シェルの内部には内部バッフルが存在する。
【0015】
更に一般的には、熱交換器システムは、導管壁外面及び導管壁内面を含む導管壁を有する導管と、導管壁内面に密封接合された熱交換器部分シェルとを具備する。熱交換器部分シェル及び導管壁内面のシェル部分は、一体となって熱交換器を構成する。熱交換器入口マニホルドは、入口マニホルド側縁部において導管壁外面に密封接合された平坦でない入口材料シートと導管壁外面の入口マニホルド部分とにより規定される。熱交換器入口開口部は、入口マニホルドと熱交換器との間で導管壁を貫通する。熱交換器出口マニホルドは、出口マニホルド側縁部において導管壁外面に密封接合された平坦でない出口材料シートと導管壁外面の出口マニホルド部分とにより規定される。熱交換器出口開口部は、出口マニホルドと熱交換器との間で導管壁を貫通する。本明細書中で説明される他の同等の特徴は本実施形態と共に使用されてもよい。
【0016】
本発明の方式は、熱交換器システムについて可能である他の設計方式と比較して、いくつかの重要な利点を提供する。別の方式と比較して、入口マニホルド、熱交換器及び出口マニホルドを通過する際の圧力降下は減少される。構成要素の総重量は減少される。熱交換器システムの部品数は少なくなり、複雑さも軽減される。ツーリングの量及びその費用は減少され、その作業も複雑ではなくなり、エンジン組立て時間は短縮される。これらは、全て製造時に考慮する必要がある重要な事項である。これにより、全体的な製造費用は低減される。バイパス空気の漏れは排除される。部品の摩耗も少なくなり、部品の摩耗の減少、部品数の減少及び接合部漏れの排除によって、保全性は改善される。高温ガスのパイプ式ガス流システムなどの他の方式と比較して、マニホルド構造の大きさ及びエンベロープは縮小される。種類の異なる多数のシステムについて、エンジンエンベロープ全体の中でスペースが利用される必要があり、各構成要素の大きさ及びエンベロープを縮小することで、他の構成要素を収容するスペースを見出すことができるため、エンベロープの縮小は最新のガスタービンエンジンにおいて考慮すべき重要な要素である。
【0017】
本発明の原理を例示する添付の図面と関連させた以下の好適な実施形態の更に詳細な説明から、本発明の他の特徴及び利点は明らかになるであろう。しかし、本発明の範囲はこの好適な実施形態に限定されない。
【発明を実施するための最良の形態】
【0018】
本明細書中で使用される用語「流体」は、気体又は液体であってもよい。本発明の方法は、使用される流体の種類によって限定されない。好適な適用用途においては、冷却する流体は空気であり、冷却される流体は空気である。本発明の方法は他の種類の液体流体及び気体流体に使用されてもよく、その場合、冷却される流体と冷却する流体は同一の流体又は異なる流体であり、種々の流体を加熱又は冷却するために使用されてもよい。冷却される流体及び冷却する流体の他の例には油圧流体、燃料、油及び燃焼ガスなどがある。
【0019】
図1は、一般的な意味で現在使用されている型の熱交換器システム20を示す。導管22は導管壁24を有する。通常、導管壁24は、横断面C‐Cで見た場合にほぼ円筒形の形状を有する。冷却空気26は導管22を通って流れる。典型的な関心状況においては、導管22はガスタービンエンジンのファン導管であり、冷却空気26はバイパスファンによりファン導管を通って送り込まれるバイパス空気である。
【0020】
通常、高温空気入力28はエンジンコアの一部から抽気され、その場合、関心温度及び関心圧力で利用可能である。低温空気出力30は、図1には3つの熱交換器32、34及び36として示される1つ以上の熱交換器に高温空気入力28を通すことにより、熱交換器システム20により生成される。(高温空気入力28から生成される低温空気出力30を導管22の内部を通過する冷却空気26と混同してはならない。)後に示されるように、熱交換器32、34及び36は導管22の中心部分の中ではなく、導管壁24の周囲に沿って配置されるのが好ましい。高温空気は高温空気入力28から熱交換器入口マニホルド38を経て熱交換器32に導入され、熱交換器出口マニホルド40を通って熱交換器32から排出される。「入口マニホルド」及び「出口マニホルド」という用語は、熱交換器のうち任意の1つに対して使用される。図示されるように、2つ以上の熱交換器が存在する場合、第1の熱交換器32に対する出口マニホルドは、第2の熱交換器34に対して入口マニホルドとして作用し、それ以降の熱交換器についても同様である。各熱交換器において、マニホルド38、40を通過する高温空気は冷却空気26により更に冷却される。本方式は、単一の熱交換器のみを使用する場合又は複数の熱交換器を使用する場合に適合する。
【0021】
図2〜図4は、単一の熱交換器32について(その他の熱交換器はほぼ同一であってもよい)、高温空気入力28及び低温空気出力30を除いて、熱交換器システム20の好適な一実施形態を更に詳細に示した図である。導管22がほぼ円筒形であることは図2からわかる。導管壁24は導管壁外面42及び導管壁内面44を有する(図3及び図4)。導管22は一般に流体流れ導管であるため、液体又は気体のいずれかである流体が導管22を通って流れる。好適な適用用途において、導管22は、空気などの気体が通過するガス流導管である。導管22は、バイパスファンのバイパス空気導管などのガスタービンエンジンの一部であるのが最も好ましい。バイパス空気は導管22を通って流れ、冷却空気26として作用する。他の用途において、冷却する流体(冷却空気26に相当する)又は冷却される流体(高温空気28/低温空気30に相当する)は液体であってもよい。
【0022】
一般に、熱交換器部分シェル46は不規則な浅い平なべの形状を有し、底面及び両側面はあるが上面を持たない。熱交換器部分シェル46は導管壁内面44に接合される。この接合により、導管壁内面44のシェル部分48は、平なべ状の熱交換器部分シェル46の上面を形成する。熱交換器部分シェル46及び導管壁内面44のシェル部分48は、一体となって熱交換器32を構成する。すなわち、導管壁24は導管22の構造の一部を形成すると共に熱交換器32の上面として機能するため、重量が節減される。熱交換器部分シェル46は、ボルト又はねじなどの複数の機械式ファスナ50によって、導管壁24のボスにおいて導管壁内面44に接合されるのが好ましい。他の実施可能な接合技術が使用されてもよい。熱交換器32の内部への流体の漏れ又は熱交換器32の内部からの流体の漏れを防止するために、エラストマーシールなどのシール52は、部分シェル46が導管壁内面44と接触する場所である部分シェル46の周囲に沿って延出する。所望の熱伝達を実現するように熱交換器部分シェル46の内側で流体を最適に流通させるために、通常、熱交換器部分シェル46は1つ以上の内部バッフル54を含む。
【0023】
熱交換器入口マニホルド38は、導管壁24に沿った入口場所にある。(本明細書中で使用される用語「場所」は1つの点を含んでもよいし、ある空間範囲にわたって広がっていてもよい。)熱交換器入口マニホルド38は、2つの入口マニホルド側縁部58を有する細長く平坦でない入口材料シート56を含む。細長く平坦でない入口材料シート56は、通常、チタン合金又は鋼などの金属から製造されるが、非金属複合材料などの他の使用可能な材料から製造されてもよい。異なる熱交換器32、34及び36の間に延在する種々の入口マニホルド38は同一の材料から製造されてもよいが、同一の材料から製造される必要はない。それぞれのマニホルド38を通って搬送される空気は徐々に冷却され、従って、後半のマニホルドには温度性能の低い(おそらくは、より軽量の)材料が使用されてもよい。
【0024】
各入口マニホルド側縁部58は、入口マニホルド38の両側の長さに沿って延在する入口マニホルド側縁部接合部62により導管壁外面42に接合される。図3及び図4に示されるように、横断面で見た場合、導管壁外面42はほぼ平坦であるため、通常、入口マニホルド38の横断面は円形ではない。入口マニホルド側縁部58と導管壁外面42との間の入口マニホルド側縁部接合部62は、構造の材料及び動作温度に適する任意の使用可能な種類であるように選択される。細長く平坦でない入口材料シート56及び導管壁24の双方が金属である好適な場合においては、入口マニホルド側縁部接合部62はシーム溶接部であるのが好ましい。他の場合には、入口マニホルド側縁部接合部はろう付け接合部又は接着接合部であってもよい。
【0025】
細長く平坦でない入口材料シート56及び導管壁外面42の入口マニホルド部分60は、一体となって入口マニホルド38を規定する。すなわち、導管壁24は導管22の構造の一部を形成すると共に入口マニホルド38の一方の側として機能するため、重量が節減される。このマニホルド/導管一体構造には、他にも重要な利点がある。構造は、導管22を強化するための一体リブ(図1〜図4の実施形態における周囲リブ)として、細長く平坦でない入口材料シート56を採用する。また、入口マニホルド38を導管22に近接して位置決めすることにより、熱交換器システム20のプロファイルを縮小したエンベロープ全体の大きさは可能な限り小さくなる。マニホルド/導管一体構造は、一部が導管壁外面42の入口マニホルド部分60により形成される入口マニホルド38の長さを予熱交換器面として機能させる。この面において、導管22の内部を流れる冷却空気26は、入口マニホルド38の中を流れる高温空気の冷却を開始する。この予備冷却により効率が向上し、熱交換器32の小型化及び軽量化が可能になるばかりでなく、入口マニホルド38の中を流れる高温の空気は、空気が熱交換器32に流入する箇所である導管壁外面42の温度に近い温度になる。従って、別の方法を採用した場合より温度差は小さくなり、その場所における熱応力及び熱歪みの差も小さくなる。
【0026】
熱交換器入口開口部64は、入口マニホルド38の内部と熱交換器32の内部との間で導管壁24を貫通する。熱交換器入口開口部64は、高温空気入力28を入口マニホルド38から熱交換器32の中へ流入させる。
【0027】
出口マニホルド40は入口マニホルド38に類似する構成を有し、入口マニホルド38に関する先の説明が取入れられる。熱交換器出口マニホルド40は、導管壁24に沿った出口場所(入口場所とは異なる)にある。熱交換器出口マニホルド40は、2つの出口マニホルド側縁部68を有する細長く平坦でない出口材料シート66を含む。細長く平坦でない出口材料シート66は、通常、細長く平坦でない入口材料シート56と同一の材料から製造され、同一の構成を有するが、前述のように複数の熱交換器が存在する場合には、後半のマニホルドに関して構成及び材料を変更してもよい。
【0028】
各出口マニホルド側縁部68は、出口マニホルド40の両側の長さに沿って延在する出口マニホルド側縁部接合部72により導管壁外面42に接合される。図3及び図4に示されるように、横断面で見た場合、導管壁外面42はほぼ平坦であるため、通常、出口マニホルド40の横断面は円形ではない。図3及び図4において、入口マニホルド38及び出口マニホルド40はほぼ同一の横断面形状及び大きさを有するものとして示されるが、そのようにする必要はない。出口マニホルド側縁部68と導管壁外面42との間の出口マニホルド側縁部接合部72は、入口マニホルド側縁部接合部62について上述したように、構造の材料及び動作温度に適する任意の使用可能な方式であるように選択される。
【0029】
細長く平坦でない出口材料シート66及び導管壁外面42の出口マニホルド部分70は、一体となって出口マニホルド40を規定する。すなわち、導管壁24は導管22の構造の一部を形成すると共に出口マニホルド40の一方の側として機能するため、重量が節減される。このマニホルド/導管一体構造も、入口マニホルド38に関して上述した他の重要な構造上及び熱作用上の利点を有する。
【0030】
熱交換器出口開口部74は、出口マニホルド40の内部と熱交換器32の内部との間で導管壁24を貫通する。熱交換器出口開口部74は、熱交換器32から出た空気を出口マニホルド40の中へ流入させる。
【0031】
マニホルド38、40の向き及び導管22に対する熱交換器の位置は、必要な冷却性能の熱力学に従って選択される。図示される実施形態の場合、導管22の流体流れ方向は冷却空気26の流れ方向に対応する。図示されるように、マニホルド38、40の長手方向は冷却空気26の流れ方向に対して垂直であり、その結果、熱交換器の構成はほぼ直交流形となる。すなわち、図示される好適な構成の場合、マニホルド38、40の長手方向は、それぞれ導管壁24の周囲に沿っており、冷却空気26は導管22の内部を通って流れる。冷却される空気のこの流れ方向は、熱交換器32の内部バッフル54の内部構造によって更に影響を受ける。他の構造においては、マニホルド38、40の長手方向は冷却空気26の流れの方向と平行(すなわち、導管22の軸と平行)であることも可能である。従って、高温空気入力28及び低温空気出力30の位置に応じて、マニホルド38、40における空気の流れは平行流であってもよいし、対向流であってもよい。また、マニホルド38、40は互いに平行にならないように形成されてもよく、冷却される空気は他の異なる経路に沿って搬送されてもよい。これにより、熱交換器システム20の熱力学構造において大きな融通性を得ることができる。
【0032】
図3及び図4は、入口マニホルド38及び出口マニホルド40の構成の2つの方式を示す。図3の方式においては、細長く平坦でない入口材料シート56と細長く平坦でない出口材料シート66とは異なる材料シートである。その結果、入口マニホルド側縁部58は平坦でない入口材料シート56の側縁部76にあり、出口マニホルド側縁部68は平坦でない出口材料シート66の側縁部78にある。図4の方式においては、細長く平坦でない入口材料シート56及び細長く平坦でない出口材料シート66は同一の材料シートであり、2つのマニホルド38及び40を規定するために、材料シートは適切な形状に成形される。この場合、平坦でない入口材料シート56は入口マニホルド側縁部58を越えて延出し、平坦でない出口材料シート66は出口マニホルド側縁部68を越えて延出する。図3の方式は重量をわずかに減少するが、図4の方式は導管22の構造的剛性を増す。
【0033】
本発明の範囲内に含まれない図5に示される別の方式と本発明の方式とを比較する。図5の方式においては、マニホルド100及び102は、それぞれ対応する入口106及び出口108において導管壁104に固着された支持なしに立つ別個のパイプから形成される。導管壁外面110は、マニホルド100及び102の壁の一部を規定しない。また、この構造においては、熱交換器112は(入口106及び出口108に対応する開口部を除いて)密閉された箱として製造される。導管壁内面114は熱交換器112の壁の一部を形成しない。図5の構成は、本発明の方式に関して上述した利点を提供しない。
【0034】
例示を目的として本発明の特定の一実施形態を詳細に説明したが、本発明の趣旨の範囲から逸脱せずに種々の変形及び改善が実施されてもよい。従って、本発明は、特許請求の範囲により限定される場合を除いて限定されてはならない。
【図面の簡単な説明】
【0035】
【図1】ガスの供給源及び処置を示し、概略熱交換器システムのガス流れを概略的に示す図である。
【図2】熱交換器システムを示した斜視図である。
【図3】図2の線3‐3に沿った熱交換器システムの断面図である。
【図4】図2の線3‐3に沿った熱交換器システムの別の構成の断面図である。
【図5】本発明の範囲内に含まれない方式を示した断面図である。
【符号の説明】
【0036】
20…熱交換器システム、22…導管、24…導管壁、26…冷却空気、32、34、36…熱交換器、38…熱交換器入口マニホルド、40…熱交換器出口マニホルド、42…導管壁外面、44…導管壁内面、46…熱交換器部分シェル、50…機械式ファスナ、54…内部バッフル、56…細長く平坦でない入口材料シート、58…入口マニホルド側縁部、64…熱交換器入口開口部、66…細長く平坦でない出口材料シート、68…出口マニホルド側縁部、74…熱交換器出口開口部

【特許請求の範囲】
【請求項1】
導管壁外面(42)及び導管壁内面(44)を含む導管壁(24)を有する導管(22)と;
前記導管壁内面(44)のシェル部分(48)と共に熱交換器(32)を構成するように前記導管壁内面(44)に接合された熱交換器部分シェル(46)と;
前記導管壁(24)に沿った入口場所に配置された熱交換器入口マニホルド(38)であって、前記入口マニホルド(38)の一部を規定する細長く平坦でない入口材料シート(56)を具備し、前記入口材料シート(56)は、前記細長く平坦でない入口材料シート(56)及び前記導管壁外面(42)の入口マニホルド部分(60)が前記入口マニホルド(38)を規定するように、前記導管壁外面(42)に接合される熱交換器入口マニホルド(38)と;
前記入口マニホルド(38)と前記熱交換器(32)との間で前記導管壁(24)を貫通する熱交換器入口開口部(64)と;
前記導管壁(24)に沿った出口場所に配置された熱交換器出口マニホルド(40)であって、前記出口マニホルド(40)の一部を規定する細長く平坦でない出口材料シート(66)を具備し、前記出口材料シート(66)は、前記細長く平坦でない出口材料シート(66)及び前記導管壁外面(42)の出口マニホルド部分(70)が前記出口マニホルド(40)を規定するように、前記導管壁外面(42)に接合される熱交換器出口マニホルド(40)と;
前記出口マニホルド(40)と前記熱交換器(32)との間で前記導管壁(24)を貫通する熱交換器出口開口部(74)とを具備する熱交換器システム(20)。
【請求項2】
前記平坦でない入口材料シート(56)は2つの入口マニホルド側縁部を有し、各入口マニホルド側縁部(58)は前記導管壁外面(42)に接合され、
前記平坦でない出口材料シート(66)は2つの出口マニホルド側縁部を有し、各出口マニホルド側縁部(68)は前記導管壁外面(42)に接合される請求項1記載の熱交換器システム(20)。
【請求項3】
前記平坦でない入口材料シート(56)及び前記平坦でない出口材料シート(66)は同一の材料シートである請求項1記載の熱交換器システム(20)。
【請求項4】
前記導管(22)はガス流導管である請求項1記載の熱交換器システム(20)。
【請求項5】
前記導管(22)はガスタービンエンジンの一部である請求項1記載の熱交換器システム(20)。
【請求項6】
前記導管(22)はそれを通過する流体流れ方向(26)を有し、前記入口マニホルド(38)の長手方向は前記流体流れ方向(26)に対して垂直である請求項1記載の熱交換器システム(20)。
【請求項7】
前記導管(22)はそれを通過する流体流れ方向(26)を有し、前記出口マニホルド(40)の長手方向は前記流体流れ方向(26)に対して垂直である請求項1記載の熱交換器システム(20)。
【請求項8】
前記入口材料シート(56)は金属から製造され、前記入口材料シート(56)は前記導管壁外面(42)に溶接される請求項1記載の熱交換器システム(20)。
【請求項9】
前記熱交換器部分シェル(46)は複数の機械式ファスナ(50)によって前記導管壁内面(44)に接合される請求項1記載の熱交換器システム(20)。
【請求項10】
前記熱交換器部分シェル(46)は内部バッフル(54)を具備する請求項1記載の熱交換器システム(20)。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公開番号】特開2008−164276(P2008−164276A)
【公開日】平成20年7月17日(2008.7.17)
【国際特許分類】
【出願番号】特願2007−278326(P2007−278326)
【出願日】平成19年10月26日(2007.10.26)
【出願人】(390041542)ゼネラル・エレクトリック・カンパニイ (6,332)
【氏名又は名称原語表記】GENERAL ELECTRIC COMPANY
【Fターム(参考)】