説明

往復動体のセンタリング方法及びそれをもって製造された構造体

あるデザインを用いたボア内でピストンのような往復動体を組み立てる方法である。ピストンは通常の操作中、ピストンがボアの対称軸に沿ってボア内で回転することができるように、ピストンがボア内で実質的にセンタリングされ、ボアに接続された実質的に側面で固定された構造に回転カップリングを通して一端で接続され、もはや横方向には移動することができない。回転カップリングを固定する前、ピストンは外部のガス源に接続され、ボアに対して配設された1又は複数のガスベアリングポートを有するガスベアリングによってボアの対称軸に沿って実質的に整列されている。通常の操作中、ガスベアリングはピストンとボアとの間の非摩擦ベアリングを実現するのに十分な回転力を提供する。この組立方法は、ピストンと、前記ピストンを含むことが可能なコンプレッションボアと、ピストンへのガス入口と、前記ピストン内に配設され、前記コンプレッサボアに配設され、前記ガス入口に流体的に連通した複数のガスベアリングポートと、前記ピストンの一端に取り付けられた回転カップリング構造と、前記コンプレッサボア及び前記回転カップリング構造に付加された実質的に側面で固定された構造とを具備するスターリングサイクルクライオクーラの組立に特に有益である。

【発明の詳細な説明】
【関連する出願】
【0001】
この出願は“Method for Centering Reciprocating Bodies and Structures Manufactured Therewith”と題名が付けられた、2007年8月17日に出願された米国仮出願番号60/659,434の利益を主張する2008年2月28日に出願された米国特許出願番号12/039,332号の利益を主張し、これら出願を参照することによりそっくりそのまま組み込むものである。
【技術分野】
【0002】
これらの発明は、ボア内での往復動体のセンタリング方法、および、これら技術を用いて製造された構造体に関する。より詳細には、この方法及びデバイスは、クライオクーラ及びモータの、最も詳細にはスターリングサイクルクライオクーラ及びモータの組立体及びデザインのために大いに応用される。
【背景技術】
【0003】
種々の構成要素は、オルタネータロッドのような対応した構造にリンクされた流体ベアリングに備えられたスターリングクーラを形成する。このデザインは、通常工程中、コンプレッサボア内で往復動コンプレッサピストンをセンタリングするために用いられる。
【0004】
米国特許第5,525,845号明細書では、チャンバ内で往復動体を支持する流体ベアリングを有する機械的なトランスデューサのための「対応した」リンケージについて説明している。この往復動体は、リニアスターリングクーラに用いられるコンプレッサピストンであり得る。対応するリンケージは、ピストンからコンプレッサボアに適切にアライメントするために要求された横方向移動を導くように、ピストンを受け入れる。図1A−図1Bは、ガスベアリングによって発生したアライメントプロセスを示す。
【0005】
ピストンは通常、リーフスプリングに接続されている。リーフスプリングの軸方向バネ剛性は相対的に低く、径方向のバネ剛性は通常相対的に高い。リーフスプリングは、コンプレッサボアの対称軸に対して軸平行方向のために僅かに要求されたトルクで回転及び配列されるようにピストン軸を受け入れる。しかしながら、ピストン軸単独の回転は、ピストンからコンプレッサボアに適切にアライメントするのに十分ではない。図1Aの右側に示すように、ピストン軸の第2の横方向移動は、アライメントを得ることを要する。このデザインは、相対的に低いバネ剛性を有する横方向バネのように働く、対応する構造又はリンケージにリーフスプリングを接続することであり、このため、「ボディに及ぼされる他の全ての横方向の力の合計に少なくとも等しい、流体ベアリングによって及ぼされるセンタリング力のために十分な…」高い横方向従順性を有し、(ピストンは、)例えばスターリングクーラのコンプレッサ部のような「トランスデューサの通常操作中、リンケージによってボディに及ぼされる横方向の力を含む」。
【0006】
対応する構造は、例えば、横方向にフレキシブルで軸方向に剛性がある「オルタネータロッド」を用いることによって、実現され得る。この構造は概略的に図1Aに示され、対応する構造のための代替的な選択肢(オプション)を与えている。図1Bに概略的に示されている変形されたリーフスプリングは、横方向に対応する構成要素として機能することができる。
【0007】
ここで説明した従来のデザインには多数の不都合がある。ピストン及び他の関連構成要素の組立体は、クーラの性能及び長寿命を裏付けることが重要である製造工程に依存する種々のやり方を要求する。多数のクーラの製品の問題は、不適当なピストン及びディスプレーサアライメントに関する。
【0008】
米国特許第5,525,845号明細書は、全ての他の横方向力の合力に少なくとも等しくならなければならないことを指摘する。
【0009】
これは、組立工程中、ピストンが非摩擦ベアリングとして適切な機能を発揮するために、適切に予め配列されていなければならないことを意味する。変形され又は調整不良のオルタネータロッドは、利用できる最小のガスベアリング圧力によって制限されるガスベアリング力を提供するよりも大きい付加的な横方向力を引き起こすことができる。
【0010】
ピストンのアライメントの問題、すなわち、ピストン側に付加される力は、例えば、スターリングクーラが最小入力条件で実行し、ガスベアリング剛性が同様に最小に到達する場合、なおさら重要になり得る。ガスベアリング剛性は、クーラのコンプレッションスペース内で発生した入力依存圧力波の機能である。
【0011】
予備的なアライメントプロセスのクオリティは、ピースパーツのクオリティ及び許容誤差によって決定される。特に、数千分の1インチから数万分の1インチのようなタイトな許容誤差は、製造中、案内されるピストン側の力を最小にするように維持されなければならない。
【0012】
生産の際の組立プロセスは、好ましくは訓練を受けたオペレータによって丁寧に行われなければならない。道具は有用である。しかしながら、アライメントプロセスのクオリティは未だオペレータに依存している。
【0013】
代替的な方法では、ガスベアリングを整列させる複雑で高価な方法を用いる。例えば、米国特許第7,043,835号明細書は、ボア内でボディの位置を計測し、ボア内でボディをセンターに配置するようにボディのピストンを調節するマイクロアクチュエータのためのコンピュータシステムを提供する。
【0014】
以下の文献は潜在的に関連する背景として引用する。それは、1996年6月11日に発行された米国特許第5,525,845号明細書「Fluid Bearing With Compliant Linkage For centering Reciprocating Bodies」(以下、Beale et al.という)、1959年10月6日に発行された米国特許第2,907,304号明細書「Fluid Actuated Mechanism」(以下、Macksという)、1985年10月8日に発行された米国特許第4,545,738号明細書「Linear Motor Compressor With Clearance Seals And Gas Bearings」(以下、Youngという)、1983年6月14日にファイルされた米国特許第4,387,568号明細書「Stirling Engine Displacer Gas Bearing」(以下、Dineenという)、ICC 11 Paper「Performance and Reliability Improvements in a Low-Cost Stirling Cryocooler」(以下、Hanesという)、米国特許第(10467.0063US01)号明細書で「Cryocooler Cold-end Assembly Apparatus And Method」(以下、O’Baid et al.という)である。前述の参考文献は、参照によってこの明細書中で十分に陳述したかのように取り込まれている。
【先行技術文献】
【特許文献】
【0015】
【特許文献1】米国特許第5,525,845号明細書
【特許文献2】米国特許第7,043,835号明細書
【特許文献3】米国特許第2,907,304号明細書
【特許文献4】米国特許第4,545,738号明細書
【特許文献5】米国特許第4,387,568号明細書
【特許文献6】米国特許第(10467.0063US01)号明細書
【非特許文献】
【0016】
【非特許文献1】ICC 11 Paper「Performance and Reliability Improvements in a Low-Cost Stirling Cryocooler」
【発明の概要】
【0017】
方法はチャンバ内の往復動体を組み立てるために提供され、往復動体はチャンバに対して実質的に側面で固定された構造に回転カップリングを通して接続され、往復動体は、ガス入口と、チャンバに配設された1もしくは複数のガスベアリングポートとを有し、ガス入口及びガスベアリングポートは流体を連通状態にある。通常の工程は、第1にチャンバ内に往復動体を提供することを含む。第2に、チャンバ内でチャンバの側壁に対して非接触関係に往復動体を配置するのに少なくとも十分な圧力で、往復動体が実質的に側面で固定された構造(2)に接続させないのと同時に、ガスベアリング(1)に対してガス入口を通してガスが流される。その後、回転カップリングは、実質的に側面で固定された構造に加えられる。最後に、ガスの流れは止められる。
【0018】
この組立方法は、新規なスターリングサイクルクライオクーラの組み立てに特に有用である。このようなスターリングサイクルクライオクーラは、ピストンと、ピストンを含むように適用されたコンプレッサボアと、ピストンへのガス入口と、ピストン内に配設され前記コンプレッサボアに配設されているとともにガス入口に流体連通している複数のガスベアリングポートと、ピストンに一端が取り付けられた回転カップリング構造と、コンプレッサボア及び回転カップリング構造に直接的又は間接的に連結される実質的に側面で固定された構造とを備えている。間接的な付加物(アフィックス)は1つであり得、ハウジング又は他の構造はコンプレッサボアに対して実質的に側面で固定された構造を連結する。
【0019】
この発明の態様において、主にコンタクトフリーピストンベアリングは、ガスベアリングによって支持される実質的に側面で固定されたフレクシャベアリングを構成する。ピストン対称軸は適切なピストンアライメントを達成するためにコンプレッサボアの対称軸に配設された回転中心回りに傾斜又は回動することができる。従来技術で提供されたようなピストン対称軸の横方向の移動は、もはや要求されない。
【0020】
この方法のある1つの実施において、クーラガスベアリングシステムの駆動は、クーラの組立中、第2の入口を通してガスベアリングキャビティを加圧することによって生じる。これは1つの工程でピストンを整列させるために、自動的で、効率的で、速い組立工程である。「回転」は必要としない。アライメントのクオリティはオペレータに依存しない。この構造及び方法はスターリングサイクルクーラに特に有益であり、チャンバ内で往復動体を有する他のデバイスのために用いられ得る。例えば、ボア内でシリンダを有するモータはここで説明される構造及び方法を用い得る。他の実施形態において、ここで説明される方法は、ボア又はチャンバ内で回転体をセンタリング又は整列させるために用いられ得る。例えば、この方法はシリンダ内で回転体を整列させるために用いることができ、タイトクリアランスシールは、回転体及び、タービン又は真空ポンプのような静止したボディの間に必要とされる。回転体が整列させられると、径方向に実質的に側面で固定されたベアリングは、横方向に回転体を固定し、安定させるために用いられ得る。
【0021】
この発明のある任意的な態様において、改良されたピストン組立体およびアライメントプロセスは、通常のクーラ操作中、通常のキャビティ圧力よりも高い、高められたガスベアリング圧力を用いることによって達成される。より高い圧力は、より高いセンタリング力、及び、より良いアライメントを意味する。
【0022】
さらに他の態様において、ある方法はピストンのアライメントクオリティ(例えば、最小の横方向力を要求すること)に影響することなしで、実質的に側面で固定された構造に対してピストン及びピストンスプリングを接続するために与えられる。
【0023】
他の態様において、第2の逆止弁は、通常のクーラ操作中、自動的に第2の入口を近づけるのに用いられることができ、是正された駆動又はクーラの修理が必要である場合、僅かな試みで複数回の入口の駆動を許容する。
【0024】
随意的に、ガスベアリングポートが要求されない不通となることによって、通常のクーラ操作中に「駆動された」ガスベアリングポートの数が減少する。全てのガスベアリングポートの駆動は、組立プロセス中にのみ発生する。これは、限られた信頼性要求事項によりガスベアリングポート及び絞り弁(レストリクタ)要素が一時的に使用されるためにコストが最適化されたデザインを受け入れている。
【0025】
生産における重要なアライメントプロセスを単純化することが更なる目的である。
【0026】
製品収量を増加し、クーラ不成功のリスクを減少することが更なる目的である。
【0027】
クーラプロダクションコストを減少させることがこの発明の更なる目的である。
【0028】
実質的に側面で固定されたデザインが認識され得ない場合、対応するデザインを用いるアライメントを受け入れるための単純化されたデザインアプローチを提供することがこの発明の更なる目的である。
【図面の簡単な説明】
【0029】
【図1A】図1Aは、側面に対応したオルタネータロッドを有する往復動体のための対応したデザイン(コンプライアントデザイン)を示し、通常の操作中、アライメントはガスベアリングを駆動することによって達成されることを示す。
【図1B】図1Bは、側面に対応する構成要素としてリーフスプリング/フレクシャスプリングを含む対応したデザインの別の実施形態を示す。
【図2A】図2Aは、チャンバ内での往復動体のための実質的に側面で固定されたデザインの実施形態を示す。
【図2B】図2Bは、図2Aの実施形態を示し、通常のクーラ操作中、ガスベアリングを動作させることによってピストンが整列されることを示す。
【図3】図3は、組立中、ガスベアリングを駆動させるための外部のガス源を用いることによってコンプレッサボアに対してピストンを整列させる方法を示す。
【図4】図4は、グルーを用いる実質的に側面で固定された構造に対して図3の整列されたピストンを一時的に接続する方法を示す。
【図5】図5は、ネジを用いることによってピストンスプリングと図4の実質的に側面で固定された構造を不変的に接続する方法を示す。
【図6A】図6Aは、ガスベアリングポートを選択的に駆動させるために2つの逆止弁を有する別の実施形態を示す。
【図6B】図6Bは、図6Aの実施形態を示し、組立工程中、第2の逆止弁が全てのガスベアリングポートの駆動を許容するための開口であることを示す。
【図6C】図6Cは、図6Bの実施形態を示し、通常の操作中、第2の逆止弁がガスベアリングポートのいくつかを非駆動するように閉じられたことを示す。
【図7A】図7Aは、別の実施形態を示し、ガスベアリングキャビティが静的なコンプレッサボア内に配置されていることを示す。
【図7B】図7Bは、図7Aの実施形態を示し、グルーがピストンスプリングと実質的に側面で固定された構造とを接着するために使用されていることを示す。
【図8】図8は、別の実施形態を示し、コンプレッサボア内に一体的なガスベアリングキャビティがガスベアリングポートを選択的に駆動させるために2つの逆止弁を有することを示す。
【図9】図9は、整列され、組み立てられる状態のディスプレーサの断面図である。
【図10A】図10Aは、ディスプレーサガスベアリングを示すディスプレーサの断面図である。
【図10B】図10Bは、ガスベアリングが駆動したとき、回転中心回りにディスプレーサを回転させることを示すディスプレーサの断面図である。
【図10C】図10Cは、クーラ組立体内でミスアライメントされたディスプレーサの断面図である。
【図11】図11は、ガスベアリングを駆動するための外部のガス源を用いることによって組立中、ディスプレーサを整列させる方法を示す。
【図12】図12は、実質的に側面で固定された構造に対して図11の整列されたディスプレーサを間接的に接続する方法を示す。
【図13】図13は、ディスプレーサが実質的に側面で固定された構造に対して接続された後、図12のディスプレーサキャビティをシールするための方法を示す。
【図14】図14は、付加的な外部キャビティボリュームを用いるディスプレーサキャビティをシールする代替的な方法を示す。
【図15】図15は、組立中、単一方向のガスフローによって引き起こされる加圧されたコンプレッションスペースにより、軸方向に変位されたピストンを示す。
【図16A】図16Aは、組み立て中、ピストンの軸中心位置を制御するとともに、クーラモータを駆動させることによってピストンのアライメントを制御する方法を示す。
【図16B】図16Bは、ピストンの軸位置を制御し、センタリングするために、ガス圧力に対抗するモータ力を示す。
【図17】図17は、ディスプレーサの組み立て中、クーラモータを駆動することによってピストンをセンター位置に制御する方法を示す。
【発明を実施するための形態】
【0030】
より詳細には図面によるが、図1A−図1Bには、対応する構造にリンクされた流体ベアリングを有するリニアスターリングクーラのためのコンプレッサピストンのような、往復動体のセンタリング方法を示す。図1Aにおいて、ピストン2はコンプレッサボアの対称軸1に沿ってコンプレッサボア3内で往復動するように構成されている。ガスベアリング9a−9dが駆動された場合、ピストン2及びその対称軸6は矢印7で示すように対称軸1に沿って回転することができ、コンプレッサボア3内で整列されるように矢印8の方向である横方向に移動し得るように、ピストン2がリーフスプリング5および横方向に対応するオルタネータロッド4に接続されている。その代わり、図1Bに示すように、構成を少し変えたリーフスプリング5´はピストン2に接続され、コンプレッサボア3内でピストン2を整列させるようにピストン2の回転7および横方向の動き8を許容する、側面に対応する要素として機能し、非摩擦ベアリングを実現する。
【0031】
このようなデザインは、「対応する(コンプライアント)」デザインを使用する。ある「対応する」デザインは、往復動体とボアとの間のリンケージによって往復動体に及ぼされる側面の位置からを含む他の全ての側面からの力の合算に少なくとも等しい、流体ベアリングによって及ぼされるセンタリング力のための、例えば、ある力に応じて横方向に歪む能力のような十分な横方向の追従性を有し、その結果、摩擦がデバイスの寿命を減少させないように、非摩擦ベアリング又は摩擦を最適化したベアリングを有効に創り出すように、流体ベアリングにセンタリング力を与える。
【0032】
図2A−図2Bに示すように、あるボア内での往復動体のデザイン及び組立体は、実質的に側面で固定されたデザインのような非対応のデザイン(ノンコンプライアントデザイン)を用いることによって実質的に単純化されることができる。横方向の往復動体の少なくとも一端がガスベアリングではなく構造上の力によってチャンバすなわちボア内で実質的に径方向にセンタリングされて固定される場合、実質的に側面で固定されたデザインは、組立の最終工程で達成されることができる。往復動体が回転中心回りにのみ回転し横方向に移動しないように、往復動体は実質的に側面で固定された構造に接続されている。当業者は十分な横方向の力が横方向の動きを引き出すことを認識するが、往復動体に通常駆動される全ての横方向の力の積算は、往復動体がチャンバ壁にコンタクトする横方向の動きを生み出すのには不十分である。ガスベアリングの駆動は、適切なアライメントを達成するために往復動体を回転中心回りに回転させる。このため、通常の操作中、往復動体の横方向の動きは往復動体を整列させ、非摩擦ベアリングを実現することは要求されない。
【0033】
この組立方法は、新規なスターリングサイクルクライオクーラの組立体に特に有益である。この組立方法は、スターリングクライオクーラの実施形態について説明され、ここに説明された技術および構造は、ボア内で往復動するピストン又は他の往復動でバイスを有するスターリングサイクルモータのような、チャンバ内に往復動体を有するいずれのデバイスに用いられることができる。
【0034】
図2Aに示すように、ある実施形態の、実質的に側面で固定されたスターリングサイクルクーラは、ピストン21と、ピストン21を含むように適用するコンプレッサボア31と、ピストン21へのガス入口22と、ピストン21内に配設されコンプレッサボア31に配設されガス入口に流体連通された複数のガスベアリングポート91a−91dと、ピストン21の端部に取り付けられた回転カップリング構造51と、コンプレッサボア31および回転カップリング構造51を連結する実質的に側面で固定された構造71とを具備する。断面の説明として、4つのガスベアリングポート91a−91dが示されているが、ピストンの周囲周りの図示されたガスベアリングポートに対して対称的に配設された付加的な4つのガスポート91e−91h(図示せず)を有することが理解されることができる。加えて、他の実施形態において、より多く又は少ないガスベアリングポートは、ピストンの長手方向及び軸方向回りに沿って配設されることができる。
【0035】
図2Aに示すように、ピストン21はフレクシャベアリングを有するリーフスプリングのようなピストンスプリング51によってコンプレッサボア31内に浮遊されている。組立工程中、ピストン21がコンプレッサボア31の対称軸1上に実質的に配設されると、ピストンスプリング51は実質的に側面で固定された構造71に接続される。このため、ピストンの対称軸6は方向7に向かって回転中心52回りに回転することができるように、ピストン21の一端がコンプレッサボアの対称軸1上又は近接したポイント52に固定され、もはや横方向に移動することができない。ポイント52でピストン21の一端を固定することは、ピストンスプリング51をフレクシャベアリングのように働くことを要求する。
【0036】
通常の組立作業中、図2Bに示すように、ピストン21の一端は実質的に側面で固定された構造71に接続されたフレクシャベアリング51によって支持され、ピストン21の他端は、ガスベアリングポート91a−91d及び91e−91h(図示せず)を通して送り込まれたガスを介してガスベアリングによって持ち上げられ、コンプレッサボア31内でピストン21をセンタリングし、実質的に非摩擦ベアリングを達成する。ピストンがコンプレッサボア31の対称軸1上にセンタリングされるまで、ガスベアリング力は回転中心52回りの方向7(図2A参照)に向かってピストン21を回転させる。実施の形態において図示されているように、8つのガスベアリングポート91a−91d及び91e−91h(図示せず)はピストンを整列させるのに必要となる回転力を創り出すように設けられている。他の実施形態において、ガスベアリングは有効なセンタリング力を創り出すことが要求されるように、8つより多くの又は少ないガスベアリングポートを含むことができる。加えて、以下により詳細に説明するように、幾つかの実施形態において、1つ又は複数の付加的なガスベアリングポートは、往復動体をセンタリングするようにガスベアリングに必要な圧力に依存して、必要に応じて選択的に駆動され及び駆動が止められることができる。さらに、「センタリングすること」又は「中心に移動すること」の言及は、ボアのような構造中心で往復動体の正確な物理的な配置を要求しないことが、当業者によって高く評価される。むしろ、往復動する構造は、摩擦接触を避けるように互いから十分に離れて動くことが要求される。
【0037】
図2Bに示すように、実質的に側面で固定された構造71に接続されたフレクシャベアリングによってピストン21の一端を支持すること、ガスベアリングを有するピストン21の他端を持ち上げることは、この発明の背景技術で説明されたように、横方向に対応する構成要素の変形によって引き起こされる、予測できないピストン側荷重の反動を排除する。主な困難は、ピストンを適切に整列し、ガスベアリングを駆動することによって非摩擦ベアリングを達成することができるように、不変的にコンプレッサボア31の対称軸1上又は近接する回転中心52を配置するように機能させることである。
【0038】
図3−図5に示すように、ある実施形態において、ピストン21は製造及び組立工程中、コンプレッサボア31に対して自動的に整列されることができる。例えば、組立中、ピストン21はコンプレッサボア31内に浮遊され、かつ、フレクシャベアリングを有するピストンスプリング51に接続される。ケージのように実質的に側面で固定された構造71はコンプレッサボア31に固定されている。ピストンスプリング51は未だ、実質的に側面で固定された構造71に取り付けられていない。このため、ピストン31は軸方向および横方向の両方に動くことが可能で、コンプレッサボア31及び実質的に側面で固定された構造71に対して整列されている。ピストン21はピストンキャビティ24に出し入れ可能に提供する第1のガス入口22及び第2のガス入口23を有する。この第1及び第2のガス入口22,23は両方がガスベアリングポート91a−91dに流体的に連通している。第1のガス入口22は逆止弁25を用いて開閉される。
【0039】
組立および整列工程中、逆止弁25は第1のガス入口22をシールするように閉じられている。ガス源110は第2のガス入口23に取り付けられている。ガス源110が第2のガス入口23に流体的に連通した場合、ガスはピストンキャビティ23およびガスベアリングポート91a−91dを通して、コンプレッサボア31とピストン21との間の隙間26に流れ、ガスベアリングを駆動させる。ガスベアリングポート91a−91dから流れるガスによって引き起こされる隙間26内での圧力差は、その全体をここに取り込む例えばDesign of Aerostatic Gas Bearings By J. W. Powell B.Sc. (Eng), Ph.D (The Machining Publishing Co., LTD.)により詳細に説明されているコンプレッサボア31内でピストン21をセンタリングすることができる。
【0040】
このため、ピストン21は、オペレータによる手動調整の必要なく、製造工程中コンプレッサボア31に対して「自動的に」整列させられることができる。更なるアライメントツールは要求されない。スターリングクーラ構造は、それ自体、アライメントツールを具備する。さらに、ガスベアリング圧力は、通常操作中スターリングクーラ内での最小有効圧力、又は、ピストンキャビティ体積によって制限されない。むしろ、組立中、ガスベアリング圧力は第2の入口23を介してピストン21に接続されたガス源110の圧力によって決定される。初期の組立及びアライメント工程中、ガス源110は、通常のクーラ操作中に可能であるよりも高いガスベアリング圧力を創り出す、通常のキャビティ圧力よりも高い、高められたガス圧を用いることができる。高められたガスベアリング圧力は、改良されたアライメント及びより安定した製造工程のためにピストンをセンタリングする力を増加することができる。
【0041】
図4および図5に示すように、ピストン21がコンプレッサボア31の対称軸1に沿って配列されると、好ましくは径方向に高く軸方向に低い剛性を有するスプリングであるピストンスプリング51は、ピストン21及びコンプレッサボア31の間に回転カップリングを創り出すためのケージのような、実質的に側面で固定された構造71に接続されることができる。回転カップリングがコンプレッサボア31の対称軸1に対してピストンを軸方向に移動させることができるが、コンプレッサボア31に対するピストン21の横方向の移動を防止するように、実質的に側面で固定された構造71に対するピストンスプリング51の接続によって創り出された回転カップリングは回転中心52を有し、ガスベアリングを駆動させるための外部の圧力源110が除去された後、通常の操作中、対称軸1に沿ってセンタリングされたピストン21を維持する。
【0042】
ピストンスプリング51は例えば1つの工程又は2つの工程を介して、実質的に側面で固定された構造に接続されることができる。例えば、ある実施形態において、図4に示すように、ピストンスプリング51は初期の接続72を形成するように実質的に側面で固定された構造71に対して初期に結合されている。幾つかの実施形態において、結合することは、接着(グルー)、TIG溶接、蝋付け、又は他の幾らかの工程を有することができる。初期の接続72を創り出すためにグルーを用いることは有利であり、グルーは、組立工程中、部品に触れ、又は操作する必要性を除去する。このため、この方法は、組立中、横方向に構成要素を歪ませ、アライメントクオリティを害し得る付加的な外力及びトルクを実質的に排除する。幾つかの実施形態において、この初期の接続72は、ピストンスプリング51と実質的に側面で固定された構造71との間を唯一接続することができる。例えば、幾つかの実施形態において、ピストンスプリング51及び実質的に側面で固定された構造71は、接着(グルーイング)、蝋付け又は溶接によって単に連結されることができる。
【0043】
他の実施形態において、図5に示すように、初期の接続72は一時的な接続とみなされ、第2の恒久的な接続によって接続される。例えば、ピストンはグルー72によって初期には一時的に接続されることができる。そして、ピストンスプリング51が実質的に側面で固定された構造71に一時的に接続されると、ピストンスプリング51及び実質的に側面で固定された構造71が恒久的に接続されることができる。図5に示すように、幾つかの実施形態において、ピストンスプリング51及び実質的に側面で固定された構造71は1つ又は複数のネジ73によって恒久的に接続されることができる。ピストンが回転中心52回りに方向7に向かって回転可能であるが、横方向に移動することができないように、ピストン21の一端はコンプレッサボアの対称軸1上又は近接したポイント52に固定されている。
【0044】
ガス源110が除去された後、第2のガス入口23は仕切られなければならず、操作中、ガスベアリングが第1のガス入口22を介して再び通常に機能することができる。幾つかの実施形態において、図5に示すように、第2のガス入口23はプラグ27で閉じられることができる。代わりの実施形態において、第2のガス入口23は第2の逆止弁を介して挟まれ又は閉じられることができる。第2のガス入口は恒久的に閉じられ、又は、アライメントを是正することやクーラの修理に必要であれば、第2のガス入口のためのクロージャは入口の後に続いて使用を許可するように反転することができる。例えば、幾つかの実施形態において、通常のクーラ操作中に第2の逆止弁が自動的に閉じるように用いることができるが、ガス入口が必要とされている場合、僅かな付加的な試みで再び駆動されることができる。
【0045】
図面及び上述した説明のように、この発明は、組立中、構成要素が水平方向に配置され、ボア内での往復動体の組立方法について熟慮したものである。組み立て中、ピストン及びボアを垂直方向に向けるのに有利であるさらに、代わりの方法において熟慮される。垂直配置において、重力はボアにピストンを引き入れず、ガスベアリングから要求されたセンタリング力を小さくすることができ、アライメントクオリティを改善できる。
【0046】
幾つかの実施形態において、図6A−図6Cに示すように、ピストンキャビティ24は、ピストンキャビティ24にアクセスする流体を供給するための複数の逆止弁を有しガスベアリングポート91a−91dの操作を選択的に制御することができる。図6Aに示すように、ある実施形態において、ピストンキャビティ24は、ピストンキャビティ24の端部でガス入口22に配設された第1の逆止弁25と、ガスベアリングポート91b,91d及び91a,91c間でピストンキャビティ24に配設された第2の逆止弁28とを含む。
【0047】
図6Bに示すように、組立プロセス中、逆止弁25はガス入口22から流される流体を防ぐように閉じられている。逆止弁28はガス源110からガスをピストンキャビティ24を通して流すことができるように、ガスの圧力差によって開けられ、ピストン21をセンタリングするためにガスベアリングポート91a−91dから排出される。ピストン21が回転中心52で実質的に側面で固定された構造に恒久的に接続されると、図6Cに示すように、通常のクーラ操作中、ピストン21はガスベアリング、及び、実質的に側面で固定された構造に取り付けられたピストンスプリング51によって創り出されるフレクシャベアリングによって合同して支持されている。フレクシャベアリングが側方荷重を支持するので、チャンバ31内でピストン21をセンタリングするのに必要なガスベアリング力が小さくなる。このため、通常の組立操作中、第2の逆止弁28はピストンキャビティ24及びボリューム32の間の圧力差により自動的に閉じられる。このため、第2の逆止弁28は、もはや十分なセンタリング力を提供することは必要でないガスベアリングポート91b及び91dへのアクセスを閉鎖する。ガスベアリングポート91b及び91dをより少数に用いるためのより限られた信頼性の要求は、それらのデザインを単純化し、コスト削減することができる。第1の逆止弁25は、ガスベアリングを駆動させるために、ガス入口22を通してピストンキャビティ21内に流れてガスベアリングポート91a及び91cを抜けるように流れる圧縮されたガスを受け入れるように運転可能とする。
【0048】
実質的に側面で固定されたデザインのための代わりの実施形態において、ピストンを整列させるためのガスベアリングはピストンの代わりにコンプレッサボア内に組み込まれることができる。ここで、図7Aに示すように、ピストン121はフレクシャベアリングを有するリーフスプリングのようなピストンスプリング151によってコンプレッサボア132内に浮遊されている。コンプレッサボア131はコンプレッサボアキャビティ134に流体のアクセスを提供する第1のガス入口122及び第2のガス入口133を有する。コンプレッサボアキャビティ134は、コンプレッサボアキャビティ134からピストン131に対するクリアランスシール126にガスを開放できるコンプレッサボア131の内壁に配設されたガスベアリングポート191a−191dに流体的に連通されている。言及した実施形態と同様に、断面が図示されているように、4つのガスベアリングポート191a−191dは示されているが、図示された実施形態は、コンプレッサボア131の内壁回りに図示されたガスベアリングポートに対して対称的に配置された付加的な4つのガスベアリングポート191e−191h(図示せず)を有することが理解される。加えて、他の実施形態において、さらに多く又は少ないガスベアリングポートがコンプレッサボア131の内壁に沿って配設されることができる。
【0049】
図7Aに示すように、ピストン121の組立及びアライメント中、逆止弁125はガス入口122をシールするように閉じられている。ガス源110は第1のガス入口133に接続されている。ガス源110から流れるガスは、コンプレッサボアキャビティ134を通して流れてガスベアリングポート191a−191dを抜け出し、クリアランスギャップ126に入り、ガスベアリングを駆動させる。ガスベアリングポート191a−191dからガスが流れることによって生じるクリアランスギャップ126内の圧力差は、コンプレッサボア131内でピストン121をセンタリングする。上述したように、一旦、ピストン121がコンプレッサボア131内にセンタリングされると、ピストンスプリング151は、ピストン121及びコンプレッサボア131間の回転カップリングを創り出すスプリングケージのような、実質的に側面で固定された構造に接続されることができる。図7Bに示すように、実質的に側面で固定された構造171に対するピストンスプリング151の取り付けは、コンプレッサボア131内でピストン121を回転中心152回りに回転させるフレックシャベアリングを創り出すが、コンプレッサボア131内でピストン121が横方向に動くのを防止する。
【0050】
ある実施形態において、図7Bに示すように、ピストンはボンディング、溶接、蝋付け、グルーイングのような初期接続172を介して実質的に側面で固定された構造171に接続されることができる。組立工程中、パーツに触れたり操作する必要なく初期接続を作り出すことは、組立中、横方向に構成要素を歪ませることができるピストン121及び/又はコンプレッサ131への外力及びトルクを最小にする利点があり、アライメントクオリティに効果を挙げる。ある実施形態において、この初期接続72はピストンスプリング151と実質的に側面で固定された構造171との間の接続にのみ存在することができる。代わりに、ある実施形態において、ピストンスプリング151及び実質的に側面で固定された構造171は、例えば1つ又は複数のネジで不変に接続されることができる。一旦、ピストンスプリング151が実質的に側面で固定された構造171に、単なる初期接続、又は、その代わりの初期及び不変の接続の両方のいずれかを介して接続されると、ガス源110は除去できる。通常の操作中、ガス入口133は、ガスベアリングポート191a−191dを通して流れるガス入口122を通してコンプレッサボアキャビティ134にガスを入れるために、例えばプラグ127で密封されることができ、コンプレッサボア131内でピストン121をセンタリングし、非摩擦ベアリングを実現するようにガスベアリングを駆動させる。
【0051】
ある代わりの実施形態において、コンプレッサボアキャビティ134はガスベアリングポート191a−191dの駆動を選択的に制御するための複数の逆止弁を含むことができる。複数の逆止弁を用いる場合、組み立て中又は実行可能な修理工程中、全てのガスベアリングを開くことができる。例えば、ある実施形態において、図8に示すように、コンプレッサボアキャビティ134は、コンプレッサボアキャビティ134の端部でガス入口122に配置された第1の逆止弁125と、ガスベアリングポート191b,191d及びガスベアリングポート191a,191cの間に配置された第2の逆止弁128を含む壁129とを含む。壁129は、ガスベアリングポート191a,191c及びガス入口122を含む第1のアクティブキャビティ135と、ガスベアリングポート191b,191dを含む第2のキャビティ136とにコンプレッサボアキャビティを分離する。クーラの正常な操作中、逆止弁128はアクティブキャビティ135とインアクティブキャビティ136との間の圧力差によって自動的に閉じられ、ガスベアリングポート191b,191dの使用を止める。
【0052】
ある代わりの実施形態において、図9−図14に示すように、上述した構造及び方法は、参照によって、ここで説明されているかのように、全てここに組み込まれている米国特許第6,141,971号明細書、第6,327,862号明細書、第6,499,304号明細書、第6,694,730号明細書及び第6,688,113号明細書に説明されているスターリングクライオクーラのようなスターリングクライオクーラ内でディスプレーサを組み立てるのに用いられることができる。図9に示すように、スターリングクライオクーラはコールドフィンガ201と、コンプレッサ部205とを備えている。上述した図3−5を参照して、コンプレッサピストン221はコンプレッサボア231内に整列され、ピストンスプリング251は実質的に側面で固定された構造271に取り付けられている。図9に関して、ディスプレーサ200は未だ組み立てられていない。ディスプレーサボディ206及びディスプレーサロッド210を有するディスプレーサ200は、コンプレッサピストン221のインナボア222とディスプレーサパーツ及び隣接する構造の間の摩擦を避けるためのコールドフィンガチューブ240との内側に同軸上に配設されていなければならない。ピストン221及びディスプレーサ200はクリアランスシール226a−226dを介して、ディスプレーサボディ206とコールドフィンガチューブ240との間、ディスプレーサロッド210とヒートエクスチェンジャ208との間、ディスプレーサロッド210とピストン221のインナボア222との間、ピストン221とコンプレッサボア231との間がシールされている。このため、ディスプレーサボディ206と隣接するコールドフィンガ構成要素との間、ディスプレーサロッド210とピストン221の内径との間の径方向ギャップはタイトであり、ディスプレーサ200と、コンプレッサボア231、ヒートエクスチェンジャ208及びコールドフィンガチューブ240を含む隣接する構成要素との間の径方向の遊びは、例えばある実施形態と同様に、数万分の1インチのように小さい。さらに、これは、摩耗を引き起こし、クーラのライフタイムを減少させるので、ディスプレーサボディ206は通常の操作中、コールドフィンガチューブ240のような隣接する構成要素に触れないことが重要である。
【0053】
図9及び図10Aに示すように、ディスプレーサ200は、組立中、クライオクーラの対称軸1に沿ってディスプレーサボディ206及びディスプレーサロッド210を整列させるため、及び、通常のクーラ操作中、ディスプレーサロッド210と隣接する構造との間の最適化されたガスベアリングの摩擦を実現させるためのガスベアリングを創り出すように、ディスプレーサ200とヒートエクスチェンジャ208との間のクリアランスギャップ227内にガスを向けるのに用いることができる複数のガスベアリングポート291a−291bを有する。ガスベアリングポート291a−291bはヒートエクスチェンジャ208に隣接するディスプレーサロッド210に配置されている。図示された実施形態はディスプレーサロッド210の周囲に示されたガスベアリングポートに対して対称的に配置された2つの付加的なガスポート291c−291d(図示せず)を有する。加えて、他の実施形態において、更なる又は少ないガスベアリングポートがディスプレーサに沿って配置されることができる。クライオクーラの通常の操作中、圧縮ガスはガス入口202を介してディスプレーサキャビティ204に入り、ガスベアリングポート291a−291b及び291c−291d(図示しない)を抜けてガスベアリングを駆動させる。
【0054】
図9に示すように、回転中心254がクライオクーラの対称軸1上又は対称軸1付近に作り出されると、(図10に示すように、)ディスプレーサ200は回転中心254回りにのみ回転することができ、横方向には移動しないように、ディスプレーサロッド210及び実質的に側面で固定された構造271に取り付けられたスプリング253は軸方向に低いが、径方向に高い剛性を有する。図10Bに示すように、通常の操作中、ガスベアリングの駆動は、クライオクーラの対称軸1に沿って適当なアライメントを達成するために回転中心254回りにディスプレーサ200を回転させる。ディスプレーサロッド210の一端は、クーラの対称軸1に沿って回転中心254を有する回転カップリングによって支持されている。ガスベアリングの駆動中、ガスはガスベアリングポート291a−291bを通して誘導される。ガスベアリングは通常のクーラ操作中、ディスプレーサを整列させ、最適化されたベアリング摩擦を実現するために十分なディスプレーサ200の回転移動を創り出す。
【0055】
しかしながら、ディスプレーサロッド210の回転中心254の位置がクーラの対称軸1上又は対象軸1に近接している場合、ディスプレーサガスベアリングは適切にのみ働くことができる。図10Cに示すように、ディスプレーサロッドの回転中心254とクーラの対称軸1との間のオフセット300は、クーラ組立体内でディスプレーサ200を傾斜させ、クーラ組立体に触れさせ、いくつもの位置で摩擦を生じさせることができる。例えば、ディスプレーサボディ206は位置301でコールドフィンガチューブ240に触れることができ、ディスプレーサ200の自由な横方向移動が可能でないのでディスプレーサガスベアリングは部分的に使用が止められることができ、ディスプレーサロッド210は位置304及び305でピストン221のインナボア222に対してこすることができる。これは、ディスプレーサボディ206及びディスプレーサロッド210は、組立工程中、非摩擦ガスベアリングの適当な機能を引き出すために適切に予備的に整列されなければならないことを意味する。このアライメントの正確性は、数千、ある実施形態ではそれぞれ1万分の1インチの連結内で、実現されなければならない。これは、「手によって」達成するのが不可能というわけではないが、難しい。
【0056】
図11−図13に示すように、ある実施形態において、ディスプレーサボディ206及びディスプレーサロッド210は、製造及び組立工程中、ディスプレーサガスベアリングを駆動させることによって、自動的に整列される。ここで、ディスプレーサロッド201はディスプレーサガスキャビティ204に流体的に連通したチャンネル211を含む。組立中、外部のガス源110はディスプレーサキャビティ204にガスを運ぶためにディスプレーサロッドチャンネル211に流体的に連通して配置されている。図12に示すように、ディスプレーサガスキャビティ204は、組立工程中、ガス入口202を一時的にシールするように、ディスプレーサキャビティ204と周囲のボリュームとの間の圧力差によって閉じられるガス入口202に逆止弁225を有する。圧縮されたガスがディスプレーサキャビティ204に流れると、ガスはガスベアリングポート291a−291bを通してクリアランスシール226bに流れ、ガスベアリングを駆動する。このため、ディスプレーサ200は持ち上げられてクーラの対称軸1に沿ってセンタリングされる。上述したように、組立中、ガスベアリング圧力は、通常の操作中、クーラ内でディスプレーサキャビティ最大容量又は最大圧力よりもむしろ、外部のガス源110の圧力によって決められる。このため、通常のガスベアリング力よりも高いベアリング力は、アライメントを改良し、及び更に安定した製造工程とすることができる。加えて、ある実施形態において、ガスベアリングによって引き起こされるリフト効果を視覚化するためにクーラが水平に示されている間、組み立て中、クーラの垂直方向が用いられることができる。この垂直方向は例えば重力のような側方からの力を減少させて最小化し、アライメントクオリティを改善する。
【0057】
さらに、このように図示された実施形態において述べられているように、ガスベアリングはディスプレーサロッド210に配設されたガスベアリングキャビティ204を有するディスプレーサ200内に一体的に複数のガスベアリングポート291a−291bを備え、ガスベアリング力はコンプレッサピストン及びコンプレッサボアに対して上述したようにいくつかの実施形態において、ヒートエクスチェンジャ208に向かってディスプレーサロッド210から径方向外方に向かう方向に向け、ガスベアリングキャビティはディスプレーサに隣接するヒートエクスチェンジャ208のような静止した構成要素に配置されることができる。
【0058】
図12に示すように、ディスプレーサ200がクーラの対称軸1に沿って実質的に整列されると、ディスプレーサロッド210の端部はディスプレーサスプリング253に接続され、このため、実質的に側面で固定された構造271にディスプレーサを間接的に取り付け、ディスプレーサ200が回転できる回転中心254を作り出す。ここで、ディスプレーサスプリング253が回転中心254回りにディスプレーサロッド210及びディスプレーサボディ206を回転させることができるフレクシャベアリング又は回転カップリングとして作用するように、ディスプレーサスプリング253はスプリングケージのような実質的に側面で固定された構造271に接続されるが、ディスプレーサボディ206及びディスプレーサロッド210(図10Bも参照)の実質的な横方向の移動を防止する。ある実施形態において、ディスプレーサロッド210は、初期には、構成要素に触れたり動かしたりするのを要求されないグルー(図示せず)のような一時的な接続を有するディスプレーサスプリング253に接続され、組み立て中、ディスプレーサロッド210を径方向に歪ませ、アライメントクオリティに影響を与える外側の力を防止することができる。ディスプレーサロッド210がディスプレーサスプリング253に一時的に接続されていると、1つ又は複数のネジ、溶接、蝋付けのような付加的な機械的接続273はディスプレーサロッド210及びディスプレーサスプリング253を不変に固定するのに役立たせることができる。
【0059】
ディスプレーサロッド210及びピストンスプリング253が不変的に接続されると、外部のガス源110は除去されることができる。ディスプレーサロッド210の先端は、クーラの対称軸1上又は対称軸1近傍で不変に固定されている。スプリングケージ271に接続されたディスプレーサスプリング253はフレクシャベアリングとして作用し、クーラデザインの意図によりディスプレーサロッド210及びディスプレーサ200を傾斜すなわち回動させ、並びに振動させることができる。図13に示すように、ディスプレーサロッドチャンネル211は仕切られなければならず、このため、通常のクーラ操作中、ガスベアリングは適切に機能することができる。ある実施形態において、ディスプレーサロッドチャンネル211はディスプレーサロッド210の先端でプラグ260に不変的にシールされることができ、又は、代わりに、ある実施形態において、ディスプレーサキャビティ204に配置された第2の逆止弁は(上述したようにピストンに対して)ディスプレーサロッドチャンネル211を反転可能に仕切るように用いられることができる。第2の逆止弁は通常のクーラ操作中、ディスプレーサキャビティ204とディスプレーサロッドチャンネル211との間の圧力差により、ディスプレーサキャビティ204及びディスプレーサロッドチャンネル211の間の開口を自動的にシールすることができる。
【0060】
ある代わりの実施形態において、図14に示すように、ディスプレーサロッドチャンネル211は付加的なボリュームキャビティ262に近づけることができる。付加的なボリュームキャビティ262はディスプレーサキャビティ204のボリュームを補うための付加的なボリュームを提供することができ、通常のクーラ操作中、ガスベアリング290のためのより増したトータルボリュームを提供することができる。ある実施形態において、増やされたボリュームはディスプレーサ200を整列させるために十分な圧力でガスベアリングを操作させることを要求されることができる。ある実施形態において、例えばガスベアリングのための限られたボリュームを有する小さなシステムでは、付加的なボリュームキャビティ262は、通常のクーラ操作中、十分なガスベアリング力を提供するために必要なレベルにボリュームを増すように用いられることができる。
【0061】
ある実施形態において、図15−図17に示すように、付加的な工程は、アライメント及び組み立て工程中、ピストン221及びディスプレーサ200のいずれか又は両方のピストン軸センター位置を制御することが必要とされている。例えば、図15に示すように、組立工程中、ガスベアリングの駆動は、アライメント及び組み立てクオリティに対するネガティブな影響を有するシステム内の不要な圧力差を発生することができる。この基本的問題は、図13に示すスターリングクーラの組立中、ピストン及びディスプレーサガスベアリングの駆動に用いる。
【0062】
この問題は図15に示され、ガスベアリングが駆動している間、圧力差によってピストンが軸方向に変位することを図示している。ガス源110からピストンキャビティ224に一定に一方向に流れるガスは、コンプレッションスペース310内でのガス圧を増大させる。ピストン221及びディスプレーサロッド210はクリアランスシール226b−226dを備えているので、ある圧力差はこれらシールを通してバックスペース330にガスが流れるのを開放することが要求される。これら圧力差は、たいていの場合、クーラを適切に組み立てるために受け入れられない状態となるピストン221を軸方向に変位させる。このため、反力がピストン221を軸方向中心に維持することが要求される。
【0063】
垂直方向に構成要素を整列させている間、ある選択肢(オプション)は、反力を提供するために重量(重力)を用い、圧力差を相殺する。このチャレンジはピストンの対称軸で重量の重心を径方向に整列させることである。そうでなくとも、ピストンは傾斜され、アライメントプロセスは妥協される。
【0064】
図16A−図16Bには反力を要求された駆動のための代わりの改善された方法を示す。ここで、クーラモータ300は組立及びアライメントプロセス中、ピストン221を軸方向にセンタリングした状態を維持する反力を提供するように駆動されている。モータ300は、例えばU字形状積層物320の内側及び外側積層物と、モータコイル350と、移動磁石340とを有する。モータ300は殆ど完全な軸方向力を発生させるために形成されて最適化され、操作中にピストンへの側方からの荷重を防止する。一定のモータ力は組立中にパワーサプライ360によって供給される直流電流でコイル350に電気を供給することによって発生されることができる。電流の方向は力の方向を決定する。図16Bに示すように、クーラの組立を完了するために最後のボンディング作業中、ピストンを要求された軸方向位置に配置し、その状態を維持するために、ガス圧力に逆らうように電流が調節され又は自動的に調整されることができる。図17はディスプレーサ200が整列され、組み立てられる間の類似した状態を示す。ガスはガス源110からガスベアリングポート291a−291bを通してディスプレーサキャビティ204に流れ、クーラのワーキングスペース及びクーラの特にコンプレッションスペース310を加圧する。上述したように、ピストン221及びディスプレーサロッド210はクリアランスシール226b−226dを備え、ある圧力差はこれらシールを通してバックスペース330に流れるガスを開放することが要求されている。これらピストン221の軸方向に変位させることが可能な圧力差は、パワーサプライ360によって供給される直流電流を用いるモータ300を駆動することによって逆らわれる。上述した方法は、移動コイル又は他のタイプのリニアモータを有するスターリングクーラ又はスターリングエンジンに用いることができる。
【0065】
前述の発明は、発明の明確性及び理解のために図示及び例によって幾つか詳細に説明したが、この発明は、ある変更や改良が添付のクレームの精神又は範囲から逸脱することがなくなされ得ることが、この発明の教示の観点から当業者に容易に理解され得る。
【0066】
例えば、この発明の方法は、これらの通常の操作中、ガスベアリングを使用しない往復動体又は回転体を有する構造内に用いられることができる。この方法及び装置は、このような構造を用いることができ、ガスベアリングは上述したように、アライメントすなわちセンタリング作業のために用いられる。ガスベアリングは無効になり得、すなわち、ガスベアリングが要求されない通常の操作から除去される。
【0067】
他の実施形態において、説明したアライメント方法は、ピストン、ディスプレーサ及びモータ構成要素を支持するために対応した構造(コンプライアント構造)又は非対応の構造(ノンコンプライアント構造)に有するクーラに用いられることができる。

【特許請求の範囲】
【請求項1】
往復動体がチャンバに対して実質的に側面で固定された構造に回転カップリングを通して連結され、
前記往復動体は、前記チャンバに配設された、第1のガス入口、ガスベアリングキャビティ、及び、1又は複数のガスベアリングポートを含み、
前記第1のガス入口、前記ガスベアリングキャビティ、及び前記ガスベアリングポートは流体的に連通された
チャンバ内での往復動体の組立方法であって、
前記チャンバ内に前記往復動体を供給する工程と、
前記チャンバ内で前記チャンバの側壁に対して非接触関係に前記往復動体を配置するのに少なくとも十分な圧力で、前記往復動体が実質的に側面で固定された構造(2)に接続させないのと同時に、前記ガスベアリングキャビティに対して前記第1のガス入口を通して、前記チャンバ(1)の前記側壁に対してガスベアリングポートを通してガスを流す工程と、
前記実質的に側面で固定された構造に対して回転カップリングを加える工程と、
前記ガスの流れを停止する工程と
を具備する、チャンバ内での往復動体の組立方法。
【請求項2】
前記組立中に用いられる圧力は、組立後、前記デバイスの操作中に用いられる圧力よりも大きいものである、請求項1のチャンバ内に往復動体を組み立てる方法。
【請求項3】
前記構造に対して前記回転カップリングを加えることは、前記構造に対して前記回転カップリングを一時的に取り付けることを具備する、請求項1のチャンバ内に往復動体を組み立てる方法。
【請求項4】
前記構造に対して前記回転カップリングを加えることは、前記構造に対して回転カップリングを恒久的に取り付けることをさらに具備する、請求項3のチャンバ内で往復動体を組み立てる方法。
【請求項5】
前記回転カップリングを恒久的に取り付けることは、
1又は複数のネジを用いること、
前記構造に対して前記回転カップリングを溶接すること、
前記構造に対して前記回転カップリングを蝋付けすること
のグループから選択された方法を用いることを具備する、請求項4のチャンバ内で往復動体を組み立てる方法。
【請求項6】
組立後、前記第1のガス入口を閉じることをさらに具備する、請求項1のチャンバ内で往復動体を組み立てる方法。
【請求項7】
前記往復動体は、前記ガスベアリングキャビティ及び前記1又は複数のガスベアリングポートに流体的に連通する第2のガス入口を有し、
前記第2のガス入口は、前記チャンバ内で前記往復動体の組み立て中、前記第2のガス入口を選択的にシールするための逆支弁を有する、請求項1のチャンバ内で往復動体を組み立てる方法。
【請求項8】
前記ガスベアリングキャビティは前記1又は複数のガスベアリングポートの少なくとも1つを選択的に駆動させるための1又は複数の逆止弁を有する、請求項1のチャンバ内で往復動体を組み立てる方法。
【請求項9】
前記往復動体及び前記チャンバは、組み立て中、垂直方向に配設されている、請求項1のチャンバ内で往復動体を組み立てる方法。
【請求項10】
前記往復動体及び前記チャンバは、組み立て中、水平方向に配設されている、請求項1のチャンバ内で往復動体を組み立てる方法。
【請求項11】
前記往復動体はピストンである、請求項1のチャンバ内で往復動体を組み立てる方法。
【請求項12】
前記往復動体はディスプレーサである、請求項1のチャンバ内で往復動体を組み立てる方法。
【請求項13】
前記デバイスはスターリングサイクルクーラである、請求項1のチャンバ内で往復動体を組み立てる方法。
【請求項14】
前記デバイスはモータである、請求項1のチャンバ内で往復動体を組み立てる方法。
【請求項15】
前記ガスベアリングポートを通してガスが流れることにより前記往復動体及び前記チャンバ間のコンプレッションスペース内に増加した圧力を相殺するのに十分な反力を与えることをさらに具備する、請求項1の方法。
【請求項16】
前記反力は前記往復動体を軸方向にセンタリングするのに十分なものである、請求項15の方法。
【請求項17】
前記反力は直流電流でモータのコイルに電気を供給することによってモータによって発生されるものである、請求項16の方法。
【請求項18】
前記往復動体の軸方向位置を制御するために電流を調整することをさらに具備する、請求項17の方法。
【請求項19】
往復動体が回転カップリングを通してチャンバに対して実質的に側面で固定された構造を連結し、
前記チャンバのボディが、前記往復動体に対して配設された、第1のガス入口、ガスベアリングキャビティ、1又は複数のガスベアリングポートを有し、
前記第1のガス入口、前記ガスベアリングキャビティおよび前記ガスベアリングポートが流体的に連通されている、
チャンバ内での往復動体の組立方法であって、
前記チャンバ内に前記往復動体を提供する工程と、
前記チャンバ内で前記チャンバの側壁に対して非接触関係に前記往復動体を配置するのに少なくとも十分な圧力で、前記往復動体が実質的に側面で固定された構造(2)に接続させないのと同時に、前記ガスベアリングキャビティに対して前記第1のガス入口を通して、前記往復動体(1)に対してガスベアリングポートを通してガスを流す工程と、
前記実質的に側面で固定された構造に対して回転カップリングを加えてガスの流れを停止する工程と
を具備する、チャンバ内での往復動体の組立方法。
【請求項20】
ピストンと、
前記ピストンを含むことが可能なコンプレッサボアと、
前記ピストンへの第1の入口と、
前記ピストン内に配設され、前記コンプレッサボアに配設され、前記第1のガス入口に流体的に連通した複数のガスベアリングポートと、
前記ピストンの一端に取り付けられ、前記ピストンが前記ボアの少なくとも一部で非接触関係に回転可能である、回転カップリング構造と、
前記コンプレッサボア及び前記回転カップリング構造をカップリングする実質的に側面で固定された構造と
を具備するスターリングサイクルマシーン。
【請求項21】
前記回転カップリング構造はスプリングである、請求項20のスターリングサイクルマシーン。
【請求項22】
前記スプリングはリーフスプリングである、請求項21のスターリングサイクルマシーン。
【請求項23】
前記回転カップリング構造はグルーで前記構造に接続されている、請求項20のスターリングサイクルマシーン。
【請求項24】
前記回転カップリング構造は、機械的アタッチメントでノンコンプライアント構造に接続されている、請求項20のスターリングサイクルマシーン。
【請求項25】
前記回転機械的なアタッチメントはネジである、請求項24のスターリングサイクルマシーン。
【請求項26】
前記回転機械的なアタッチメントは蝋付けである、請求項24のスターリングサイクルマシーン。
【請求項27】
前記回転機械的なアタッチメントは溶接である、請求項24のスターリングサイクル。
【請求項28】
前記マシーンはモータである、請求項21のスターリングサイクルマシーン。
【請求項29】
前記マシーンは、クーラである、請求項21のスターリングサイクルマシーン。
【請求項30】
前記ピストンのインナボアに挿入されることが可能なディスプレーサロッドに一端が接続されたディスプレーサと、
前記ディスプレーサを含むことが可能なコールドフィンガチューブと、
前記ディスプレーサへのガス入口と、
ディスプレーサガス入口で流体的に連通したディスプレーサ内に配設され、前記ディスプレーサのボディからガスを排出する複数のディスプレーサガスベアリングポートと、
前記ディスプレーサが前記コールドフィンガチューブの少なくとも一部に非接触関係に回転可能なように、前記ディスプレーサロッド及び前記実質的に側面で固定された構造に取り付けられた第2の回転カップリング構造と
をさらに具備する、請求項21のスターリングサイクルマシーン。
【請求項31】
前記第2の回転カップリング構造は、グルーで前記ディスプレーサロッドに接続されている、請求項30のスターリングサイクルマシーン。
【請求項32】
前記第2の回転カップリング構造は、機械的なアタッチメントで前記ディスプレーサロッドに接続されている、請求項30のスターリングサイクルマシーン。
【請求項33】
前記ピストンのインナボア内に挿入されることが可能なディスプレーサロッドに対して一端で接続されたディスプレーサと、
前記ディスプレーサを含むことが可能なコールドフィンガチューブと、
前記ディスプレーサへのガス入口と、
前記ディスプレーサガス入口に流体的に連通した前記ディスプレーサ内に配設され、前記ディスプレーサのボディからガスを排出することが可能な複数のディスプレーサガスベアリングポートと、
前記ディスプレーサが前記コールドフィンガチューブの少なくとも一部に非接触関係に回転可能であるように、前記ディスプレーサ及び前記実質的に側面で固定された構造に取り付けられた回転カップリング構造と
を具備する、スターリングサイクルマシーン。

【図1A】
image rotate

【図1B】
image rotate

【図2A】
image rotate

【図2B】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6A】
image rotate

【図6B】
image rotate

【図6C】
image rotate

【図7A】
image rotate

【図7B】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10A】
image rotate

【図10B】
image rotate

【図10C】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16A】
image rotate

【図16B】
image rotate

【図17】
image rotate


【公表番号】特表2010−536592(P2010−536592A)
【公表日】平成22年12月2日(2010.12.2)
【国際特許分類】
【出願番号】特願2010−521940(P2010−521940)
【出願日】平成20年8月14日(2008.8.14)
【国際出願番号】PCT/US2008/073192
【国際公開番号】WO2009/026104
【国際公開日】平成21年2月26日(2009.2.26)
【出願人】(591087035)スーパーコンダクター・テクノロジーズ・インコーポレイテッド (3)
【氏名又は名称原語表記】SUPERCONDUCTOR TECHNOLOGIES INCORPORATED
【Fターム(参考)】