説明

微小電子源装置の製造方法

【課題】簡便な手法によりディスプレイ上に輝点を発生させず電子放出特性の良好な微小電子源装置の製造方法を提供する。
【解決手段】支持基板10上にカソード電極11を形成するカソード電極形成工程と、炭素材料12aが導電性のマトリクス12b中に埋め込まれた複合層12Lを前記カソード電極11上に形成する複合層形成工程と、前記複合層12Lの上層部の前記マトリクス12bを除去することにより、該複合層12Lの表面に前記炭素材料12aの一部を露出させて微小電子源層12とする微小電子源層形成工程とを有する微小電子源装置の製造方法において、前記微小電子源層形成工程は、前記複合層12Lに導電性及び粘着性を有する樹脂層Laを密接させた後、該樹脂層Laを引き剥がすことにより、前記複合層12Lの上層部のマトリクス12bを除去する処理を有する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、FED等の平面型表示装置に使用される微小電子源装置の製造方法に関するものである。
【背景技術】
【0002】
テレビジョン受像機や情報端末機器等の表示措置は、薄型化、軽量化、大画面化、高精細表示化の要求に答えるため、重量や厚みに限界のあるCRTから平面型表示装置(フラットパネル表示装置)への移行する開発が盛んに行われている。情報端末機器のフラットパネル表示装置としては液晶パネルが広く普及しているが、高輝度化、大型化が困難なために家庭用テレビジョン受像器は開発段階に留まっている。
【0003】
一方、フィールドエミッションディスプレー(以下、FEDと略す)は、少ない電力消耗で高解像度・高輝度のカラー表示が行えるというメリットから有力な大型のフラットパネル表示装置用賭して開発が進んでいる。FEDは電子放出を行うチップ型カソードとカソードから放出された電子が衝突することにより蛍光体を励起発光させて所望のパターン、文字、記号を表示する装置である。
【0004】
公知のFEDの構成は複数本の行配線につながったカソードと複数本の列配線につながったゲートからなるエミッタアレイパネルと蛍光体を塗布されたアノードパネルを絶縁性のスペーサを挟んで積層するものである(例えば、特許文献1,2参照。)。
【0005】
また、エミッタアレイパネルはガラス等の誘電体板もしくはSi板上にCVD法、エッチング法、真空蒸着法もしくはスパッタ法及び光リソグラフィー法により所望の画素数に応じたマトリックスをなす行配線・列配線と1画素当り複数のカソードチップ及びカソードチップと誘電体で絶縁されたカソードチップに対応した穴を開口したゲート電極を形成して作成する。
【0006】
アノードパネルはガラス等の誘電体板にITO等の透明電極を堆積させた上に各1画素に対応した赤(R)、緑(G)、青(B)の3色の蛍光体についてそれぞれ遮光格子を介して縞状に塗布して作成する。
【0007】
従来の電界放出型ディスプレイでは、電子放射エミッタを2次元的に配列し、これに引き出し電極とカソード電圧用配線をマトリックス状に配置し、カソード先端から強電界によって放射されてきた電子により蛍光体を光らせる手法が用いられている。
【0008】
また、従来の様にエミッタ構造を作ることなく平面から電子放出させる試みが行われており、特に近年、カーボンナノチューブ等の炭素材料が電界放出型微小電子源としてのエミッタ材料としてその応用が期待されている。カーボンナノチューブは、炭素原子の規則的に配列したグラフェンシートを丸めた中空の円筒であり、その外径はnmオーダーで、長さは0.5〜10μmの極めてアスペクト比の高い微小な物質である。そのため、先端部分には電界が集中し易く高い放出電流密度が期待される。また、カーボンナノチューブは化学的、物理的安定性が高いという特徴を有するため、動作真空中の残留ガスの吸着やイオン衝撃に対して影響を受けつらいことが予想される。
【0009】
このようなカーボンナノチューブを電界放出型冷陰極として用いた例が開示されている(例えば、特許文献3参照)。
【0010】
また、大面積の表面や、非平坦な表面に、単層ナノチューブを含む物質層を均一に形成することができ、しかも低コスト化が可能な塗料とそれを用いて形成された膜及びそれらの製造方法を提供することを目的とした技術が開示されている(例えば、特許文献4参照)。すなわち、塗料溶液としては、モノクロロベンゼン等の溶媒に対して、ポリメチルメタクリレート(PMMA)等の有機高分子材料を1〜50vol.%含有したものを用い、単層カーボンナノチューブを該溶媒に対して0.1〜10wt%含有させている。この塗料をスプレー法を用いて基板上に塗布することにより、凝集の無い均一な膜を得ることができる。
【0011】
カーボンナノチューブ等の炭素材料を微小電子源に用いた電界放出型冷陰では、カーボンナノチューブ等の端部を露出させれば、化学的、電気的、物質的性質などの反応性、応答性、あるいは変動性の多様性、高分解能性を高めることができため、表面に開口して露出していることが好ましい。
【0012】
しかしながら、従来の方法では、大面積表面を有する基板や、非平坦表面を有する基板に、カーボンナノチューブ等を含有する物質層を均一に被覆することは可能であったが、カーボンナノチューブ端部を表面に露出することは本方法だけでは不可能であった。
【0013】
それに加えて、実際のデバイス構造では、エミッタを取り囲むように絶縁層及びゲート電極(グリッド電極)が形成されているため、前述のカーボンナノチューブ等を含有する物質層は高アスペクト比を有するゲートホールの底に配置されている。そのため、該物質層表面に処理を加えてカーボンナノチューブ端部を表面に露出することは非常に重要な課題となっていた。
【0014】
このようなカーボンナノチューブの端部を表面に露出する方法としては、粘着性を有する樹脂層を表面に付着させた後に該樹脂層を剥離する方法が提案されている(例えば、非特許文献1参照)。
【0015】
【特許文献1】米国特許第4908539号明細書
【特許文献2】特開昭61−221783号公報
【特許文献3】特開平 9−221309号公報
【特許文献4】特開2001−11344号公報
【非特許文献1】Applied Physics Letters,Vol.83,17,2003
【発明の開示】
【発明が解決しようとする課題】
【0016】
しかしながら、平面型表示装置に本法で作製した微小電子源装置を用いると、ディスプレイ上に輝点が現れる不具合が発生した。輝点は黒点よりも人間の認識感度が高いためにひとつでもあると、それはディスプレイとして致命的な欠陥となる。また、この輝点はゲートやアノードに印加する電圧によりディスプレイとして所望の状態に制御することが困難であった。
【0017】
本発明は、以上の従来技術における問題に鑑みてなされたものであり、簡便な手法によりディスプレイ上に輝点を発生させず電子放出特性の良好な微小電子源装置の製造方法を提供することを目的とする。
【課題を解決するための手段】
【0018】
前記ディスプレイ上の輝点は、微小電子源装置のゲート電極上に微小電子源層組成物が付着していることが原因であった。すなわち、これらの付着した微小電子源層組成物にはカーボンナノチューブが含有されているために、アノード電極に高電圧を印加した際に前記組成物から電子放出が発生し、著しく輝度の高い輝点として観察されるものであった。また、微小電子源層組成物の付着は、カーボンナノチューブの端部を表面に露出させるために樹脂層を剥離する際に高電圧が発生することにより樹脂層が帯電し、これによって微小電子源層から剥離したカーボンナノチューブを含有する微小電子源層組成物が該樹脂層に付着し、ついでこの微小電子源層組成物が樹脂層から微小電子源層の周囲に配置されたゲート電極上に落下した結果であった。
発明者らは、ゲート電極上に付着した微小電子源層組成物の除去は困難であることから、樹脂層に該組成物が付着することを防止する観点で鋭意検討を行うことにより本発明を成すに至った。
【0019】
すなわち、前記課題を解決するために提供する本発明は、支持基板上にカソード電極を形成するカソード電極形成工程と、炭素材料が導電性のマトリクス中に埋め込まれた複合層を前記カソード電極上に形成する複合層形成工程と、前記複合層の上層部の前記マトリクスを除去することにより、該複合層の表面に前記炭素材料の一部を露出させて微小電子源層とする微小電子源層形成工程とを有する微小電子源装置の製造方法において、前記微小電子源層形成工程は、前記複合層に導電性及び粘着性を有する樹脂層を密接させた後、該樹脂層を引き剥がすことにより、前記複合層の上層部のマトリクスを除去する処理を有することを特徴とする微小電子源装置の製造方法である。
【0020】
ここで、前記樹脂層は、(1)ベース樹脂層中に導電性粒子を含有してなること、(2)ベース樹脂層中に界面活性剤を含有してなること、(3)ベース樹脂層の前記複合層と接する面とは反対面に導電層を有してなることのいずれかであることが好ましい。
【0021】
また、前記炭素材料は、カーボンナノチューブ、単結晶グラファイト、多結晶グラファイト、フラーレンのうち、少なくとも1つを含有してなることが好適である。
【発明の効果】
【0022】
本発明によれば、簡便な手法により、カソード電極上の微小電子源層にはダメージを与えることがなく、電子放出特性を劣化させずに輝点の発生を抑制することができる。
すなわち、本発明によれば、樹脂層の帯電を防止する機能により、該樹脂層を複合層から剥離させる時に発生する帯電を効果的に抑制することができる。これにより樹脂層に微小電子源層組成物の断片が付着することがなくなるため、ディスプレイ上の輝点の原因となるゲート電極上への微小電子源層組成物の付着を防止することができる。また、樹脂層の剥離とともに、複合層の上層部のマトリクスを除去することができるため、カーボンナノチューブ端部などの炭素材料の一部を効果的に発現させることができる。
また、本発明は、従来の微小電子源装置の作成工程に準拠して行うことで上記目的を達成することができる。さらに、このような処理は市販の装置を用いることで実現できる条件であり、容易に達成できるものである。また、本発明は大面積表面を有する基板や非平坦表面を有する基板にも容易に適用可能であり、上記目的を達成することができる。
【発明を実施するための最良の形態】
【0023】
以下に、本発明に係る微小電子源装置の製造方法について説明する。
本発明の微小電子源装置は次の手順で作製する。
(S1)基板10上にカソード電極形成用の導電膜11Lを形成する(図1(a))。導電膜11Lは、例えばスパッタリング法により形成される膜厚0.2μmのCr等からなる。また、必要に応じて導電膜11L上に抵抗層を形成する。抵抗層は、例えばスパッタリング法により形成される膜厚0.2μmのアモルファスSi,SiCN等からなる後述の微小電子源層12への放電電流を安定化させる役目を果たす薄膜である。
【0024】
(S2)つぎに、カソード電極上、すなわち導電膜11Lの所望の領域に電子エミッタ材料としてカーボンナノチューブ、単結晶グラファイト、多結晶グラファイト、フラーレンのうち、少なくとも1つの炭素材料を含有してなる分散液を塗布する。ここでは、その一例として、カーボンナノチューブ分散液を塗布する場合を説明する。塗布はスプレー噴霧、スピンコートなどいずれの方法でもよい。
カーボンナノチューブ分散液は、複数のカーボンナノチューブと、In,Sn,Zn,Alの少なくとも1つを含有する有機金属化合物を含む結合剤と、揮発性溶媒(例えば、酢酸ブチル)とを所定量混合して調製されたものである。熱分解性有機金属である有機スズ及び有機インジウム化合物(ITO溶液)およびカーボンナノチューブを揮発性溶媒、例えば、酢酸ブチル中に分散させて調製する場合の組成例を以下に示す。
【0025】
(カーボンナノチューブ分散液)
・結合剤(ITO溶液) :固形分10〜50重量%
・カーボンナノチューブ :0.01〜20重量%
・溶媒(酢酸ブチル) :30〜80重量%
・分散剤(例えばドデチル硫酸ナトリウム):0.1〜5重量%
【0026】
上記のようにカーボンナノチューブの分散性を向上させるために分散剤を添加してもよいし、超音波処理を施してもよい。また、希釈剤には水系、非水系のどちらを添加しても構わないが、それに応じて分散剤も変わることを前提とする。また、カーボンナノチューブは、例えば平均直径1nm、平均長さ1μmのチューブ構造を有し、アーク放電法により作製されたものを用いればよい。
【0027】
(S3)上記カーボンナノチューブ分散液を塗布した後、焼成により結合剤からなる導電性のマトリクス中に前記カーボンナノチューブが分散して埋め込まれた状態である複合層12Lを形成する(図1(b))。焼成は例えば、つぎのような2段階で行うとよい。
(第1の焼成)
・雰囲気:大気
・温度:350℃
・時間:30分
(第2の焼成)
・雰囲気:窒素
・温度:500℃
・時間:30分
【0028】
(S4)次に、複合層12Lをストライプ状に加工する。具体的には、レジスト材料層をスピンコート法にて全面に成膜した後、リソグラフィー技術に基づき、複合層12Lのうち残されるべき領域以外の表面が露出したマスク層を形成する。ついで露出した複合層12L領域を、例えば、HClを用いてエッチング温度10〜60℃、エッチング時間10秒〜30分の条件でエッチングする(図1(c))。
【0029】
なお、上記処理後に所望の領域以外にカーボンナノチューブが存在する場合は、酸素プラズマもしくは、酸化溶液を使用して、カーボンナノチューブのエッチングを行う。このときのエッチング条件例を以下に示す。
【0030】
(酸素プラズマエッチング)
・装置:RIE
・導入ガス:酸素を含むガス
・プラズマ励起パワー:500W
・バイアスパワー:0〜150W(DCでもRFでも構わないがRFが好ましい)
・時間:10秒以上
【0031】
(酸化溶液エッチング)
・溶液: KMnO
・温度:20〜80℃
・時間:10秒から20分
【0032】
(S5)ついで、周知のフォトリソグラフィ技術及び反応性イオンエッチング(RIE)により導電膜11Lをエッチング加工してストライプ状のカソード電極11とする(図1(d))。この時点で基板10上には複数本のカソードラインが形成される。
【0033】
(S6)基板10上において、カソード電極11、複合層12Lの積層部を覆うように層間絶縁膜13Lを形成し、さらに該層間絶縁膜13L上に例えば膜厚0.2μmのCrからなるゲート電極形成用の導電膜14Lを形成する(図2(e))。例えば、TEOS(テトラエトキシシラン)を原料ガスとして使用するCVD法により、基板10の全面に例えばSiOからなる厚さ約1μmの層間絶縁膜13Lを形成し、次いで、層間絶縁膜13Lの上にCrからなる導電膜14Lをスパッタリング法によって形成すればよい。
【0034】
(S7)導電膜14L上にレジストマスク層を形成し、このレジストマスク層を利用して反応性イオンエッチング(RIE)により導電膜14Lの所定部位をエッチング加工することにより、層間絶縁膜13L上でストライプ形状のゲート電極14とするとともに、このゲート電極14を貫通する第1の開口部15Aを形成する(図2(f))。このとき、ゲート電極14は層間絶縁膜13L上でカソード電極11と略直交する状態のストライプ形状に加工されている。すなわち、上記カソードラインに直交する複数本のゲートラインが形成される。また、導電膜14Lのエッチングされた部位は層間絶縁膜13Lが露出している。
【0035】
(S8)つぎに、ゲート電極14の第1の開口部15Aを通して層間絶縁膜13Lを反応性イオンエッチング(RIE)などのドライエッチング加工により、複合層12Lが露出するように第2の開口部15Bを形成する。これにより、第1,第2の開口部15A,15Bからなる開口部(ゲートホール)15が得られる(図2(g))。
【0036】
微小電子源装置は、電子放出はピクセル(画素)ごとに選択できるアセンブリでなければならない。そのために、カソード電極11と電子取り出し電極であるゲート電極14とが直交して重なる部分でひとつのピクセルを形成する。開口部15は、そのピクセルを構成するためのものであり、例えば直径20μmの円形に形成されており、1ピクセル当たり複数個(例えば、数十個)形成される。
【0037】
(S9)次に、開口部15の底部に露出した複合層12L上層部のマトリックスを虚弱化させ、その表面に樹脂層Laを密接させる(図3(h))。複合層12Lの上層部を虚弱化させる際の手法としては、ウェットエッチングやドライエッチングなどのエッチング法(ライトエッチング)を好ましく用いることができる。ライトエッチングは例えば、エッチャント:10%HCl水溶液、エッチング時間5〜60秒の条件で行えばよい。このエッチングにより複合層12Lの上層部でマトリクス材料を選択的に除去することが容易となり、次のステップで表面に多数のカーボンナノチューブを露出(発現)させることができる。
【0038】
樹脂層Laは、導電性及び粘着性を有する樹脂層である。粘着性は複合層12Lの虚弱化された部分のマトリクスを樹脂層Laに貼り付け、該樹脂層Laの引き剥がしとともに落下させることなく除去するためのものであり、導電性はその引き剥がしの際に発生する静電気による樹脂層Laの帯電を防止するためのものである。
【0039】
樹脂層Laを層として構成するベース樹脂は、引き剥がしの際に適度な弾性及び剛性をもつ高分子材料であればよく、例えばアクリル系、メタクリル酸系樹脂であればよい。
【0040】
また、樹脂層Laは、ベース樹脂層中に導電性粒子を分散して含有してなることが好ましい。
この導電性粒子は、ベース樹脂層中に分散可能な導電性をもつ微粒子であり、例えば酸化インジウム、酸化錫、酸化亜鉛、酸化チタンなどが挙げられる。また、導電性粒子の粒径としては、0.1〜20μmで本発明の効果があり、0.5〜2μmの範囲で最も高い効果が得られた。また、樹脂層Laを形成するための塗料中の導電性粒子の含有量として、0.5〜20wt%で本発明の効果があり、5〜10wt%で最も高い効果が得られた。
【0041】
また、樹脂層Laは、ベース樹脂層中に界面活性剤を含有してなることが好ましい。
この界面活性剤は、樹脂層Laを形成するための塗料中に予め添加され、ベース樹脂層骨格中に導電性を付与するものであり、例えば塩化ステアリルトリメチルアンモニウム、ドデシル硫酸ナトリウム、ドデシルベンゼンスルホン酸ナトリウム等の有機硫黄酸塩、ヘキサデシルトリメチルアンモニウムブロミド、塩化セチルトリメチルアンモニウム等のアルキルアンモニウム塩などが挙げられる。また、樹脂層Laを形成するための塗料中の界面活性剤濃度として、0.01〜10wt%で本発明の効果があり、0.1〜2wt%で最も高い効果が得られた。
【0042】
また、樹脂層Laは、ベース樹脂層の複合層12Lと接する面とは反対面に導電層を有することが好ましい。
この導電層は、導電性を有する金属箔であり、例えばCu箔、Al箔などが挙げられる。また、導電層はベース樹脂層全面を覆うように貼り付けられてもよいが、ベース樹脂層Laとして導電性を付与できる範囲でベース樹脂層の表面の一部が露出するように部分的に貼り付けるようにしてもよい。
【0043】
樹脂層Laを複合層12L表面に密接させる方法としては、樹脂層組成物を含有する塗料を複合層12L上に塗布した後に該塗料を硬化させる方法(塗布方法)、あるいは予めフィルム形状の樹脂層Laを形成しておき該フィルムをゲート電極14上に被せて複合層12L表面に密接するように圧着させる方法(フィルム圧着方法)がある。
【0044】
詳しくは、樹脂層Laが、ベース樹脂層中に導電性粒子を分散して含有してなるもの、及びベース樹脂層中に界面活性剤を含有してなるものの場合、前記塗布方法、前記フィルム密着方法のいずれの方法で複合層12L表面に密接させてもよい。
また、樹脂層Laがベース樹脂層の複合層12Lと接する面とは反対面に導電層を有するものである場合、前記フィルム密着方法で複合層12L表面に密接させるとよい。
【0045】
また、樹脂層Laを複合層12L表面に密接させた後、樹脂層Laの粘着力を適正なものに調整するために樹脂層Laを硬化させる処理を施してもよい。この硬化処理としては、例えば電子線又は紫外線を樹脂層Laに照射する処理、加熱する処理などがあり、樹脂層Laを構成するベース樹脂材料などに応じて選択すればよい。なお、前記塗布方法においては、塗料を硬化させることを兼ねた硬化処理としてもよい。
【0046】
また、紫外線又は電子線を照射して硬化させる場合には、該紫外線又は電子線がベース樹脂層中の透過できるようにするとともに、十分な帯電防止効果が得られるように、樹脂層Laに含有される導電性粒子の粒径や添加量、樹脂層裏面に形成する導電層の厚みや被覆形態を調整する必要がある。これにより、帯電防止効果を効果的に発現させて均一性の高いエミッション特性を達成することができる。
【0047】
(Sa)その後、樹脂層Laを引き剥がすことにより、エッチングされた複合層12Lの表面でマトリクスを除去するとともに、各々のカーボンナノチューブを一様にほぼ垂直に起立させ、カーボンナノチューブの配向処理を行う。また、このとき樹脂層Laは帯電することがないため、ゲート電極14上に複合層12L組成物(微小電子源層組成物)の破片が落下して付着することがない。
これにより、前記カーボンナノチューブ12aが導電性のマトリクス12b中に埋め込まれ、該カーボンナノチューブ12aの一端がマトリクス12bから突出してなる微小電子源層12となる(図3(i))。
【0048】
このようにして、平面型表示装置においてカソードパネル1のベースとなる絶縁性の基板(例えば、ガラス基板)10と、この基板10上に積層状態で順に形成されたカソード電極11、絶縁層13及びゲート電極14と、ゲート電極14及び絶縁層13に形成された開口部(ゲートホール)15と、この開口部15の底部に形成された微小電子源層12とによって構成される微小電子源装置が完成する。
【0049】
その後、平面型表示装置の組み立てを行う。具体的には、蛍光体層22と微小電子源装置とが対向するようにアノードパネル2とカソードパネル1とを配置し、アノードパネル2とカソードパネル1(より具体的には、基板21と基板10)とを、枠体3を介して、周縁部において接合する。接合に際しては、枠体3とアノードパネル2との接合部位、及び枠体3とカソードパネル1との接合部位にフリットガラスを塗布し、アノードパネル2とカソードパネル1と枠体3とを貼り合わせ、予備焼成にてフリットガラスを乾燥した後、約450℃で10〜30分の本焼成を行う。その後、アノードパネル2とカソードパネル1と枠体3とフリットガラスとによって囲まれた空間を、貫通孔及びチップ管を通じて排気し、空間の圧力が10-4Pa程度に達した時点でチップ管を加熱溶融により封じ切る。このようにして、アノードパネル2とカソードパネル1と枠体3とに囲まれた空間を真空にすることができる。その後、必要な外部回路との配線を行い、図4に示す平面型表示装置を完成させる。
【0050】
図4は本発明に係る平面型表示装置のパネル構造の一例を示す断面図である。
図4に示すように、カソードパネル(カソード基板)1とアノードパネル(アノード基板)2とを所定の間隙を介して対向状態に配置するとともに、それらのパネル1,2を枠体3によって一体的に組み付けることにより、画像表示のための一つのパネル構体(表示パネル)が構成されている。
【0051】
カソードパネル1上には本発明の微小電子源装置が複数形成されている。これら複数の微小電子源装置は、カソードパネル1の有効領域(実際に表示部分として機能する領域)に2次元マトリックス状に多数形成されている。
【0052】
図5に示すように、カソード電極11は、複数のカソードラインを形成するようにストライプ状に形成されている。ゲート電極14は、各々のカソードラインと交差(直交)する複数のゲートラインを形成するようにストライプ状に形成されている。
【0053】
一方、アノードパネル2は、ベースとなる透明基板21と、この透明基板21上に形成された蛍光体層22及びブラックマトリックス23と、これら蛍光体層22及びブラックマトリックス23を覆う状態で透明基板21上に形成されたアノード電極24とを備えて構成されている。蛍光体層22は、赤色発光用の蛍光体層22Rと、緑色発光用の蛍光体層22Gと、青色発光用の蛍光体層22Bとから構成されている。ブラックマトリックス23は、各色発光用の蛍光体層22R,22G,22Bの間に形成されている。アノード電極24は、カソードパネル1の電子放出素子と対向するように、アノードパネル2の有効領域の全域に積層状態で形成されている。
【0054】
これらのカソードパネル1とアノードパネル2とは、それぞれの外周部(周縁部)で枠体3を介して接合されている。また、カソードパネル1の無効領域(有効領域の外側の領域で、実際に表示部分として機能しない領域)には真空排気用の貫通孔16が設けられている。貫通孔16には、真空排気後に封じ切られるチップ管17が接続されている。ただし、図4は表示装置の組み立て完了状態を示しているため、チップ管17は既に封じ切られた状態となっている。また、図4、図5においては、各々のパネル1,2間のギャップ部分に介装される耐圧用の基板(スペーサ)の表示を省略している。
【0055】
上記構成のパネル構造を有する表示装置においては、カソード電極11に相対的な負電圧がカソード電極制御回路18から印加され、ゲート電極14には相対的な正電圧がゲート電極制御回路19から印加され、アノード電極24にはゲート電極11よりも更に高い正電圧がアノード電極制御回路20から印加される。かかる表示装置において、実際に画像の表示を行う場合は、例えば、カソード電極11にカソード電極制御回路18から走査信号を入力し、ゲート電極14にゲート電極制御回路19からビデオ信号を入力する。あるいは又、カソード電極11にカソード電極制御回路18からビデオ信号を入力し、ゲート電極14にゲート電極制御回路19から走査信号を入力する。
【0056】
これにより、カソード電極11とゲート電極14との間に電圧が印加され、これによって微小電子源層12の先鋭部(カーボンナノチューブ12aの先端部)に電界が集中することにより、量子トンネル効果によって電子がエネルギー障壁を突き抜けて微小電子源層12から真空中へと放出される。こうして放出された電子はアノード電極24に引き付けられてアノードパネル2側に移動し、透明基板21上の蛍光体層22(22R,22G,22B)に衝突する。その結果、蛍光体層22が電子の衝突により励起されて発光するため、この発光位置を画素単位で制御することにより、表示パネル上に所望の画像を表示することができる。また、この際ゲート電極14上に微小電子源層組成物の破片などがないため異常な輝点を発生させることがない。
【実施例】
【0057】
本発明の実施例を以下に示す。なお、本実施例は例示であり、本発明の範囲はこれに限定されるものではない。
【0058】
(実施例1)
以下の手順で微小電子源装置を作製した。
(S11)基板10上にカソード電極形成用の導電膜11Lとして膜厚0.2μmのCr層を形成した(図1(a))。
【0059】
(S12)つぎに、導電膜11Lの所望の領域に以下の組成のカーボンナノチューブ分散液を塗布した。
(カーボンナノチューブ分散液)
・In/Sn(=0.5/0.5組成)アルコキシド化合物:1重量部
・ダブルウォールカーボンナノチューブ :1重量部
・ベンゼンスルホン酸ソーダ :1重量部
・酢酸ブチル :残余
【0060】
(S13)上記カーボンナノチューブ分散液を塗布した後、空気中で300℃、1時間の焼成により複合層12Lを形成した(図1(b))。
【0061】
(S14)次に、複合層12L上にレジスト材料層をスピンコート法にて全面に成膜した後、リソグラフィー技術に基づき、複合層12Lのうち残されるべき領域以外の表面が露出したマスク層を形成する。ついで露出した複合層12L領域を、HClを用いてエッチング温度10〜60℃、エッチング時間10秒〜30分の条件でエッチングして、複合層12Lをストライプ状に加工した(図1(c))。
【0062】
(S15)ついで、周知のフォトリソグラフィ技術及び反応性イオンエッチング(RIE)により導電膜11Lをエッチング加工してストライプ状のカソード電極11とした(図1(d))。
【0063】
(S16)基板10上において、カソード電極11、複合層12Lの積層部を覆うようにTEOS(テトラエトキシシラン)を原料ガスとして使用するCVD法により、厚さ約1μmのSiOからなる層間絶縁膜13Lを形成し、さらに該層間絶縁膜13L上にスパッタリング法によって膜厚0.2μmのCrからなるゲート電極形成用の導電膜14Lを形成した(図2(e))。
【0064】
(S17)導電膜14L上にレジストマスク層を形成し、このレジストマスク層を利用して反応性イオンエッチング(RIE)により導電膜14Lの所定部位をエッチング加工することにより、層間絶縁膜13L上でストライプ形状のゲート電極14とするとともに、このゲート電極14を貫通する第1の開口部15Aを形成した(図2(f))。
【0065】
(S18)つぎに、ゲート電極14の第1の開口部15Aを通して層間絶縁膜13Lを反応性イオンエッチング(RIE)のドライエッチング加工により、複合層12Lが露出するように第2の開口部15Bを形成し、第1,第2の開口部15A,15Bからなる開口部(ゲートホール)15を得た(図2(g))。
【0066】
(S19)次に、開口部15の底部に露出した複合層12L上層部のマトリックスを虚弱化させた後、予め以下に示す手順で作製したフィルム形状の導電性及び粘着性を有する樹脂層Laをゲート電極14上に被せて圧着することにより該複合層12L表面に密接させた(図3(h))。
【0067】
<樹脂層Laの作製>
以下の樹脂層組成物をポールミルにより均一に混合した後、予めフッ素を含有する離型剤を表面に塗布したフィルム上にこの樹脂組成物をディップコータを用いて100μmの厚みで塗布した。ついで100℃で24時間保持する乾燥処理により塗膜中からベンゼンを除去し、離型剤塗布フィルムから剥離させてフィルム形状の樹脂層Laを得た。
【0068】
(樹脂層組成1)
・樹脂 :ポリメタクリレート (樹脂濃度 5wt%)
メタクリル酸メチル変性ポリウレタン樹脂 (樹脂濃度 15wt%)
・溶媒 :ベンゼン
・導電性粒子:酸化インジウム粒子(0.5μm径) 粒子濃度 5wt%
【0069】
ついで、複合層12Lに密接した樹脂層Laに対し、紫外線(波長365nm、900mJ)を照射して該樹脂層Laを硬化させた。
【0070】
(S1a)その後、樹脂層Laを引き剥がすことにより、エッチングされた複合層12Lの表面で各々のカーボンナノチューブが一様にほぼ垂直に起立する(起毛する)ように、カーボンナノチューブの配向処理を行い、微小電子源層12とした(図3(i))。
【0071】
得られた微小電子源装置サンプルと蛍光体を塗布したアノード電極を真空中で対向させて、5v/μm程度の高電界を印加し、この時の蛍光体上に設定した100個程度の1μm角の画素領域について輝度を測定した。ついで各画素の輝度の平均偏差を算術平均して算出し、この蛍光体上の輝度の均一性を電子放出均一性として評価した。
その結果、異常な輝点は観測されず、電子放出均一性は3%であった。なお、従来の導電性を有しない樹脂層で配向処理した場合の電子放出均一性は8%であった。
【0072】
(実施例2)
実施例1において、上記ステップS19に代えて、以下の処理を行い、それ以外は実施例1と同じ条件で微小電子源装置のサンプルを作製し、実施例1と同様に評価した。
【0073】
(S29)開口部15の底部に露出した複合層12L上層部のマトリックスを虚弱化させた後、予めポールミルにより均一に混合した前記樹脂組成物1を複合層12L表面に200μmの厚さで塗布し、100℃で24時間乾燥させて樹脂層Laを形成した(図3(h))。ついで、複合層12Lに密接した樹脂層Laに対し、紫外線(波長365nm、900mJ)を照射して該樹脂層Laを硬化させた。
【0074】
本実施例の微小電子源装置サンプルの電子放出特性を評価した結果、異常な輝点は観察されず高い電子放出均一性が得られた。
【0075】
(実施例3)
実施例1において、上記ステップS19に代えて、以下の処理を行い、それ以外は実施例1と同じ条件で微小電子源装置のサンプルを作製し、実施例1と同様に評価した。
【0076】
(S39)開口部15の底部に露出した複合層12L上層部のマトリックスを虚弱化させた後、予めポールミルにより均一に混合した以下に示す樹脂層組成物を複合層12L表面に200μmの厚さで塗布し、100℃で24時間乾燥させて樹脂層Laを形成した(図3(h))。
【0077】
(樹脂層組成2)
・樹脂 :ポリメタクリレート (樹脂濃度 20wt%)
・溶媒 :ベンゼン
・界面活性剤:塩化ステアリルトリメチルアンモニウム(界面活性剤濃度 1wt%)
【0078】
本実施例の微小電子源装置サンプルの電子放出特性を評価した結果、異常な輝点は観察されず高い電子放出均一性が得られた。
【0079】
(実施例4)
実施例1において、上記ステップS19に代えて、以下の処理を行い、それ以外は実施例1と同じ条件で微小電子源装置のサンプルを作製し、実施例1と同様に評価した。
【0080】
(S49)開口部15の底部に露出した複合層12L上層部のマトリックスを虚弱化させた後、予め以下に示す手順で作製したフィルム形状の導電性及び粘着性を有する樹脂層Laを導電層形成面とは反対面をゲート電極14上に被せて圧着することにより該複合層12L表面に密接させた(図3(h))。ついで、複合層12Lに密接した樹脂層Laに対し、紫外線を照射して該樹脂層Laを硬化させた。
【0081】
<樹脂層Laの作製>
紫外線官能性樹脂(アクリル又はメタクリル酸系樹脂組成物)からなるフィルムをベース樹脂層とし、該ベース樹脂層の一方の面の全面に、厚み50μm、幅0.5mmの金属Cu箔を1mm間隔で貼り付けて導電層としたものを樹脂層Laとして得た。
【0082】
本実施例の微小電子源装置サンプルの電子放出特性を評価した結果、異常な輝点は観察されず高い電子放出均一性が得られた。
【図面の簡単な説明】
【0083】
【図1】本発明の微小電子源装置の製造工程図(1)である。
【図2】本発明の微小電子源装置の製造工程図(2)である。
【図3】本発明の微小電子源装置の製造工程図(3)である。
【図4】本発明の微小電子源装置を使用した平面型表示装置の構成を示す断面図である。
【図5】本発明の微小電子源装置を使用した平面型表示装置の構成を示す概略図である。
【符号の説明】
【0084】
1・・・カソードパネル、2・・・アノードパネル、10・・・基板、11・・・カソード電極、11L,14L・・・導電膜、12・・・微小電子源層、12L・・・複合層、12a・・・カーボンナノチューブ、12b・・・マトリクス、13・・・絶縁層、13L・・・層間絶縁膜、14・・・ゲート電極、15・・・開口部(ゲートホール)、15A・・・第1の開口部、15B・・・第2の開口部、16・・・貫通孔、17・・・チップ管、18・・・カソード電極制御回路、19・・・ゲート電極制御回路、20・・・アノード電極制御回路、21・・・透明基板、22,22R,22G,22B・・・蛍光体層、23・・・ブラックマトリクス、24・・・アノード電極、La・・・樹脂層

【特許請求の範囲】
【請求項1】
支持基板上にカソード電極を形成するカソード電極形成工程と、
炭素材料が導電性のマトリクス中に埋め込まれた複合層を前記カソード電極上に形成する複合層形成工程と、
前記複合層の上層部の前記マトリクスを除去することにより、該複合層の表面に前記炭素材料の一部を露出させて微小電子源層とする微小電子源層形成工程と
を有する微小電子源装置の製造方法において、
前記微小電子源層形成工程は、前記複合層に導電性及び粘着性を有する樹脂層を密接させた後、該樹脂層を引き剥がすことにより、前記複合層の上層部のマトリクスを除去する処理を有することを特徴とする微小電子源装置の製造方法。
【請求項2】
前記樹脂層は、ベース樹脂層中に導電性粒子を含有してなることを特徴とする請求項1に記載の微小電子源装置の製造方法。
【請求項3】
前記樹脂層は、ベース樹脂層中に界面活性剤を含有してなることを特徴とする請求項1に記載の微小電子源装置の製造方法。
【請求項4】
前記樹脂層は、ベース樹脂層の前記複合層と接する面とは反対面に導電層を有してなることを特徴とする請求項1に記載の微小電子源装置の製造方法。
【請求項5】
前記炭素材料は、カーボンナノチューブ、単結晶グラファイト、多結晶グラファイト、フラーレンのうち、少なくとも1つを含有してなることを特徴とする請求項1に記載の微小電子源装置の製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公開番号】特開2006−310124(P2006−310124A)
【公開日】平成18年11月9日(2006.11.9)
【国際特許分類】
【出願番号】特願2005−132131(P2005−132131)
【出願日】平成17年4月28日(2005.4.28)
【出願人】(000002185)ソニー株式会社 (34,172)
【Fターム(参考)】