説明

成形性及び形状凍結性に優れた高強度溶融亜鉛めっき鋼板、並びにその製造方法

【課題】引張強さ(TS):1180MPa以上、全伸び(EL):14%以上、穴拡げ率(λ):30%以上かつ降伏比(YR):70%以下である成形性および形状凍結性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法を提供する。
【解決手段】質量%で、C:0.10〜0.35%、Si:0.5〜3.0%、Mn:1.5〜4.0%、P:0.100%以下、S:0.02%以下、Al:0.010〜0.5%を含み、残部がFeおよび不可避的不純物からなる成分組成を有し、かつミクロ組織は、面積率で0〜5%のポリゴナルフェライト、5%以上のベイニティックフェライト、5〜20%のマルテンサイト、30〜60%の焼き戻しマルテンサイトと、5〜20%の残留オーステナイトを含み、かつ旧オーステナイトの平均粒径が15μm以下であることを特徴とする成形性及び形状凍結性に優れた高強度溶融亜鉛めっき鋼板。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、自動車用鋼板としての用途に好適な成形性及び形状凍結性に優れる高強度溶融亜鉛めっき鋼板、並びにその製造方法に関する。
【背景技術】
【0002】
近年、地球環境の保全の見地から自動車の燃費向上が重要な課題となっている。このため、車体材料の高強度化により薄肉化を図り、車体そのものの軽量化により燃費向上を図る動きが活発になってきている。自動車部品のようにプレス加工や曲げ加工により製品に成型される鋼板には高強度を保ちつつ加工に耐えうる成形性が要求される。特許文献1では焼戻しマルテンサイトおよび残留オーステナイトを活用することで高強度と高加工性の両立を実現している。ところが、一般に鋼板の強度が高くなるにつれ、加工後のスプリングバックは大きくなり、形状凍結成性が低下するという問題がある。特許文献1では形状凍結性については検討されておらず改善の余地が見られる。一方で、特許文献2ではフェライト、ベイナイトとC濃度の低いオーステナイトからなる組織を活用することで、YRが低く、形状凍結性に優れる鋼板が得られている。しかし伸びフランジ性については評価しておらず、十分な加工性を有するとは云い難い。特許文献3では焼戻しマルテンサイト、ベイナイト、残留オーステナイトを活用することで高強度と高延性を両立させているが、形状凍結性に関しては言及されていない。また、伸びフランジ性は絶対値としては必ずしも高くなく、改善の余地がある。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2009-209450号公報
【特許文献2】特開2010-126808号公報
【特許文献3】特開2010-90475号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
本発明は、上記した従来技術が抱える問題を有利に解決し、自動車部品用素材として好適な、引張強さ(TS):1180MPa以上、全伸び(EL):14%以上、穴拡げ率(λ):30%以上かつ降伏比(YR):70%以下である成形性及び形状凍結性に優れた高強度溶融亜鉛めっき鋼板、並びにその製造方法を提供することを目的とする。なお、降伏比(YR)は、引張強さ(TS)に対する降伏強さ(YS)の比で、YR(%)=(YS/TS)×100で表される。
【課題を解決するための手段】
【0005】
本発明者らは、上記した課題を達成し、成形性および形状凍結性に優れる高強度溶融亜鉛めっき鋼板を製造するため、鋼板の成分組成およびミクロ組織の観点から鋭意研究を重ねた結果、以下のことを見出した。
【0006】
合金元素を適当に調整した上で、面積率で0〜5%のポリゴナルフェライト、5%以上のベイニティックフェライト、5〜20%のマルテンサイト、30〜60%の焼戻しマルテンサイトと、5〜20%の残留オーステナイトを含む組織とし、かつ旧オーステナイトの平均粒径を15μm以下とすることで高強度と高成形性および高形状凍結性の両立が可能となる。
【0007】
焼戻しマルテンサイト主体組織にマルテンサイトが分散することで形状凍結性が向上する理由については必ずしも明確ではないが、めっき後またはめっき合金化後冷却の際に焼戻しマルテンサイトに接しているオーステナイトがマルテンサイト変態して焼戻しマルテンサイト中に可動転位が導入されることでYRが減少するためであることなどが考えられる。また、旧オーステナイト粒を微細にすることでλが向上する理由についても明確ではないが、旧オーステナイト粒が微細になることで焼鈍後組織の平均粒径が小さくなり、伸びフランジ加工時に亀裂の伝播経路が多くなり亀裂の連結が抑制されるためであると推察される。
【0008】
こうしたミクロ組織は、焼鈍時に、500℃〜Ac1点までを5℃/s以上の平均加熱速度で、Ac3点−20〜1000℃まで加熱し10〜1000秒保持した後、750℃から15℃/s以上の平均冷却速度でMs点−80℃〜Ms点−30℃の温度域まで冷却した後、350〜500℃に加熱し、10〜600秒保持することによって得られる。
【0009】
本発明は、このような知見に基づきなされたもので、以下の発明を提供する。
【0010】
(1)質量%で、C:0.10〜0.35%、Si:0.5〜3.0%、Mn:1.5〜4.0%、P:0.100%以下、S:0.02%以下、Al:0.010〜0.5%を含み、残部がFeおよび不可避的不純物からなる成分組成を有し、かつミクロ組織は、面積率で0〜5%のポリゴナルフェライト、5%以上のベイニティックフェライト、5〜20%のマルテンサイト、30〜60%の焼き戻しマルテンサイトと、5〜20%の残留オーステナイトを含み、かつ旧オーステナイトの平均粒径が15μm以下であることを特徴とする成形性及び形状凍結性に優れた高強度溶融亜鉛めっき鋼板。
【0011】
(2)さらに、質量%で、Cr:0.005〜2.00%、Mo:0.005〜2.00%、V:0.005〜2.00%、Ni:0.005〜2.00%、Cu:0.005〜2.00%から選ばれる少なくとも一種の元素を含有することを特徴とする(1)に記載の成形性及び形状凍結性に優れた高強度溶融亜鉛めっき鋼板。
【0012】
(3)さらに、質量%で、Ti:0.01〜0.20%、Nb:0.01〜0.20%から選ばれる少なくとも一種の元素を含有することを特徴とする(1)または(2)に記載の成形性及び形状凍結性に優れた高強度溶融亜鉛めっき鋼板。
【0013】
(4)さらに、質量%で、B:0.0005〜0.0050%を含有することを特徴とする(1)から(3)のいずれかに記載の成形性及び形状凍結性に優れた高強度溶融亜鉛めっき鋼板。
【0014】
(5)さらに、質量%で、Ca:0.001〜0.005%、REM:0.001〜0.005%から選ばれる少なくとも一種の元素を含有することを特徴とする(1)から(4)のいずれかに記載の成形性及び形状凍結性に優れた高強度溶融亜鉛めっき鋼板。
【0015】
(6)亜鉛めっきが合金化亜鉛めっきであることを特徴とする(1)から(5)のいずれかに記載の成形性及び形状凍結性に優れた高強度溶融亜鉛めっき鋼板。
【0016】
(7) (1)から(5)のいずれかに記載の成分組成を有するスラブを、熱間圧延し、またはさらに冷間圧延し、その後連続焼鈍を施すに際し、500℃〜Ac1点までを5℃/s以上の平均加熱速度で、Ac3点−20℃〜1000℃の温度域に加熱し10〜1000秒保持した後、750℃から15℃/s以上の平均冷却速度でMs点−80℃〜Ms点−30℃の温度域まで冷却した後、350℃〜500℃に加熱し10〜600秒保持した後、溶融亜鉛めっきを施し、またはさらにめっき合金化処理を行うことを特徴とする成形性及び形状凍結性に優れた高強度溶融亜鉛めっき鋼板の製造方法。
【発明の効果】
【0017】
本発明によれば、引張強さ(TS):1180MPa以上、全伸び(EL):14%以上、穴拡げ率(λ):30%以上かつ降伏比(YR):70%以下である成形性および形状凍結性に優れた高強度溶融亜鉛めっき鋼板を得ることができる。
【発明を実施するための形態】
【0018】
以下に、本発明の詳細を説明する。なお、成分元素の含有量を表す「%」は、特に断らない限り「質量%」を意味する。
【0019】
1)成分組成
C:0.10〜0.35%
Cは、マルテンサイトや焼戻しマルテンサイトなどの低温変態相を生成させてTSを上昇させるために必要な元素である。C量が0.10%未満では、焼戻しマルテンサイトを面積率で30%以上かつマルテンサイトを5%以上確保することは難しい。一方、C量が0.35%を超えると、ELやスポット溶接性が劣化する。したがって、C量は0.10〜0.35%、好ましくは0.15〜0.3%とする。
【0020】
Si:0.5〜3.0%
Siは、鋼を固溶強化してTS-ELバランスを向上させたり、残留オーステナイトを生成させるのに有効な元素である。こうした効果を得るには、Si量を0.5%以上にする必要がある。一方、Siが3.0%を超えると、ELの低下や表面性状、溶接性の劣化を招く。したがって、Si量は0.5〜3.0%、好ましくは0.9〜2.0%とする。
【0021】
Mn:1.5〜4.0%
Mnは、鋼の強化に有効であり、マルテンサイトなどの低温変態相の生成を促進する元素である。こうした効果を得るには、Mn量を1.5%以上にする必要がある。一方、Mn量が4.0%を超えると、ELの劣化が著しくなり、加工性が低下する。したがって、Mn量は1.5〜4.0%、好ましくは2.0〜3.5%とする。
【0022】
P:0.100%以下
Pは、粒界偏析により鋼を劣化させ、溶接性を劣化させるため、その量は極力低減することが望ましい。しかし、製造コストの面などからP量は0.100%以下とする。
【0023】
S:0.02%以下
Sは、MnSなどの介在物として存在して、溶接性を劣化させるため、その量は極力低減することが好ましい。しかし、製造コストの面からS量は0.02%以下とする。
【0024】
Al:0.010〜0.5%
Alは、脱酸剤として作用し、脱酸工程で添加することが好ましい。こうした効果を得るには、Al量を0.010%以上にする必要がある。一方、Al量が0.5%を超えると、連続鋳造時のスラブ割れの危険性が高まる。したがって、Al量は0.010〜0.5%とする。
【0025】
残部はFeおよび不可避的不純物であるが、必要に応じて以下の元素の1種以上を適宜含有させることができる。
【0026】
Cr:0.005〜2.00%、Mo:0.005〜2.00%、V:0.005〜2.00%、Ni:0.005〜2.00%、Cu:0.005〜2.00%から選ばれる少なくとも1種
Cr、Mo、V、Ni、Cuはマルテンサイトなどの低温変態相の生成に有効な元素である。こうした効果を得るには、Cr、Mo、V、Ni、Cuから選ばれる少なくとも1種の元素の含有量を0.005%にする必要がある。一方、Cr、Mo、V、Ni、Cuのそれぞれの含有量が2.00%を超えると、その効果が飽和し、コストアップを招く。したがって、Cr、Mo、V、Ni、Cuの含有量はそれぞれ0.005〜2.00%とする。
【0027】
また、さらにTi:0.01〜0.20%、Nb:0.01〜0.20%から選ばれる少なくとも1種を含有することができる。
【0028】
TiおよびNbは、炭窒化物を形成し、鋼を析出強化により高強度化するのに有効な元素である。こうした効果を得るにはTiおよびNbの含有量を0.01%以上にする必要がある。一方、TiおよびNbの含有量が0.20%を超えると、高強度化の効果は飽和し、ELが低下する。したがって、TiおよびNbの含有量は0.01〜0.20%とする。
【0029】
また、さらにB:0.0005〜0.0050%を含有することができる。
【0030】
Bは、オーステナイト粒界からのフェライト生成を抑制し、低温変態相を生成するのに有効な元素である。こうした効果を得るには、B量を0.0005%以上にする必要がある。一方、B量が0.0050%を超えると、その効果が飽和し、コストアップを招く。したがって、B量は0.0005〜0.0050%とする。
【0031】
また、さらにCa:0.001〜0.005%、REM:0.001〜0.005%から選ばれる少なくとも1種を含有することができる。
【0032】
Ca、REMは、いずれも硫化物の形態制御により加工性を改善させるのに有効な元素である。こうした効果を得るには、Ca、REMから選ばれる少なくとも1種の元素の含有量を0.001%以上とする必要がある。一方、Ca、REMのそれぞれの含有量が0.005%を超えると、鋼の清浄度に悪影響を及ぼし、所望の特性が得られないおそれがある。したがって、Ca、REMの含有量は0.001〜0.005%とする。
【0033】
2)ミクロ組織
ポリゴナルフェライトの面積率:0〜5%
ポリゴナルフェライトの面積率が5%を超えると、TS1180MPa以上と穴拡げ率30%以上の両立が困難になる。したがって、ポリゴナルフェライトの面積率は0〜5%とする。
【0034】
ベイニティックフェライトの面積率:5%以上
ベイナイト変態はオーステナイトにCを濃化させ、オーステナイトを安定化することでEL上昇に有効な残留オーステナイトを確保するのに有効である。この効果を得るには、ベイニティックフェライトの面積率を5%以上にする必要がある。従って、ベイニティックフェライトの面積率を5%以上にする。
【0035】
マルテンサイトの面積率:5〜20%
マルテンサイトはTSの向上に有効である。また、YRを低下させるのに有効である。
こうした効果を得るにはマルテンサイトの面積率が5%以上必要である。一方、20%を超えるとELや穴拡げ率の低下が顕著になる。したがって、マルテンサイトの面積率は5〜20%とする。
【0036】
焼戻しマルテンサイトの面積率:30〜60%
焼戻しマルテンサイトの面積率が30%未満になると、TS1180MPa以上と穴拡げ率30%以上の両立が困難になる。一方、その面積率が60%を超えると、YRの上昇が顕著になり形状凍結性が低下する。したがって、焼戻しマルテンサイトの面積率は30〜60%とする。
【0037】
残留オーステナイトの面積率:5〜20%
残留オーステナイトは、ELの向上に有効である。このような効果を得るには、残留オーステナイトの面積率を5%以上にする必要がある。しかしながら、その面積率が20%を超えると、穴拡げ率の低下が顕著になる。したがって、残留オーステナイトの面積率は5〜20%とする。
【0038】
旧オーステナイトの平均粒径15μm以下
旧オーステナイト粒の微細化はλの向上に有効である。このような効果を得るには旧オーステナイトの平均粒径を15μm以下にする必要がある。したがって、旧オーステナイトの平均粒径は15μm以下とする。
【0039】
なお、ポリゴナルフェライト、ベイニティックフェライト、マルテンサイト、焼戻しマルテンサイト、残留オーステナイト以外の相としてパーライトを含む場合もあるが、上記のミクロ組織の条件を満たしていれば、本発明の目的は達成される。
【0040】
ここで、ポリゴナルフェライト、ベイニティックフェライト、マルテンサイト、焼戻しマルテンサイトの面積率とは、観察面積に占める各相の面積の割合のことで、ポリゴナルフェライト、マルテンサイト、ベイニティックフェライト、焼戻しマルテンサイトの面積率は以下に示す方法で求めた。鋼板の板厚断面を研磨後、3%ナイタールで腐食し、板厚1/4位置をSEM(走査型電子顕微鏡)で1500倍の倍率で3視野撮影し、これをMedia Cybernetics社製のImage-Proを用いて各視野の対象組織を塗り別け、その視野に占める対象組織の面積率を求め、各視野の面積率の平均を対象組織の面積率とした。また、残留オーステナイトの面積率については、鋼板を板厚1/4位置まで研磨後、化学研磨によりさらに0.1mm研磨した面について、X線回折装置でMoのKα線を用いて、fcc鉄の(200)、(220)、(311)面とbcc鉄の(200)、(211)、(220)面の積分強度を測定し、これから残留オーステナイトの割合を求め、この割合を残留オーステナイトの面積率とした。また、旧オーステナイトの平均粒径については、鋼板の板厚断面を研磨後、3%ナイタールで腐食し、板厚1/4位置をSEM(走査型電子顕微鏡)で1500倍の倍率で観察し、視野の旧オーステナイト粒界に囲まれる組織の面積の合計をその個数で割って平均面積を求め、その1/2乗を平均粒径とした。
【0041】
3)製造条件
本発明の高強度溶融亜鉛めっき鋼板は、上記の成分組成を有するスラブに、熱間圧延、酸洗を施し、またはさらに冷間圧延を施し、その後、連続焼鈍で、500℃〜Ac1点までを5℃/s以上の平均加熱速度で、Ac3点−20℃〜1000℃の温度域に加熱し10〜1000秒保持した後、750℃から15℃/s以上の平均冷却速度でMs点−80℃〜Ms点−30℃の温度域まで冷却した後、350℃〜500℃に加熱し10〜600秒保持した後、溶融亜鉛めっきを施し、またはさらにめっき合金化処理を行い製造する。以下、詳しく説明する。
【0042】
上記成分組成を有する鋼を溶製してスラブとし、スラブを熱間圧延した後、冷却し巻取る。熱間圧延後の巻取り温度が650℃を超えると、黒シミが生成し、めっき性が低下する。一方、熱間圧延後の巻取り温度が400℃未満では熱延板の形状が悪化する。したがって、熱間圧延後の巻取り温度は400〜650℃とすることが好ましい。
【0043】
次に、熱延板を酸洗し、熱延板表層のスケールを除去することが好ましい。酸洗工程は特に限定されず、常法でよい。必要に応じて、酸洗後の熱延板を冷間圧延する。冷間圧延工程は特に限定されず、常法でよい。酸洗後の熱延板又は冷間圧延後の冷延板を以下の条件で連続焼鈍する。
【0044】
500℃〜Ac1点までの平均加熱速度:5℃/s以上
500℃〜Ac1点までの平均加熱速度が5℃/s未満では再結晶によりオーステナイトが粗大化して、本発明のミクロ組織が得られない。したがって、500℃〜Ac1点までの平均加熱速度を5℃/s以上とする。
【0045】
Ac3点−20℃〜1000℃の温度域に加熱し10〜1000秒均熱保持
均熱保持温度がAc3点−20℃未満ではオーステナイトの生成が不十分となり、本発明のミクロ組織が得られない。一方、均熱保持温度が1000℃を超えると、オーステナイトが粗大化し、焼鈍後の構成相が粗大化して靱性などを低下させる。したがって、均熱保持温度はAc3点−20℃〜1000℃とする。均熱保持時間が10秒未満ではオーステナイトの生成が不十分となり、本発明のミクロ組織が得られない。また、均熱保持時間が1000秒を超えるとコストアップを招く。したがって、均熱保持時間は10〜1000秒とする。
【0046】
750℃から15℃/s以上の平均冷却速度でMs点−80℃〜Ms点−30℃の温度域まで冷却
750℃からMs点−80℃〜Ms点−30℃の温度域までの平均冷却速度が15℃/s未満では冷却中に多量のフェライトが生成し、本発明のミクロ組織が得られない。したがって平均冷却速度を15℃/s以上とする。
【0047】
冷却停止温度:Ms点−80℃〜Ms点−30℃
冷却到達温度まで冷却すると、オーステナイトの一部がマルテンサイトに変態し、その後の再加熱時やめっき合金化処理時に、マルテンサイトは焼戻しマルテンサイトに、未変態オーステナイトは残留オーステナイトあるいはマルテンサイトやベイナイトになる。このとき、冷却到達温度がMs点−30℃を超えると焼戻しマルテンサイト量が不十分となり、Ms点−80℃未満では未変態オーステナイトが著しく減少し、また焼戻しマルテンサイトが増加するため本発明のミクロ組織が得られない。したがって、冷却到達温度はMs点−80℃〜Ms点−30℃とする。
【0048】
再加熱温度:350〜500℃
冷却到達温度まで冷却後、350〜500℃の温度域に再加熱すると、冷却時に生成したマルテンサイトが焼き戻され、焼戻しマルテンサイトとなり、また、未変態オーステナイトにC濃化が進行し、残留オーステナイトとして安定化する。また、ベイナイト変態が進行し、ベイニティックフェライトよりCが拡散して未変態オーステナイトをさらに安定化させる。再加熱温度350℃未満では進行するベイナイト変態が炭化物を含むベイナイトとなるため未変態オーステナイトにあまりCが濃化せず、残留オーステナイトとしての安定性が不十分になる。一方、500℃を超えると未変態オーステナイトが炭化物を生成あるいはパーライト変態しやすくなり、本発明のミクロ組織が得られない。したがって、再加熱温度は350〜500℃とする。好ましくは380〜480℃である。
【0049】
再加熱温度での保持時間:10〜600秒
保持時間が10秒未満では、ベイナイトの生成が不十分になり、また、600秒を超えると未変態オーステナイトが炭化物を生成あるいはパーライト変態しやすくなり、本発明のミクロ組織が得られない。したがって保持時間は10〜600秒とする。
【0050】
溶融亜鉛めっき処理は、上記により得られた鋼板を440℃以上500℃以下の亜鉛めっき浴中に浸漬し、その後、ガスワイピングなどによってめっき付着量を調整して行うことが好ましい。さらに亜鉛めっきを合金化する際は460℃以上550℃以下の温度域に1秒以上40秒以下保持して合金化することが好ましい。亜鉛めっきはAl量が0.08〜0.18%である亜鉛めっき浴を用いることが好ましい。
【0051】
溶融亜鉛めっき合金化処理を施した後の鋼板には、形状矯正や表面粗度の調整などを目的に調質圧延を行うことができる。また、樹脂や油脂コーティングなどの各種塗装処理を施すこともできる。
【0052】
その他の製造方法の条件は、特に限定しないが、以下の条件で行うのが好ましい。
【0053】
スラブは、マクロ偏析を防止するため、連続鋳造法で製造するのが好ましいが、造塊法、薄スラブ鋳造法により製造することもできる。スラブを熱間圧延するには、スラブをいったん室温まで冷却し、その後再加熱して熱間圧延を行ってもよいし、スラブを室温まで冷却せずに加熱炉に装入して熱間圧延を行うこともできる。あるいはわずかの保熱を行った後に直ちに熱間圧延する省エネルギープロセスも適用できる。スラブを加熱する場合は、炭化物を溶解させたり、圧延荷重の増大を防止するため、1100℃以上に加熱することが好ましい。また、スケールロスの増大を防止するため、スラブの加熱温度は1300℃以下とすることが好ましい。
【0054】
スラブを熱間圧延する時は、スラブの加熱温度を低くしても圧延時のトラブルを防止する観点から、粗圧延後の粗バーを加熱することもできる。また、粗バー同士を接合し、仕上げ圧延を連続的に行う、いわゆる連続圧延プロセスを適用できる。仕上げ圧延は、異方性を増大させ、冷間圧延・焼鈍後の加工性を低下させる場合があるので、Ar3変態点以上の仕上げ温度で行うことが好ましい。また、圧延荷重の低減や形状・材質の均一化のために、仕上げ圧延の全パスあるいは一部のパスで摩擦係数が0.10〜0.25となる潤滑圧延を行うことが好ましい。
【0055】
巻取り後の鋼板は、スケールを酸洗などにより除去した後、熱延板を上記の条件で焼鈍するか、あるいは熱延板を冷間圧延した後上記の条件で焼鈍し、溶融亜鉛めっきが施される。冷間圧延を施す場合は、冷間圧下率を40%以上とすることが好ましい。また、冷間圧延時の圧延負荷を低減するために、巻取り後の鋼板に熱延板焼鈍を施すこともできる。
【実施例】
【0056】
表1に示す成分組成の鋼を転炉により溶製し、連続鋳造により鋼スラブとした(表1中、Nは不可避的不純物である)。これらの鋼スラブを1200℃に加熱後粗圧延、仕上圧延し、巻取り温度400〜650℃の範囲で巻取り、板厚2.3mmの熱延板とした。次いで、一部バッチ処理により到達温度600℃、熱処理時間5時間の条件で軟質化を施し、酸洗後、板厚1.4mmに冷間圧延し冷延鋼板を製造し焼鈍に供した。また一部、板厚2.3mmまで熱間圧延した鋼板を酸洗したものをそのまま焼鈍に供した。焼鈍は連続溶融亜鉛めっきラインにより、表2、3に示す条件で行い、460℃のめっき浴中に浸漬し、付着量35〜45g/m2のめっきを形成させ、冷却速度10℃/sで冷却し溶融亜鉛めっき鋼板1〜29を作製した。また一部、めっき後さらに525℃でめっき合金化処理を行い、冷却速度10℃/sで冷却し、合金化溶融亜鉛めっき鋼板を作製した。そして、得られためっき鋼板について、上記の方法でポリゴナルフェライト、ベイニティックフェライト、マルテンサイト、焼戻しマルテンサイトの面積率、残留オーステナイトの面積率および旧オーステナイトの平均粒径を測定した。また、圧延方向と直角方向にJIS5号引張試験片を採取し、歪速度10-3で引張試験を行った。さらに、150mm×150mmの試験片を採取し、JFST 1001(日本鉄鋼連盟規格、2008年)に準拠して穴拡げ試験を3回行って平均の穴拡げ率(%)を求め、伸びフランジ性を評価した。結果を表4、5に示す。
【0057】
【表1】

【0058】
【表2】

【0059】
【表3】

【0060】
【表4】

【0061】
【表5】

【0062】
本発明ではYRが70%以下となり、高い形状凍結性を有することが確認された。また、TSが1180MPa以上、ELが14%以上、λが30%以上となり、高い強度と成形性を有することが確認された。したがって、本発明例によれば、形状凍結性に優れた溶融亜鉛めっき鋼板が得られ、自動車の軽量化に寄与し、自動車車体の高性能化に大きく寄与するという優れた効果を奏する。
【産業上の利用可能性】
【0063】
本発明によれば、引張強さ(TS):1180MPa以上、全伸び(EL):14%以上、穴拡げ率(λ):30%以上かつ降伏比(YR):70%以下である成形性および形状凍結性に優れた高強度溶融亜鉛めっき鋼板を得ることができる。本発明の高強度溶融亜鉛めっき鋼板を自動車用部品用途に使用すると、自動車の軽量化に寄与し、自動車車体の高性能化に大きく寄与することができる。

【特許請求の範囲】
【請求項1】
質量%で、C:0.10〜0.35%、Si:0.5〜3.0%、Mn:1.5〜4.0%、P:0.100%以下、S:0.02%以下、Al:0.010〜0.5%を含み、残部がFeおよび不可避的不純物からなる成分組成を有し、かつミクロ組織は、面積率で0〜5%のポリゴナルフェライト、5%以上のベイニティックフェライト、5〜20%のマルテンサイト、30〜60%の焼き戻しマルテンサイトと、5〜20%の残留オーステナイトを含み、かつ旧オーステナイトの平均粒径が15μm以下であることを特徴とする成形性及び形状凍結性に優れた高強度溶融亜鉛めっき鋼板。
【請求項2】
さらに、質量%で、Cr:0.005〜2.00%、Mo:0.005〜2.00%、V:0.005〜2.00%、Ni:0.005〜2.00%、Cu:0.005〜2.00%から選ばれる少なくとも一種の元素を含有することを特徴とする請求項1に記載の成形性及び形状凍結性に優れた高強度溶融亜鉛めっき鋼板。
【請求項3】
さらに、質量%で、Ti:0.01〜0.20%、Nb:0.01〜0.20%から選ばれる少なくとも一種の元素を含有することを特徴とする請求項1または2に記載の成形性及び形状凍結性に優れた高強度溶融亜鉛めっき鋼板。
【請求項4】
さらに、質量%で、B:0.0005〜0.0050%を含有することを特徴とする請求項1から3のいずれかに記載の成形性及び形状凍結性に優れた高強度溶融亜鉛めっき鋼板。
【請求項5】
さらに、質量%で、Ca:0.001〜0.005%、REM:0.001〜0.005%から選ばれる少なくとも一種の元素を含有することを特徴とする請求項1から4のいずれかに記載の成形性及び形状凍結性に優れた高強度溶融亜鉛めっき鋼板。
【請求項6】
亜鉛めっきが合金化亜鉛めっきであることを特徴とする請求項1から5のいずれかに記載の成形性及び形状凍結性に優れた高強度溶融亜鉛めっき鋼板。
【請求項7】
請求項1から5のいずれかに記載の成分組成を有するスラブを、熱間圧延し、またはさらに冷間圧延し、その後連続焼鈍を施すに際し、500℃〜Ac1点までを5℃/s以上の平均加熱速度で、Ac3点−20℃〜1000℃の温度域に加熱し10〜1000秒保持した後、750℃から15℃/s以上の平均冷却速度でMs点−80℃〜Ms点−30℃の温度域まで冷却した後、350℃〜500℃に加熱し10〜600秒保持した後、溶融亜鉛めっきを施し、またはさらにめっき合金化処理を行うことを特徴とする成形性及び形状凍結性に優れた高強度溶融亜鉛めっき鋼板の製造方法。

【公開番号】特開2012−229466(P2012−229466A)
【公開日】平成24年11月22日(2012.11.22)
【国際特許分類】
【出願番号】特願2011−97912(P2011−97912)
【出願日】平成23年4月26日(2011.4.26)
【出願人】(000001258)JFEスチール株式会社 (8,589)
【Fターム(参考)】