説明

排ガス浄化装置

【課題】触媒の昇温効率を向上した排ガス浄化装置を提供する。
【解決手段】触媒担体12は、側面被覆部材21、上流端面被覆部材22、下流端面被覆部材23によって覆われている。側面被覆部材21、上流端面被覆部材22、下流端面被覆部材23のぞれぞれは、ステンレス製の棒状部材25に、マイクロ波を吸収可能な材質である炭素からなるマイクロ波吸収体26がコーティングされ、さらに、シリカからなる保護膜27をマイクロ波吸収体26に被覆したものによってメッシュを形成するように構成されている。一端がマグネトロン16に接続されたマイクロ波導入通路15の他端は、コンバータケース11及び断熱部材17を貫通して、側面被覆部材21に設けられたマイクロ波導入孔24に挿入するように接続されている。マイクロ波導入通路15には、コンバータケース11の外部に位置するように、雲母製の誘電部材29が設けられている。

【発明の詳細な説明】
【技術分野】
【0001】
この発明は排ガス浄化装置に係り、特に、排ガス浄化装置を構成する触媒の昇温に関する。
【背景技術】
【0002】
ディーゼルエンジンの排ガスに含まれる窒素酸化物(NOx)を低減するために、尿素SCR(Selective Catalytic Reduction)システムが開発されている。尿素SCRシステムの基本構成は、一酸化窒素(NO)を酸化して二酸化窒素(NO)にするための酸化触媒と、酸化触媒の下流側に設けられ、尿素に水を反応させて生成したアンモニアとNOxとの化学反応によりNOxを窒素及び水にするためのSCR触媒と、SCR触媒に尿素を添加するための尿素添加システムと、SCR触媒の下流側に設けられ、SCR触媒における化学反応で消費されずに残ったアンモニアを酸化するための酸化触媒とから構成される。
【0003】
酸化触媒もSCR触媒も一般的に、ある温度よりも温度が高い場合には十分な触媒性能を示すものの、ある温度よりも低い場合には、極端に触媒性能が低下してしまう。このため、例えばエンジン起動直後のような排ガス温度が低い場合には、触媒温度も低く、十分な触媒性能が得られないため、触媒の昇温が必要となる。触媒の昇温技術として、特許文献1には、電磁波吸収体と触媒との混合物をセラミック壁の表面に担持した触媒が開示されている。この触媒にマイクロ波を照射すると、電磁波吸収体がマイクロ波を吸収して発熱し、触媒を昇温させる。
【0004】
【特許文献1】特開平5−49939号公報
【発明の開示】
【発明が解決しようとする課題】
【0005】
しかしながら、特許文献1の排ガス浄化装置では、触媒の上流側及び下流側に、多数のパンチング孔を有した金属板を設けることにより、触媒を収容する加熱室を形成して、加熱室の上流側及び下流側にマイクロ波が広がることを防止しているものの、加熱室内に照射されたマイクロ波が全て触媒の昇温に使用されるとは限らないため、触媒の昇温効率があまり高くないといった問題点があった。
【0006】
この発明はこのような問題点を解決するためになされたもので、触媒の昇温効率を向上した排ガス浄化装置を提供することを目的とする。
【課題を解決するための手段】
【0007】
この発明に係る排ガス浄化装置は、排ガスが流通する排気管に設けられた触媒担体と、該触媒担体に照射するマイクロ波を発生させるためのマイクロ波発生装置と、前記触媒担体を覆うように設けられると共に前記マイクロ波を遮断するマイクロ波遮断部材と、前記マイクロ波を吸収可能な材質からなり、前記触媒担体の表面に接すると共に前記触媒担体を覆うように設けられたマイクロ波吸収体と、前記マイクロ波遮断部材に設けられたマイクロ波導入孔と、一端が前記マイクロ波発生装置に接続されると共に他端が前記マイクロ波導入孔に接続されたマイクロ波導入通路と、該マイクロ波導入通路に設けられた誘電部材とを備え、前記マイクロ波遮断部材及び前記マイクロ波吸収体には、前記触媒担体に前記排ガスを供給するための排ガス供給孔と、前記触媒担体を通過した前記排ガスを流出させるための排ガス流出孔とが設けられている。マイクロ波遮断部材が触媒担体を覆うことにより、マイクロ波発生装置によって発生したマイクロ波は、マイクロ波遮断部材内に閉じ込められるので、触媒担体の表面に接すると共に触媒担体を覆うように設けられたマイクロ波吸収体に吸収されやすくなる。
前記マイクロ波吸収体は、前記マイクロ波遮断部材の表面にコーティングされていてもよい。
前記マイクロ波吸収体は保護膜で被覆されていてもよい。前記保護膜はシリカ膜でもよい。
前記マイクロ波遮断部材は、導電材料がメッシュを形成するように構成されていてもよい。
前記誘電部材は、前記排気管の外部に位置するように、前記マイクロ波導入通路に設けられていてもよい。
【発明の効果】
【0008】
この発明によれば、マイクロ波遮断部材が触媒担体を覆うことにより、マイクロ波発生装置によって発生したマイクロ波は、マイクロ波遮断部材内に閉じ込められて、触媒担体の表面に接すると共に触媒担体を覆うように設けられたマイクロ波吸収体に吸収されやすくなるので、マイクロ波のほとんどは触媒の昇温のみに使用され、その結果、触媒の昇温効率を向上することができる。
【発明を実施するための最良の形態】
【0009】
以下、この発明の実施の形態を添付図面に基づいて説明する。
この発明の実施の形態に係る排ガス浄化装置の構成模式図を図1に示す。ディーゼルエンジン1から排出された排ガスが流通する排気管2に、酸化触媒3と、ディーゼルパティキュレートフィルタ(DPF)4と、SCR触媒5と、酸化触媒6とが設けられている。DPF4とSCR触媒5との間には、尿素水を噴射する噴射ノズル7が設けられており、噴射ノズル7は、配管8を介して、尿素水を貯留する尿素水タンク9に連通している。配管8には、尿素水タンク9内の尿素水を噴射ノズル7に供給するための尿素水添加システム10が設けられている。尿素水添加システム10は、制御装置であるECU14に電気的に接続されている。
【0010】
図2に、SCR触媒5の詳細図を示す。SCR触媒5は、排気管2の一部を構成するコンバータケース11と、コンバータケース11内に設けられた円柱形状の触媒担体12と、コンバータケース11内において触媒担体12を覆う断熱部材17とを有している。SCR触媒5は、マイクロ波導入通路15を介して、マイクロ波発生装置であるマグネトロン16に接続されている。排気ガスは図中左から右へ流れる。触媒担体12より上流側には、排気ガス温度を測定するための温度センサ13aが設けられている。また、触媒担体12より下流側には、触媒担体12を通過後の排気ガス温度を測定するための温度センサ13bが設けられている。温度センサ13a,13b及びマグネトロン16はそれぞれ、ECU14に電気的に接続されている。
【0011】
図3に示されるように、触媒担体12には、触媒担体12の側面に接するように、筒状の側面被覆部材21が設けられ、触媒担体12の上流側端面に接するように、円盤状の上流端面被覆部材22が設けられ、触媒担体12の下流側端面に接するように、円盤状の下流端面被覆部材23が設けられている。側面被覆部材21には、側面被覆部材21を貫通するように形成されたマイクロ波導入孔24が設けられている。側面被覆部材21、上流端面被覆部材22、下流端面被覆部材23のぞれぞれは、格子状メッシュの構成を有している。すなわち、ステンレス製の棒状部材25に、マイクロ波を吸収可能な材質である炭素からなるマイクロ波吸収体26がコーティングされ、さらに、ポリシラザンを塗布後に硬化させて形成したシリカ(SiO)からなる保護膜27をマイクロ波吸収体26に被覆したものによってメッシュを形成するように、側面被覆部材21、上流端面被覆部材22、下流端面被覆部材23のそれぞれが構成されている。尚、メッシュの間隔は、10mm以下であることが好ましい。なお、側面被覆部材21,上流端面被覆部材22,下流端面被覆部材23のうち、メッシュ状に形成された棒状部材25は、マイクロ波遮断部材を構成する。また、側面被覆部材21、上流端面被覆部材22、下流端面被覆部材23のそれぞれがメッシュ状に構成されていることから、それぞれに複数の孔が設けられている。ここで、上流端面被覆部材22に設けられた複数の孔22aは、排ガス供給孔を構成すると共に、下流端面被覆部材23に設けられた複数の孔23aは、排ガス流出孔を構成する。
【0012】
図4に示されるように、一端がマグネトロン16に接続されたマイクロ波導入通路15の他端は、コンバータケース11及び断熱部材17を貫通して、側面被覆部材21に設けられたマイクロ波導入孔24に挿入するように接続されている。このような構成により、触媒担体12は、マイクロ波導入通路15を介して、マグネトロン16に接続されている。マイクロ波導入通路15には、コンバータケース11の外部に位置するように、雲母製の誘電部材29が設けられており、誘電部材29は、触媒担体12とマグネトロン16との連通を遮断している。
【0013】
図5に示されるように、触媒担体12は、炭化ケイ素(SiC)からなる複数の直方体形状のハニカム片30から構成されている。ハニカム片30には、ハニカム片30の軸方向にハニカム片30を貫通するように複数の孔31が設けられている。孔31の内周面31aには、選択還元触媒32が担持されている。
【0014】
図2〜5には、SCR触媒5の構造を詳細に示したが、酸化触媒3及び6についても同じ構成となっており、SCR触媒5においてハニカム片30の孔31の内周面31aに担持された選択還元触媒32が、酸化触媒3ではNOを酸化してNOにするための酸化触媒となっており、酸化触媒6ではアンモニアを酸化するための酸化触媒となっている。
【0015】
次に、この実施の形態に係る排ガス浄化装置の動作を、図1〜5に基づいて説明する。
ディーゼルエンジン1のスタート時やアイドリング時には、ディーゼルエンジン1から排出される排ガスの温度が低いため、酸化触媒3と、SCR触媒5と、酸化触媒6とのそれぞれに排ガスが流通しても、十分な触媒性能を発揮するのに必要な温度まで触媒温度が上昇しない。そこで、SCR触媒5について、昇温動作を説明する。温度センサ13aによって測定された温度が、予め設定された温度(以下、「設定温度」と称する)よりも低い場合には、ECU14はマグネトロン16を起動させて、マイクロ波を発生させる。
【0016】
発生したマイクロ波は、マイクロ波導入通路15内を伝播し、誘電部材29を通り抜けて、側面被覆部材21、上流端面被覆部材22、下流端面被覆部材23によって囲まれた空間内、すなわち、触媒担体12に照射される。マイクロ波は、側面被覆部材21、上流端面被覆部材22、下流端面被覆部材23のメッシュ状に形成された棒状部材25(マイクロ波遮断部材)によって遮断され、側面被覆部材21、上流端面被覆部材22、下流端面被覆部材23によって囲まれた空間内に閉じ込められる。そして、マイクロ波吸収体26が、閉じ込められたマイクロ波を吸収して加熱し、その熱によって触媒担体12が昇温される。触媒担体12が昇温することにより、ハニカム片30の孔31の内周面31aに担持された選択還元触媒32が昇温される。
【0017】
排気管2を流通する排ガスは、上流端面被覆部材22に形成されている複数の孔22aを介して、側面被覆部材21、上流端面被覆部材22、下流端面被覆部材23によって囲まれた空間内に流入し、触媒担体12を構成するハニカム片30の孔31を流通する。触媒担体12が昇温されているので、排ガスは、孔31を流通する際に温度が上昇する。排ガスは、孔31を流通した後、下流端面被覆部材23に形成されている複数の孔23aを介して、側面被覆部材21、上流端面被覆部材22、下流端面被覆部材23によって囲まれた空間から流出する。尚、側面被覆部材21にはマイクロ波導入孔24が設けられているものの、誘電部材29によってマイクロ波導入通路15が塞がれているので、排ガスがマイクロ波導入通路15を介してマグネトロン16に流入することを防止している。
【0018】
温度センサ13bによって測定された排ガスの温度が設定温度以上になったら、ECU14はマグネトロン16の稼働を停止する。これにより、マイクロ波吸収体26に吸収されるマイクロ波が発生しなくなるので、マイクロ波吸収体26が発熱しなくなる。これ以降、温度センサ13a,13bの測定値に基づいて、ECU14がマグネトロン16を起動させたり停止させたりすることにより、選択還元触媒32が適切な温度に保たれる。
尚、酸化触媒3及び6についても、各設定温度は異なるものの、SCR触媒5についての昇温動作と同様にして、適切な温度に保たれる。
【0019】
酸化触媒3及び6とSCR触媒5とがそれぞれ適切な温度になると、排ガスが酸化触媒3を流通することにより、排ガス中のNOがNOに酸化される。続いて排ガスがDPF4を流通することにより、排ガス中のパティキュレートマター(PM)がDPF4に捕捉される。ECU14は適切なタイミングで尿素水添加システム10を作動させ、尿素水タンク9内の尿素水を、配管8を介して噴射ノズル7に供給し、噴射ノズル7から尿素水がSCR触媒5に添加される。SCR触媒5に添加された尿素水は加水分解されてアンモニアと二酸化炭素となり、生成したアンモニアと排ガス中のNOxとが反応して、窒素及び水となる。SCR触媒5において消費されずに残ったアンモニアは、酸化触媒6において酸化される。
【0020】
このように、メッシュ状に構成されたステンレス製の棒状部材25(マイクロ波遮断部材)が触媒担体12を覆うことにより、マグネトロン16によって発生したマイクロ波は、マイクロ波遮断部材内に閉じ込められて、触媒担体12の表面に接すると共に触媒担体12を覆うように設けられたマイクロ波吸収体26に吸収されやすくなるので、マイクロ波のほとんどは触媒の昇温のみに使用され、その結果、触媒の昇温効率を向上することができる。酸化触媒3及び6についても同様である。
また、マイクロ波吸収体26は、高温の排ガスと直接接触することから損傷または劣化し易い状況にあるが、シリカからなる保護膜27で被覆されているため、排ガスによる損傷及び劣化を防ぐことができる。尚、シリカはマイクロ波を透過させるので、マイクロ波吸収体26によるマイクロ波の吸収を阻害することはない。
側面被覆部材21、上流端面被覆部材22、下流端面被覆部材23はそれぞれ、ステンレス製の棒状部材25と、マイクロ波吸収体26と、保護膜27との三重構造になっており、棒状部材25が骨組の役割を果すので、側面被覆部材21、上流端面被覆部材22、下流端面被覆部材23のそれぞれの強度を高めることができる。
さらに、誘電部材29は、排気管2の外部に位置するように、マイクロ波導入通路15に設けられているが、誘電部材29が設けられているマイクロ波導入通路15の部分は、その周囲を外気が取り囲んでいるので、高温の排ガスが接触する誘電部材29を冷却することが可能になる。
【0021】
この実施の形態では、側面被覆部材21、上流端面被覆部材22、下流端面被覆部材23はそれぞれ、ステンレス製のメッシュ状構造の棒状部材25に、マイクロ波吸収体26と、保護膜27とが被覆された三重構造になっているが、この構成に限定するものではない。板状のマイクロ波遮断部材と触媒担体12との間で触媒担体12に接触するようにマイクロ波吸収体を設けてもよい。この場合には、マイクロ波導入孔24と、排ガス供給孔22a及び排ガス流出孔23aとは、板状のマイクロ波遮断部材を貫通するように設ければよい。また、マイクロ波遮断部材は、棒状部材25を格子状のメッシュに形成することにより構成されているが、この構成に限定するものではなく、パンチングメタルやエキスパンドメタル等といったメッシュから構成してもよい。
また、上流端面被覆部材22及び下流端面被覆部材23にはそれぞれ、排ガスが流通するための複数の孔22a及び23aを設ける必要があるが、側面被覆部材21には孔が設けられていなくてもよい。さらに、マイクロ波導入孔24は側面被覆部材21に設けられていたが、この構成に限定するものではなく、上流端面被覆部材22または下流端面被覆部材23に設けてもよい。
【0022】
棒状部材25の材質はステンレスに限定するものではなく、その他の金属でもよい。また、マイクロ波吸収体26の材質は炭素に限定するものではなく、マイクロ波を吸収できる材質ならどのような材質であってもよく、炭素繊維やグラファイト、SiC等でもよい。また、保護膜27の材質としてポリシラザン由来のシリカを使用したが、これに限定するものではない。マイクロ波を透過すると共に排ガスからマイクロ波吸収体26を保護できる材質であればどのようなものでもよく、例えば、アルミナ等、セラミック系の材質であればよい。さらに、誘電部材29の材質は雲母に限定するものではなく、高温の排ガスとの接触に対して損傷しにくく、かつ、マイクロ波を透過可能な材質(比誘電率が30未満)であればどのようなものでもよく、例えば、ガラス、アルミナ、石英、アスファルト、ダイヤモンド等が挙げられる。
【0023】
この実施の形態に加え、マイクロ波を吸収可能な長さ、すなわち、マイクロ波の波長の1/2または1/4の長さの金属棒(アンテナ)を、触媒担体12の外周面に張り付けたり、孔31のうちの一部の孔に挿入したりしてもよい。アンテナがマイクロ波を吸収することによって発熱し、その熱で触媒担体12が加熱される。
【0024】
この実施の形態では、温度センサ13a,13bで触媒担体12を通過する前と後の排ガスの温度を測定し、その温度に基づいてマグネトロン16の稼働を調整するようにしたが、この形態に限定するものではない。マグネトロン16の起動後、一定時間が経過したらマグネトロン16を停止するようにしてもよい。
また、温度センサも2つに限定するものではなく、上流端面被覆部材22よりも上流側または下流端面被覆部材23よりも下流側に、少なくとも1つ以上の温度センサを設け、この温度センサの測定値に基づいてマグネトロン16の稼働を調整するようにしてもよい。
また、エンジンの特性から予め分かっている排気ガス温度と、温度センサ13a,13bにて測定される温度からマグネトロン16の稼動を調整しても良い。
【0025】
この実施の形態では、触媒担体12としてSiC製の触媒担体を使用したが、これに限定するものではない。セラミックス、ゼオライト、コージェライト製等の触媒担体でもよい。また、触媒担体12の形状も円柱形状に限定するものではなく、楕円柱形状等どのような形状であってもよい。
【図面の簡単な説明】
【0026】
【図1】この発明の実施の形態に係る排ガス浄化装置の構成模式図である。
【図2】この実施の形態に係る排ガス浄化装置を構成するSCR触媒の詳細図である。
【図3】この実施の形態に係る排ガス浄化装置を構成するSCR触媒の触媒担体の分解図である。
【図4】この実施の形態に係る排ガス浄化装置を構成するSCR触媒の部分拡大断面図である。
【図5】この実施の形態に係る排ガス浄化装置を構成するSCR触媒の触媒担体のハニカム片の正面図である。
【符号の説明】
【0027】
2 排気管、12 触媒担体、15 マイクロ波導入通路、16 マグネトロン(マイクロ波発生装置)、22a 孔(排ガス供給孔)、23a 孔(排ガス流出孔)、24 マイクロ波導入孔、25 棒状部材(マイクロ波遮断部材)、26 マイクロ波吸収体、27 保護膜、29 誘電部材。

【特許請求の範囲】
【請求項1】
排ガスが流通する排気管に設けられた触媒担体と、
該触媒担体に照射するマイクロ波を発生させるためのマイクロ波発生装置と、
前記触媒担体を覆うように設けられると共に前記マイクロ波を遮断するマイクロ波遮断部材と、
前記マイクロ波を吸収可能な材質からなり、前記触媒担体の表面に接すると共に前記触媒担体を覆うように設けられたマイクロ波吸収体と、
前記マイクロ波遮断部材に設けられたマイクロ波導入孔と、
一端が前記マイクロ波発生装置に接続されると共に他端が前記マイクロ波導入孔に接続されたマイクロ波導入通路と、
該マイクロ波導入通路に設けられた誘電部材と
を備え、
前記マイクロ波遮断部材及び前記マイクロ波吸収体には、前記触媒担体に前記排ガスを供給するための排ガス供給孔と、前記触媒担体を通過した前記排ガスを流出させるための排ガス流出孔とが設けられている排ガス浄化装置。
【請求項2】
前記マイクロ波吸収体は、前記マイクロ波遮断部材の表面にコーティングされている、請求項1に記載の排ガス浄化装置。
【請求項3】
前記マイクロ波吸収体は保護膜で被覆されている、請求項1または2に記載の排ガス浄化装置。
【請求項4】
前記保護膜はシリカ膜である、請求項3に記載の排ガス浄化装置。
【請求項5】
前記マイクロ波遮断部材は、導電材料がメッシュを形成するように構成されている、請求項1〜4のいずれか一項に記載の排ガス浄化装置。
【請求項6】
前記誘電部材は、前記排気管の外部に位置するように、前記マイクロ波導入通路に設けられている、請求項1〜5のいずれか一項に記載の排ガス浄化装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公開番号】特開2010−36083(P2010−36083A)
【公開日】平成22年2月18日(2010.2.18)
【国際特許分類】
【出願番号】特願2008−200561(P2008−200561)
【出願日】平成20年8月4日(2008.8.4)
【出願人】(000003218)株式会社豊田自動織機 (4,162)
【Fターム(参考)】