説明

撮像光学系、撮像レンズ装置及びデジタル機器

【課題】レンズ3枚構成で、十分なコンパクト化を達成しつつ、色収差の補正等が十分に行える高精細な撮像光学系を提供する。
【解決手段】撮像光学系10は、物体側から順に、正の光学的パワーを有する第1レンズ11、正の光学的パワーを有する第2レンズ12、及び負の光学的パワーを有する第3レンズ13を具備する。このような撮像光学系10において、正レンズである第1レンズ11が有するレンズ面11a、11b及び第2レンズ12が有するレンズ面12a、12bのうち、少なくとも一つのレンズ面に回折面が形成される。そして、回折面を含むレンズの屈折によるパワーをP、当該撮像光学系10の全系の屈折と回折によるパワーをPとするとき、下記の条件式を満たすように構成される。
0.2<P/P<2.0

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、複数のレンズから構成される撮像光学系に関し、特に小型化に適した撮像光学系、撮像レンズ装置及びその撮像レンズ装置を搭載したデジタル機器に関するものである。
【背景技術】
【0002】
近年、携帯電話機や携帯情報端末(PDA:Personal Digital Assistant)の普及が目覚しく、しかもこれらの機器に、コンパクトなデジタルスチルカメラユニットやデジタルビデオユニットが内蔵される仕様が一般化してきている。これまで、携帯電話機等に用いられる撮像素子は10万〜35万画素程度の低画素数のものが殆どであり、このような撮像素子に対しては、1〜2枚のレンズで構成される撮像光学系が用いられていた。しかしながら、近年は100万画素を超えるような撮像素子が携帯電話機等に数多く採用されるに至っており、かかる高画素撮像素子に対しては上記のような撮像光学系では色収差の補正等が不十分で解像性能を良好なものとすることができなかった。
【0003】
色収差の補正能力を上げるにはレンズ枚数を増やせば良いが、携帯電話機のような小型のデジタル機器に組み込むためには可及的にレンズ枚数は少ないことが望ましい。これらの点に鑑み、3枚のレンズにて撮像光学系を構築することも試みられたが、レンズ3枚構成とした程度では色収差を十分に補正することはできなかった。一方、1〜2枚のレンズで構成される撮像光学系において、特許文献1、特許文献2には、レンズ面に回折面を形成することで色収差の補正を行うようにした撮像光学系が開示されている。しかし、1〜2枚のレンズ構成では、たとえ回折面を設けたとしても解像性能が不十分である。
【0004】
ところで、特許文献3には、撮像光学系ではなく、イメージスキャナ等に適用される読み取り光学系において、レンズ3枚構成とすると共にそのレンズ面の一つに正の回折面を形成することが開示されている。しかし、読み取り光学系では光学全長が長く、画角が狭いものであることから、特許文献3に開示された技術をそのまま携帯電話機のような小型のデジタル機器に適用するのは困難であった。
【特許文献1】特開平10−104533号公報
【特許文献2】特開平10−161020号公報
【特許文献3】特開平11−52231号公報
【発明の開示】
【発明が解決しようとする課題】
【0005】
本発明は、上述したような状況を鑑みてなされたものであり、レンズ3枚構成で、十分なコンパクト化を達成しつつ、色収差の補正等が十分に行える高精細な撮像光学系、撮像レンズ装置及びデジタル機器を提供することを目的とする。
【課題を解決するための手段】
【0006】
本発明は、上記技術的課題を解決するために、以下のような構成を有する撮像光学系、撮像レンズ装置及びデジタル機器を提供するものである。なお、以下の説明において使用されている用語は、本明細書においては次の通り定義されているものとする。
(a)屈折率は、d線の波長(587.56nm)に対する屈折率である。
(b)アッベ数は、d線、F線(486.13nm)、C線(656.28nm)に対する屈折率を各々nd、nF、nC、アッベ数をνdとした場合に、
νd=(nd−1)/(nF−nC)
の定義式で求められるアッベ数νdをいうものとする。
(c)面形状に関する表記は、近軸曲率に基づいた表記である。
(d)レンズについて、「凹」、「凸」又は「メニスカス」という表記を用いた場合、これらは光軸近傍(レンズの中心付近)でのレンズ形状を表しているもの(近軸曲率に基づいた表記)とする。
【0007】
本発明の請求項1に係る撮像光学系は、物体側から像側に向かって、正の光学的パワーを有する第1レンズと、正の光学的パワーを有する第2レンズと、負の光学的パワーを有する第3レンズとを具備する撮像光学系において、前記第1レンズ及び第2レンズが有するレンズ面のうち、少なくとも一つのレンズ面に回折面が形成され、その回折面を含むレンズの屈折によるパワーが下記(1)の条件式を満たすことを特徴とする。
0.2<P/P<2.0 ・・・(1)
但し、P:回折面を含むレンズの屈折によるパワー
P:全系の屈折と回折によるパワー
【0008】
この構成によれば、物体側から順に正正負のレンズ3枚構成とされ、正レンズのうちの少なくとも一つのレンズ面が回折面を有する撮像光学系とされている。このような正正負のレンズ3枚構成では、一般に最も像側に位置することになる負レンズ(第3レンズ)により色収差が補正される。かかる撮像光学系において、コンパクト化のためにレンズ全長の短縮化を図るには、正レンズのパワーを適度に強くする必要があるが、これにより色収差が悪化するという問題が生じる。そこで本発明では、正レンズのうちの少なくとも一つのレンズ面が回折面を有する構成とすることで正レンズにおいても色収差を補正可能とし、つまり回折面を含む正レンズに適度に強い屈折によるパワーを持たせることを可能にし、撮像光学系のコンパクト化を実現したものである。
【0009】
そして、回折面を含むレンズの屈折によるパワーが上記条件式(1)を満たすことを要件としている。条件式(1)の上限を超えると、前記回折面だけでは色収差を十分に補正することが困難となり、また下限を下回ると、光学系全長の短縮化が十分に図れなくなる。従って、請求項1に係る構成を備えることで、正正負のレンズ3枚構成で、十分なコンパクト化を達成しつつ、色収差の補正等が十分に行える高精細な撮像光学系が提供できるようになる。
【0010】
請求項2に係る撮像光学系は、請求項1において、下記(2)、(3)の条件式を満たすことを特徴とする。
0.0<PDOE/P<0.3 ・・・(2)
−2.00<P/P<−0.05 ・・・(3)
但し、PDOE:回折によるパワー
:第3レンズの屈折によるパワー
【0011】
上述した通り、正正負のレンズ3枚構成では、負レンズにより色収差が補正される。従って、撮像光学系のコンパクト化を進めるほど、1枚しか存在しない負レンズのパワーを大きくして色収差を補正する必要がある。しかし、あまり負レンズのパワーを大きくしすぎると、球面収差とのバランスを崩し各種収差を良好に補正できなくなる。本発明においては、正レンズの少なくとも一つのレンズ面に回折面が形成されていることから当該回折面でも色収差の補正が行われる結果、負レンズのパワーを過剰に大きくすることなく色収差を低減させることができるが、前記回折面の回折パワー及び負レンズの屈折によるパワーを全系のパワーとの関係において上記条件式(2)、(3)の要件を満足させることで、一層コンパクト化及び高精細さの面でバランスの取れた撮像光学系を提供できるようになる。条件式(2)の上限を超えると、軸上色収差の補正が過剰となる傾向が顕著となる。また、下限に達すると、前記回折面が回折光学素子として機能しなくなる。一方、条件式(3)の上限を超えると、負レンズ(第3レンズ)のパワーが小さくなりすぎて主点位置を像面側から遠ざけることができなくなり、焦点距離に対して全長の短縮化が困難になる傾向がある。また、下限を下回ると、負レンズのパワーが大きくなりすぎ偏芯誤差感度が高くなってレンズ間の調整が必須となり、コストが高くなる傾向が顕著になる。
【0012】
請求項3に係る撮像光学系は、請求項1又は2において、撮像光学系が光学絞りを具備し、前記回折面が前記光学絞りの近傍に配置されると共に、前記回折面を通る最大画角の主光線の光線高さが、下記(4)、(5)の条件式を満たすことを特徴とする。
|DDOE|/D<0.7 ・・・(4)
|HDOE|/DDOE<1.2 ・・・(5)
但し、DDOE:光学絞りから回折面までの光軸上の距離
:光学絞りから像面までの距離
DOE:回折面を通る最大画角の主光線の光線高さ
【0013】
一般に、回折光学素子はアッベ数=−3.45と、光学樹脂や光学ガラスに比べ非常に高い分散特性をもつ。軸上色収差を補正するためには適度な回折のパワーが必要なのであるが、倍率色収差はパワーだけでなく光線高さにも補正効果が影響してしまう。そこで、回折面を光学絞りの近傍に配置する(これにより、軸状光と軸外光の回折面における分離度合いを小さくできる)ことで、回折面を通る最大画角の主光線の光線高さを低くできるようにすると共に、条件式(4)、(5)を満足させることで、倍率色収差の補正を適性に行えるようにしたものである。条件式(4)及び条件式(5)の上限を超えると、いずれも倍率色収差の補正が過剰となる傾向が顕著となる。
【0014】
請求項4に係る撮像光学系は、請求項1〜3のいずれかにおいて、撮像光学系が光学絞りを具備し、前記光学絞りが、前記第1レンズと第2レンズとの間に配置されていることを特徴とする。
【0015】
物体側から順に正正負のレンズ3枚構成とされた撮像光学系の場合、第1レンズと第2レンズとの間に光学絞りを介在させることで、第1レンズと第2レンズとを対称的に配置することができる。これにより、コマ収差、非点収差、歪曲収差等の発生を抑制することができるという利点がある。
【0016】
請求項5に係る撮像光学系は、請求項1〜3のいずれかにおいて、撮像光学系が光学絞りを具備し、前記光学絞りが、前記第1レンズの物体側に配置されていることを特徴とする。
【0017】
この構成によれば、第1レンズの物体側に光学絞りが配置されるので、射出瞳位置を像面から離すことができるようになる。これにより、テレセントリック性を高めることができるという利点がある。
【0018】
請求項6に係る撮像光学系は、請求項1〜5のいずれかにおいて、下記(6)の条件式を満たすことを特徴とする。
0.6<D/f<1.9 ・・・(6)
但し、D:第1レンズの物体側面から第3レンズの像側面までの光軸上厚み
f:全系の焦点距離
【0019】
この構成によれば、撮像光学系のコンパクト化と収差補正とのバランスを図ることができる。上記条件式(6)の上限を超えると、収差を補正する上で有利となるが、光学系全長の増大を招来してしまう。また、下限を下回ると、光学系全長を短縮する上では有利となるが、収差劣化を招来してしまう。特に画角を広くすると、歪曲収差と像面湾曲の劣化が顕在化する。
【0020】
請求項7に係る撮像光学系は、請求項1〜6のいずれかにおいて、少なくとも1枚の光学樹脂材料製レンズを有することを特徴とする。この構成によれば、樹脂材料製レンズを用いることで、安定した品質での大量生産が可能となり、大幅なコストダウンを図ることができる。
【0021】
請求項8に係る撮像光学系は、請求項7において、前記回折面を有するレンズが、光学樹脂材料製レンズからなることを特徴とする。回折面は構造が複雑なものとなるため、金型を用いた成形加工により形成することが望ましい。そこで、回折面を追加する正レンズの硝材に光学樹脂材料を用いることで、回折面付きの正レンズを金型成形にて生産できるようになり、製造の容易化並びにコストダウンが図れるようになる。
【0022】
請求項9に係る撮像光学系は、請求項8において、前記光学樹脂材料製レンズは、樹脂材料中に最大長が30ナノメートル以下の無機粒子を分散させてなる素材を用いて成形したレンズであることを特徴とする。
【0023】
一般に透明な樹脂材料に微粒子を混合させると、光の散乱が生じ透過率が低下するため、光学材料として使用することは困難である。しかし、微粒子の大きさを透過光束の波長より小さくすることにより、散乱が実質的に発生しないようにできる。樹脂材料は温度が上昇することにより屈折率が低下してしまうが、無機微粒子は温度が上昇すると屈折率が上昇する。そこで、これらの温度依存性を利用して互いに打ち消しあうように作用させることにより、屈折率変化がほとんど生じないようにすることができる。具体的には、母材となる樹脂材料に最大長が30ナノメートル以下の無機粒子を分散させることで、屈折率の温度依存性が極めて低い樹脂材料とすることができる。例えばアクリルに酸化ニオブ(Nb)の微粒子を分散させることで、温度変化による屈折率変化を小さくすることができる。従って、少なくとも1枚のレンズに、このような無機粒子を分散させた樹脂材料を用いることにより、本発明に係る変倍光学系の全系の環境温度変化に伴うバックフォーカスずれを小さく抑えることができる。
【0024】
請求項10に係る撮像光学系は、請求項1〜9のいずれかにおいて、前記第1レンズ及び第2レンズのうち、屈折のみによるパワーを持つレンズが、光学ガラス材料製レンズからなることを特徴とする。この構成によれば、2枚の正レンズのうち、いずれか1枚の正レンズにのみ回折面が具備されている場合において、回折面を持たず屈折のみのパワーを持つもう一方の正レンズの硝材を光学ガラスにすることで、環境温度変化によるバックフォーカスのずれを可及的に小さくすることができる。
【0025】
請求項11に係る撮像レンズ装置は、請求項1〜10のいずれかに記載の撮像光学系と、光学像を電気的な信号に変換する撮像素子とを備え、前記撮像光学系が前記撮像素子の受光面上に被写体の光学像を形成可能とされていることを特徴とする。この構成によれば、携帯電話機や携帯情報端末等に搭載可能な、コンパクトで高精細な撮像レンズ装置を実現し得る。
【0026】
請求項12に係るデジタル機器は、請求項11に記載の撮像レンズ装置と、前記撮像レンズ装置及び撮像素子に被写体の静止画撮影及び動画撮影の少なくとも一方の撮影を行わせる制御部とを具備し、前記撮像レンズ装置の撮像光学系が、前記撮像素子の受光面上に被写体の光学像を形成可能に組み付けられていることを特徴とする。この構成によれば、高精細でコンパクトな撮像レンズ装置を搭載した携帯電話機のようなデジタル機器を実現し得る。
【発明の効果】
【0027】
本発明によれば、レンズ3枚構成という少ないレンズ枚数で、色収差の補正等が十分に行える高精細な撮像光学系、撮像レンズ装置及びデジタル機器を安価に、且つコンパクト化が十分達成された態様で提供することができる。
【発明を実施するための最良の形態】
【0028】
以下、図面に基づいて、本発明の実施形態につき説明する。
<撮像光学系の構成の説明>
図1は、本発明に係る撮像光学系10の構成を模式的に示す光路図である。この撮像光学系10は、光学像を電気的な信号に変換する撮像素子16の受光面16a(像面)上に被写体の光学像を形成するものであって、物体側(被写体)から像側(撮像素子16)に向かって、正の光学的パワーを有する第1レンズ11と、正の光学的パワーを有する第2レンズ12と、負の光学的パワーを有する第3レンズ13とを具備する正正負のレンズ3枚構成とされた撮像光学系である。
【0029】
図1では、第1レンズ11が両凸の正レンズから構成され、第2レンズ12が像側に凸の正メニスカスレンズから構成され、また第3レンズ13が物体側に凸の負メニスカスレンズから構成されている例を示している。なお、前記第1レンズ11と第2レンズ12との間には、光学絞り14が配置され、また第3レンズ13と撮像素子16との間には、ノイズ成分を除去するローパスフィルタ15が配置されている。かかる構成において、物体側に存在する被写体の光学像が、当該撮像光学系10によりその光軸AXに沿って撮像素子16の受光面16aまで導かれ、撮像素子16により前記被写体の光学像が撮像されるものである。
【0030】
本発明においては、このような撮像光学系10において、正レンズである第1レンズ11が有するレンズ面11a、11b及び第2レンズ12が有するレンズ面12a、12bのうち、少なくとも一つのレンズ面に回折面(DOE;Diffractive Optical Element)が形成される。この回折面は、回折作用によって光線を屈曲させる面であって、かかる回折面は負のアッベ数(−3.45)を持つことから、正レンズの組み合わせ(第1レンズ11及び第2レンズ12)でも色収差の補正が行えるものである。回折面は、上記4つのレンズ面11a、11b、12a、12bのうちのいずれか一つのレンズ面に形成されていれば良いが、第1レンズ11及び第2レンズ12に一面ずつ回折面を具備させたり、第1レンズ11又は第2レンズ12のいずれかのレンズの両面に回折面を形成したり、或いは4つのレンズ面すべてに回折面を形成しても良い。
【0031】
そして、このような回折面を含むレンズの屈折によるパワーをP、当該撮像光学系10の全系の屈折と回折によるパワーをPとするとき、上記条件式(1)で示したように、P/Pが、
0.2<P/P<2.0
の関係を満たすように構成される。これにより、正正負のレンズ3枚構成で、十分なコンパクト化を達成しつつ、色収差の補正等が十分に行える高精細な撮像光学系10が提供できるようになる。
【0032】
ここで、上記条件式(1)におけるP/Pの関係を、下記(1)’の条件式を満たすようにすることが望ましい。
0.2<P/P<1.5 ・・・(1)’
/Pが上記条件式(1)’の上限を超えると、偏芯誤差感度が高くなることに起因してレンズ間の調整が必須とならざるを得ない場合が多くなり、製造コストが高くなる。
【0033】
当該撮像光学系10は、正正負のレンズ3枚構成であることから、負レンズ(第3レンズ13)により色収差が補正されるが、かかる補正のために第3レンズのパワーを大きくしすぎると、球面収差とのバランスを崩し各種収差を良好に補正できなくなる。このため、回折によるパワーをPDOE、第3レンズ13の屈折によるパワーをPとするとき、上記条件式(2)、(3)で示したように、PDOE/P、及びP/Pが、
0.0<PDOE/P<0.3
−2.00<P/P<−0.05
の関係を満たすように構成されることが望ましい。かかる構成とすることで、第3レンズ13のパワーを過剰に大きくすることなく色収差を良好に低減させることができる。
【0034】
なお、上記条件式(2)、(3)におけるPDOE/P、及びP/Pの関係を、下記(2)’、(3)’の条件式を満たすようにすることがより望ましい。
0.01<PDOE/P<0.15 ・・・(2)’
−2.00<P/P<−0.2 ・・・(3)’
DOE/Pが上記条件式(2)’の上限を超えると、前記回折面における回折格子のピッチが微細になり製造難度が高くなる傾向が顕著となり、製造コストが高くなる。また、下限を下回ると、回折のパワーが小さいために軸上色収差を十分に補正できなくなる。一方、P/Pが条件式(3)’の上限を超えると、第3レンズ13のパワーが小さくなりすぎて撮像光学系10全体でペッツバール和を小さくすることが困難化し、像面を揃えることが難しくなる。また、下限を下回ると、第3レンズ13のパワーが強くなりすぎ、製造誤差感度が大きくなってしまう不都合がある。
【0035】
この撮像光学系10には光学絞り14が具備されているが、この光学絞り14は前記回折面が形成されているレンズ面の近傍に配置されることが望ましい。図1の例では、例えば回折面がレンズ面11bに形成されている場合は、なるべくその近傍に光学絞り14を配置することが望ましい。これにより、軸状光と軸外光の回折面における分離度合いを小さくでき、回折面を通る最大画角の主光線の光線高さを低くできるようになる。
【0036】
さらに、光学絞り14から回折面(例えばレンズ面11bにおける回折面)までの光軸上の距離をDDOE、光学絞りから像面(撮像素子16の受光面16a)までの距離をD、回折面を通る最大画角の主光線の光線高さをHDOEとするとき、上記条件式(4)、(5)で示したように、|DDOE|/D及び|HDOE|/DDOEが、
|DDOE|/D<0.7
|HDOE|/DDOE<1.2
の関係を満たすことが望ましい。これにより、倍率色収差の補正を適性に行うことができるようになる。
【0037】
なお、上記条件式(4)、(5)における|DDOE|/D及び|HDOE|/DDOEの関係を、下記(4)’、(5)’の条件式を満たすようにすることがより望ましい。
0.01<|DDOE|/D<0.45 ・・・(4)’
0.3<|HDOE|/DDOE<1.0 ・・・(5)’
|DDOE|/Dが条件式の(4)’の上限を超えると、軸上色収差に対する補正効果が小さくなり、また下限を下回ると倍率色収差に対する補正効果が小さくなる傾向が目立つようになる。同様に、|HDOE|/DDOEが条件式(5)’の上限を超えると、軸上色収差に対する補正効果が小さくなり、また下限を下回ると倍率色収差に対する補正効果が小さくなる傾向が目立つようになる。
【0038】
光学絞り14は、上記の通り回折面の近傍に配置することが望ましいが、図1に示すように、光学絞り14を第1レンズ11と第2レンズ12との間に配置することは、好ましい光学構成の一つである。すなわち、物体側から順に正正負のレンズ3枚構成とされた撮像光学系10の場合、第1レンズ11と第2レンズ12との間に光学絞り14を介在させることで、両レンズを対称的に配置することができるので、コマ収差、非点収差、歪曲収差等の発生を抑制することができる。
【0039】
なお、撮像光学系10のテレセントリック性を高めるという観点からは、光学絞り14は、第1レンズ11の物体側(レンズ面11aの側)に配置されていることが望ましい。第1レンズ11の物体側に光学絞り14を配置することで、射出瞳位置を像面から離すことができるからである。
【0040】
また、撮像光学系10は、第1レンズ11の物体側面から第3レンズ13の像側面までの光軸上厚みをD、全系の焦点距離をfとするとき、上記条件式(6)で示したように、D/fが、
0.6<D/f<1.9
の関係を満たすことが望ましい。これにより、撮像光学系10のコンパクト化と収差補正とのバランスを図ることができる。
【0041】
ここで、上記条件式(6)におけるD/fの関係を、下記(6)’の条件式を満たすようにすることがより望ましい。
0.8<D/f<1.9 ・・・(6)’
上記条件式(6)’の下限を下回ると、光学系全長を短縮するために各レンズのパワーを大きくする必要があり、製造誤差感度が高くなってしまう。このことに起因してレンズ間の調整が必須とならざるを得ない場合が多くなり、製造コストが高くなる。
【0042】
次に、撮像光学系10の製法に関して、上記第1〜第3レンズ11〜13を構成する硝材については特に制限はなく、各種光学ガラス材料や光学樹脂(プラスチック)材料からなる硝材を用いることができる。しかし、光学樹脂材料を用いれば、軽量で、且つインジェクションモールド等により大量生産が可能であることから、ガラス材料で作製する場合に比して、コストの抑制や撮像光学系10の軽量化の面で有利である。従って、撮像光学系10に、少なくとも1枚の光学樹脂材料製レンズを具備させることが望ましい。勿論、2枚以上の光学樹脂材料製レンズを具備させても良い。
【0043】
とりわけ、回折面が形成される第1レンズ11又は/及び第2レンズ12が、光学樹脂材料製レンズからなることが望ましい。回折面は構造が複雑なものとなるため、光学ガラス材料に加工を施して成形するよりも、回折形状を備えた金型を用いた成形加工により形成することが望ましい。そこで、回折面が設けられる正レンズの硝材として光学樹脂材料を用いることで、回折面付きの正レンズを金型を用いたインジェクションモールド等により量産できるようになり、製造の容易化並びにコストダウンが図れるようになる。なお、所定の回折光学素子を光学樹脂材料で成形加工し、これをガラス材料製のレンズに貼り付けるようにして回折面を形成するようにしても良い。
【0044】
このような樹脂材料製レンズとしては、樹脂材料中に最大長が30ナノメートル以下の無機粒子を分散させてなる素材を用いて成形したレンズを用いることが望ましい。かかる無機粒子分散樹脂材料としては、例えばアクリルに酸化ニオブ(Nb)の微粒子を分散させてなる複合材料を例示することができる。このような樹脂材料製レンズを用いることで、樹脂材料製レンズの温度変化による屈折率変化を極めて小さくすることが可能となる。
【0045】
なお、回折面が形成されず屈折のみによるパワーを持つレンズ(例えば第1レンズ11に回折面が形成され、第2レンズ12には回折面が形成されないような場合は当該第2レンズ12)は、光学ガラス材料製レンズからなることが望ましい。この構成によれば、環境温度変化によるバックフォーカスのずれを可及的に小さくすることができる。
【0046】
撮像光学系10に備えられている第1〜第3レンズ11〜13の全てのレンズ面が、非球面とされていることが望ましい。これにより、撮像光学系10のコンパクト化と高画質化の両立を図ることが可能となる。
【0047】
また、撮像光学系10は、光学絞り14の代わりに、撮像素子16に対して遮光を行う機能を有するメカニカルシャッタを配置しても良い。かかるメカニカルシャッタは、例えば撮像素子16としてCCD(Charge Coupled Device)方式のものが用いられた場合に、スミア防止に効果がある。
【0048】
ローパスフィルタ15は、撮像素子16の受光面16a上に配置され、ノイズ成分を除去する平行平板状の光学部品である。このローパスフィルタ15として、例えば所定の結晶軸方向が調整された水晶等を材料とする複屈折型ローパスフィルタや、必要とされる光学的な遮断周波数特性を回折効果により実現する位相型ローパスフィルタ等が適用可能である。なお、ローパスフィルタ15は必ずしも備える必要はなく、代わりに撮像素子16の画像信号に含まれるノイズを低減する赤外線カットフィルタを用いるようにしてもよい。さらに、光学的ローパスフィルタ15の表面に赤外線反射コートを施して、両方のフィルター機能を一つで実現してもよい。
【0049】
撮像素子16は、当該撮像光学系10により結像された被写体の光像の光量に応じて、R、G、B各成分の画像信号に光電変換して所定の画像処理回路へ出力するものである。例えば撮像素子16としては、CCDが2次元状に配置されたエリアセンサの各CCDの表面に、R(赤)、G(緑)、B(青)のカラーフィルタが市松模様状に貼り付けられた、いわゆるベイヤー方式と呼ばれる単板式カラーエリアセンサで構成されたものを用いることができる。このようなCCDイメージセンサの他、CMOSイメージセンサ、VMISイメージセンサ等も用いることができる。
【0050】
<撮像光学系を組み込んだデジタル機器の説明>
次に、以上説明したような撮像光学系10が組み込まれたデジタル機器について説明する。図2は、本発明に係るデジタル機器の一実施形態を示す、折り畳み式のカメラ付携帯電話機20の外観構成図である。なお、本発明において、デジタル機器としては、デジタルスチルカメラ、ビデオカメラ、デジタルビデオユニット、携帯情報端末(PDA)、パーソナルコンピュータ、モバイルコンピュータ、又はこれらの周辺機器(マウス、スキャナ、プリンタ等)を含むものとする。
【0051】
図2(a)は、携帯電話機20の操作面を、図2(b)は、その背面を表している。この携帯電話機20は、第1の筐体201と第2の筐体202とがヒンジ203によって連結された折り畳み可能な構造であって、第1の筐体201の操作面には上下方向に長い長方形のディスプレイ21が備えられている。また第2の筐体202の操作面には、画像撮影モードの起動及び静止画と動画撮影の切り替えを行う画像切替ボタン22、シャッタボタン23及び各種の操作ボタン24が備えられている。また、携帯電話機20には、先に説明した撮像光学系10によって構成された撮像レンズ装置25が内蔵されており、その対物レンズが携帯電話機20の背面に表出している。
【0052】
図3は、上記携帯電話機20の撮像に係る電気的な機能構成を示す機能ブロック図である。この携帯電話機20は、撮像機能のために、撮像部30、画像生成部31、画像データバッファ32、画像処理部33、制御部34、記憶部35、及びI/F部36を備えて構成される。
【0053】
撮像部30は、撮像レンズ装置25と撮像素子16とを備えて構成される。被写体からの光線は、撮像光学系10によって撮像素子16の受光面上に結像され、被写体の光学像となる。撮像素子16は、撮像光学系10により結像された被写体の光学像をR(赤),G(緑),B(青)の色成分の電気信号(画像信号)に変換し、R,G,B各色の画像信号として画像生成部31に出力する。撮像素子16は、制御部34の制御により、静止画あるいは動画のいずれか一方の撮像、又は撮像素子16における各画素の出力信号の読出し(水平同期、垂直同期、転送)等の撮像動作が制御される。
【0054】
画像生成部31は、撮像素子16からのアナログ出力信号に対し、増幅処理、デジタル変換処理等を行うと共に、画像全体に対して適正な黒レベルの決定、γ補正、ホワイトバランス調整(WB調整)、輪郭補正及び色ムラ補正等の周知の画像処理を行って、画像信号から各画素の画像データを生成する。画像生成部31で生成された画像データは、画像データバッファ32に出力される。
【0055】
画像データバッファ32は、画像データを一時的に記憶するとともに、この画像データに対し画像処理部33により後述の処理を行うための作業領域として用いられるメモリであり、例えば、RAM(Random Access Memory)等で構成される。
【0056】
画像処理部33は、画像データバッファ32の画像データに対し、解像度変換等の画像処理を行う回路である。また、必要に応じて画像処理部33に、撮像光学系10では補正しきれなかった収差を補正させるように構成することも可能である。
【0057】
制御部34は、例えばマイクロプロセッサ等を備えて構成され、撮像部30、画像生成部31、画像データバッファ32、画像処理部33、記憶部35及びI/F部36の各部の動作を制御する。すなわち、該制御部34により、被写体の静止画撮影及び動画撮影の少なくとも一方の撮影を、撮像部30が実行するよう制御される。
【0058】
記憶部35は、被写体の静止画撮影又は動画撮影により生成された画像データを記憶する記憶回路であり、例えば、ROM(Read Only Memory)やRAMを備えて構成される。つまり、記憶部35は、静止画用及び動画用のメモリとしての機能を有する。
【0059】
I/F部36は、外部機器と画像データを送受信するインターフェースであり、例えば、USBやIEEE1394等の規格に準拠したインターフェースである。
【0060】
以上の通り構成された携帯電話機20の撮像動作について説明する。静止画を撮影するときは、まず、画像切替ボタン22を押すことで、画像撮影モードを起動する。ここでは、画像切替ボタン22を一度押すことで静止画撮影モードが起動し、その状態でもう一度画像切替ボタン22を押すことで動画撮影モードに切り替わる。つまり、画像切替ボタン22からの指示を受けた携帯電話機20の制御部34が、物体側の被写体の静止画撮影及び動画撮影の少なくとも一方の撮影を撮像部30に実行させる。
【0061】
静止画撮影モードが起動すると、制御部34は、撮像部30に静止画の撮影を行わせるように制御する。これにより、光学像が撮像素子16の受光面に周期的に繰り返し結像され、R、G、Bの色成分の画像信号に変換された後、画像生成部31に出力される。その画像信号は、画像データバッファ32に一時的に記憶され、画像処理部33により画像処理が行われた後、表示用メモリ(図略)に転送され、ディスプレイ21に導かれる。そして、撮影者はディスプレイ21を覗くことで、主被写体をその画面中の所望の位置に収まるように調整することができる。この状態でシャッタボタン23を押すことで、静止画像を得ることができる。すなわち、静止画用のメモリとしての記憶部35に画像データが格納される。
【0062】
また、動画撮影を行う場合には、画像切替ボタン22を一度押すことで静止画撮影モードを起動した後、もう一度画像切替ボタン22を押して動画撮影モードに切り替える。これにより、制御部34は、撮像部30を制御し動画の撮影を行わせる。後は静止画撮影のときと同様にして、撮影者はディスプレイ21を覗き、撮像レンズ装置25を通して得た被写体の像が、その画面中の所望の位置に収まるように調整する。この状態でシャッタボタン23を押すことで、動画撮影が開始される。撮影された動画のフレーム画像信号は、画像データバッファ32に一時的に記憶され、画像処理部33により画像処理が行われた後、表示用メモリに転送され、ディスプレイ21に導かれる。ここで、もう一度シャッタボタン23を押すことで、動画撮影は終了する。撮影された動画像は、動画用のメモリとしての記憶部35に導かれて格納される。
【0063】
<撮像光学系のより具体的な実施形態の説明>
以下、図1に示したような撮像光学系10、すなわち図2に示したようなカメラ付携帯電話機20に搭載される撮像レンズ装置25を構成する撮像光学系10の具体的構成を、図面を参照しつつ説明する。
【実施例1】
【0064】
図4は、実施例1の撮像光学系10Aにおける3つのレンズの配列を示す、光軸(AX)を縦断した断面図(光路図)である。この実施例1及び以下に示す実施例2〜16を通じて、これらの3つのレンズは、図の物体側(図4における左側)から順に、正の光学的パワーを有する第1レンズ(L1)、正の光学的パワーを有する第2レンズ(L2)、及び負の光学的パワーを有する第3レンズ(L3)からなる、正正負のレンズ3枚構成とされている。また、第3レンズ(L3)の像側には、平行平板(FT)を介して撮像素子(SR)の受光面が配置されている。前記平行平板(FT)は、光学的ローパスフィルタ、赤外カットフィルタ、撮像素子のカバーガラス等に相当するものである。なお、光学絞り(ST)は、第1レンズ(L1)の像側若しくは物体側のいずれかに配置される。
【0065】
図4に示した実施例1の撮像光学系10Aは、物体側から順に、物体側に凸の正メニスカスレンズからなる第1レンズ(L1)、光学絞り(ST)、像側に凸の正メニスカスレンズからなる第2レンズ(L2)、及び像側に凹の負メニスカスレンズからなる第3レンズ(L3)で構成されている。上記第1〜第3レンズ(L1〜L3)の全てが両面非球面レンズとされ、第1レンズ(L1)の像側のレンズ面には回折面が形成されている。また、第1レンズ(L1)と第3レンズ(L3)とが樹脂製レンズであり、第2レンズ(L2)がガラスレンズである。なお、上記光学絞り(ST)に代えてメカニカルシャッタを配置するようにしても良い(以下の実施例でも同じ)。
【0066】
図4において各レンズ面に付されている番号ri(i=1,2,3,・・・)は、物体側から数えたときのi番目のレンズ面であり、riに「*」印が付されている面は非球面であることを示し、またriに「#」印が付されている面は回折面であることを示すものである。なお、前記光学絞り(ST)、平行平板(FT)の両面、撮像素子(SR)の受光面も1つの面として扱っている。このような扱いは、後述する他の実施例についての光路図(図5〜図19)でも同様で、図中の符号の意味は、基本的に図4と同様である。但し、全く同一のものであるという意味ではなく、例えば、各図を通じて、最も物体側のレンズ面には同じ符号(r1)が付けられているが、これらの曲率等が実施形態を通じて同一であるという意味ではない。
【0067】
このような構成の下で、物体側から入射した光線は光軸AXに沿って、順に第1、第2及び第3レンズ(L1,L2,L3)及び平行平板(FT)を通過し、撮像素子(SR)の受光面に物体の光学像を形成する。そして、撮像素子(SR)において、平行平板(FT)にて修正された光学像が電気的な信号に変換される。この電気信号は、必要に応じて所定のデジタル画像処理や画像圧縮処理等が施されて、デジタル映像信号として携帯電話機や携帯情報端末等のメモリに記録されたり、有線あるいは無線により他のデジタル機器に伝送されたりする。
【0068】
実施例1の撮像光学系10Aにおける、各レンズのコンストラクションデータを表1〜表3に示す。また、上述した条件式(1)〜(6)を、実施例1に係る撮像光学系10Aに当てはめた場合のそれぞれの数値を、後掲の表49に示す。
【0069】
【表1】

【0070】
【表2】

【0071】
【表3】

【0072】
表1に示したものは、左から順に、各レンズ面の番号、各面の曲率半径(単位はmm)、光軸上における各レンズ面の間隔(軸上面間隔)(単位はmm)、各レンズの屈折率、そしてアッべ数である。軸上面間隔は、対向する一対の面(光学面、撮像面を含む)間の領域に存在する媒質が空気であるとして換算した距離である。ここで、各レンズ面の番号i(i=1,2,3,…)は、図4に示したように、光路上の物体側から数えてi番目の光学面であり、iに*が付された面は非球面(非球面形状の屈折光学面または非球面と等価な屈折作用を有する面)であることを、またiに「#」印が付されている面は回折面が形成されている面であることを示すものである。なお、光学絞り(ST)、平行平面板(FT)の両面及び撮像素子(SR)の受光面の各面は平面であるために、それらの曲率半径は∞である。
【0073】
表2は、非球面とされている面(表1においてiに*が付された面)の非球面データを示す表である。レンズ面の非球面形状は、面頂点を原点、物体から撮像素子に向かう向きをz軸の正の方向とするローカルな直交座標系(x,y,z)を用い、下記(7)式により定義する。表2には、下記(7)式により定義に基づく円錐係数k、及び非球面係数A,B,Cの値がそれぞれ示されている。
Z(h)=(c・h)/[1+sqrt{1−(1+k)c}]
+Ah+Bh+Ch+… ・・・(7)
但し、Z:高さhの位置でのz軸方向の変位量(面頂点基準)
h:z軸に対して垂直な方向の高さ(h2=x2+y2
c:近軸曲率(=1/曲率半径)
A,B,C:それぞれ4,6,8次の非球面係数
k:円錐係数
【0074】
また表3は、回折面を有する面(表1においてiに#が付された面)の回折面データを示す表である。回折形状は、回折面のピッチの位相形状を表す下記(8)式により定義する。なお、表3に示された位相係数は、設計波長がd線の587.56nm、設計次数が+1次(回折面の光学パワーΦDは、ΦD=−2・C1で表される)として設定されたものである。
φ(h)=(2π/λ0)・(C1・H2+C2・H4+C3・H6+…)
・・・(8)
但し、φ(h):位相関数
λ0:設計波長
C1,C2,C3 …Ci:2次,4次,6次, …2i次の位相係数
【0075】
以上のようなレンズ配置、構成のもとでの、実施例1における撮像光学系10Aの球面収差(LONGITUDINAL SPHERICAL ABERRATION)、非点収差(ASTIGMATISM)、及び歪曲収差(DISTORTION)を、図20の左側から順に示す。この図において、球面収差と非点収差の横軸は焦点位置のずれをmm単位で表しており、歪曲収差の横軸は歪量を全体に対する割合(%)で表している。球面収差の縦軸は、入射高で規格化した値で示してあるが、非点収差と歪曲収差の縦軸は像の高さ(像高)(単位mm)で表してある。
【0076】
さらに球面収差の図には、一点鎖線で赤色(波長656.28nm)、実線で黄色(いわゆるd線;波長587.56nm)、そして破線で青色(波長435.84nm)と、波長の異なる3つの光を用いた場合の収差がそれぞれ示してある。また、非点収差の図中、符号sとtはそれぞれサジタル(ラディアル)面、タンジェンシャル(メリディオナル)面における結果を表している。さらに、非点収差及び歪曲収差の図は、上記黄線(d線)を用いた場合の結果である。この図20からわかるように、実施例1の撮像光学系10Aは、歪曲収差が5%以内と優れた光学特性を示している。また、撮像光学系10Aにおける焦点距離(単位mm)及びF値を、後掲の表50にそれぞれ示す。これらの表から、本発明では、短焦点で明るい光学系が実現できていることがわかる。
【実施例2】
【0077】
図5は、実施例2の撮像光学系10Bにおける3つのレンズの配列を示す、光軸(AX)を縦断した断面図(光路図)である。この撮像光学系10Bは、物体側から順に、物体側に凸の正メニスカスレンズからなる第1レンズ(L1)、光学絞り(ST)、像側に凸の正メニスカスレンズからなる第2レンズ(L2)、及び像側に凹の負メニスカスレンズからなる第3レンズ(L3)で構成されている。上記第1〜第3レンズ(L1〜L3)の全てが両面非球面レンズとされ、第1レンズ(L1)の物体側のレンズ面には回折面が形成されている。また、第1レンズ(L1)と第3レンズ(L3)とが樹脂製レンズであり、第2レンズ(L2)がガラスレンズである。当該撮像光学系10Bにおける、各レンズのコンストラクションデータを表4〜表6に示す。
【0078】
【表4】

【0079】
【表5】

【0080】
【表6】

【実施例3】
【0081】
図6は、実施例3の撮像光学系10Cにおける3つのレンズの配列を示す、光軸(AX)を縦断した断面図(光路図)である。この撮像光学系10Cは、物体側から順に、両凸の正レンズからなる第1レンズ(L1)、光学絞り(ST)、像側に凸の正メニスカスレンズからなる第2レンズ(L2)、及び像側に凹の負メニスカスレンズからなる第3レンズ(L3)で構成されている。上記第1〜第3レンズ(L1〜L3)の全てが両面非球面レンズとされ、第1レンズ(L1)の像側のレンズ面には回折面が形成されている。また、第1レンズ(L1)と第3レンズ(L3)とが樹脂製レンズであり、第2レンズ(L2)がガラスレンズである。当該撮像光学系10Cにおける、各レンズのコンストラクションデータを表7〜表9に示す。
【0082】
【表7】

【0083】
【表8】

【0084】
【表9】

【実施例4】
【0085】
図7は、実施例4の撮像光学系10Dにおける3つのレンズの配列を示す、光軸(AX)を縦断した断面図(光路図)である。この撮像光学系10Dは、物体側から順に、物体側に凸の正メニスカスレンズからなる第1レンズ(L1)、光学絞り(ST)、像側に凸の正メニスカスレンズからなる第2レンズ(L2)、及び両凹の負レンズからなる第3レンズ(L3)で構成されている。上記第1〜第3レンズ(L1〜L3)の全てが両面非球面レンズとされ、第1レンズ(L1)の像側のレンズ面には回折面が形成されている。また、第1レンズ(L1)と第3レンズ(L3)とが樹脂製レンズであり、第2レンズ(L2)がガラスレンズである。当該撮像光学系10Dにおける、各レンズのコンストラクションデータを表10〜表12に示す。
【0086】
【表10】

【0087】
【表11】

【0088】
【表12】

【実施例5】
【0089】
図8は、実施例5の撮像光学系10Eにおける3つのレンズの配列を示す、光軸(AX)を縦断した断面図(光路図)である。この撮像光学系10Eは、物体側から順に、物体側に凸の正メニスカスレンズからなる第1レンズ(L1)、光学絞り(ST)、像側に凸の正メニスカスレンズからなる第2レンズ(L2)、及び像側に凹の負メニスカスレンズからなる第3レンズ(L3)で構成されている。上記第1〜第3レンズ(L1〜L3)の全てが両面非球面レンズとされ、第1レンズ(L1)の像側のレンズ面には回折面が形成されている。また、第1〜第3レンズ(L1〜L3)の全てが樹脂製レンズである。当該撮像光学系10Eにおける、各レンズのコンストラクションデータを表13〜表15に示す。
【0090】
【表13】

【0091】
【表14】

【0092】
【表15】

【実施例6】
【0093】
図9は、実施例6の撮像光学系10Fにおける3つのレンズの配列を示す、光軸(AX)を縦断した断面図(光路図)である。この撮像光学系10Fは、物体側から順に、両凸の正レンズからなる第1レンズ(L1)、光学絞り(ST)、像側に凸の正メニスカスレンズからなる第2レンズ(L2)、及び像側に凹の負メニスカスレンズからなる第3レンズ(L3)で構成されている。上記第1〜第3レンズ(L1〜L3)の全てが両面非球面レンズとされ、第1レンズ(L1)の像側及び第2レンズ(L2)の物体側のレンズ面には回折面が形成されている。また、第1〜第3レンズ(L1〜L3)の全てが樹脂製レンズである。当該撮像光学系10Fにおける、各レンズのコンストラクションデータを表16〜表18に示す。
【0094】
【表16】

【0095】
【表17】

【0096】
【表18】

【実施例7】
【0097】
図10は、実施例7の撮像光学系10Gにおける3つのレンズの配列を示す、光軸(AX)を縦断した断面図(光路図)である。この撮像光学系10Gは、物体側から順に、両凸の正レンズからなる第1レンズ(L1)、光学絞り(ST)、像側に凸の正メニスカスレンズからなる第2レンズ(L2)、及び像側に凹の負メニスカスレンズからなる第3レンズ(L3)で構成されている。上記第1〜第3レンズ(L1〜L3)の全てが両面非球面レンズとされ、第2レンズ(L2)の物体側のレンズ面には回折面が形成されている。また、第2レンズ(L2)と第3レンズ(L3)とが樹脂製レンズであり、第1レンズ(L1)がガラスレンズである。当該撮像光学系10Gにおける、各レンズのコンストラクションデータを表19〜表21に示す。
【0098】
【表19】

【0099】
【表20】

【0100】
【表21】

【実施例8】
【0101】
図11は、実施例8の撮像光学系10Hにおける3つのレンズの配列を示す、光軸(AX)を縦断した断面図(光路図)である。この撮像光学系10Hは、物体側から順に、両凸の正レンズからなる第1レンズ(L1)、光学絞り(ST)、像側に凸の正メニスカスレンズからなる第2レンズ(L2)、及び像側に凹の負メニスカスレンズからなる第3レンズ(L3)で構成されている。上記第1〜第3レンズ(L1〜L3)の全てが両面非球面レンズとされ、第2レンズ(L2)の像側のレンズ面には回折面が形成されている。また、第2レンズ(L2)と第3レンズ(L3)とが樹脂製レンズであり、第1レンズ(L1)がガラスレンズである。当該撮像光学系10Hにおける、各レンズのコンストラクションデータを表22〜表24に示す。
【0102】
【表22】

【0103】
【表23】

【0104】
【表24】

【実施例9】
【0105】
図12は、実施例9の撮像光学系10Iにおける3つのレンズの配列を示す、光軸(AX)を縦断した断面図(光路図)である。この撮像光学系10Iは、物体側から順に、光学絞り(ST)、物体側に凸の正メニスカスレンズからなる第1レンズ(L1)、像側に凸の正メニスカスレンズからなる第2レンズ(L2)、及び像側に凹の負メニスカスレンズからなる第3レンズ(L3)で構成されている。上記第1〜第3レンズ(L1〜L3)の全てが両面非球面レンズとされ、第1レンズ(L1)の物体側のレンズ面には回折面が形成されている。また、第1レンズ(L1)と第3レンズ(L3)とが樹脂製レンズであり、第2レンズ(L2)がガラスレンズである。当該撮像光学系10Iにおける、各レンズのコンストラクションデータを表25〜表27に示す。
【0106】
【表25】

【0107】
【表26】

【0108】
【表27】

【実施例10】
【0109】
図13は、実施例10の撮像光学系10Jにおける3つのレンズの配列を示す、光軸(AX)を縦断した断面図(光路図)である。この撮像光学系10Jは、物体側から順に、光学絞り(ST)、物体側に凸の正メニスカスレンズからなる第1レンズ(L1)、像側に凸の正メニスカスレンズからなる第2レンズ(L2)、及び像側に凹の負メニスカスレンズからなる第3レンズ(L3)で構成されている。上記第1〜第3レンズ(L1〜L3)の全てが両面非球面レンズとされ、第1レンズ(L1)の像側のレンズ面には回折面が形成されている。また、第1レンズ(L1)と第3レンズ(L3)とが樹脂製レンズであり、第2レンズ(L2)がガラスレンズである。当該撮像光学系10Jにおける、各レンズのコンストラクションデータを表28〜表30に示す。
【0110】
【表28】

【0111】
【表29】

【0112】
【表30】

【実施例11】
【0113】
図14は、実施例11の撮像光学系10Kにおける3つのレンズの配列を示す、光軸(AX)を縦断した断面図(光路図)である。この撮像光学系10Kは、物体側から順に、光学絞り(ST)、物体側に凸の正メニスカスレンズからなる第1レンズ(L1)、像側に凸の正メニスカスレンズからなる第2レンズ(L2)、及び像側に凹の負メニスカスレンズからなる第3レンズ(L3)で構成されている。上記第1〜第3レンズ(L1〜L3)の全てが両面非球面レンズとされ、第2レンズ(L2)の物体側のレンズ面には回折面が形成されている。また、第2レンズ(L2)と第3レンズ(L3)とが樹脂製レンズであり、第1レンズ(L1)がガラスレンズである。当該撮像光学系10Kにおける、各レンズのコンストラクションデータを表31〜表33に示す。
【0114】
【表31】

【0115】
【表32】

【0116】
【表33】

【実施例12】
【0117】
図15は、実施例12の撮像光学系10Lにおける3つのレンズの配列を示す、光軸(AX)を縦断した断面図(光路図)である。この撮像光学系10Lは、物体側から順に、光学絞り(ST)、両凸の正レンズからなる第1レンズ(L1)、像側に凸の正メニスカスレンズからなる第2レンズ(L2)、及び像側に凹の負メニスカスレンズからなる第3レンズ(L3)で構成されている。上記第1〜第3レンズ(L1〜L3)の全てが両面非球面レンズとされ、第2レンズ(L2)の像側のレンズ面には回折面が形成されている。また、第2レンズ(L2)と第3レンズ(L3)とが樹脂製レンズであり、第1レンズ(L1)がガラスレンズである。当該撮像光学系10Lにおける、各レンズのコンストラクションデータを表34〜表36に示す。
【0118】
【表34】

【0119】
【表35】

【0120】
【表36】

【実施例13】
【0121】
図16は、実施例13の撮像光学系10Mにおける3つのレンズの配列を示す、光軸(AX)を縦断した断面図(光路図)である。この撮像光学系10Mは、物体側から順に、光学絞り(ST)、両凸の正レンズからなる第1レンズ(L1)、像側に凸の正メニスカスレンズからなる第2レンズ(L2)、及び両凹の負レンズからなる第3レンズ(L3)で構成されている。上記第1〜第3レンズ(L1〜L3)の全てが両面非球面レンズとされ、第1レンズ(L1)の像側のレンズ面には回折面が形成されている。また、第1レンズ(L1)と第3レンズ(L3)とが樹脂製レンズであり、第2レンズ(L2)がガラスレンズである。当該撮像光学系10Mにおける、各レンズのコンストラクションデータを表37〜表39に示す。
【0122】
【表37】

【0123】
【表38】

【0124】
【表39】

【実施例14】
【0125】
図17は、実施例14の撮像光学系10Nにおける3つのレンズの配列を示す、光軸(AX)を縦断した断面図(光路図)である。この撮像光学系10Nは、物体側から順に、光学絞り(ST)、物体側に凸の正メニスカスレンズからなる第1レンズ(L1)、像側に凸の正メニスカスレンズからなる第2レンズ(L2)、及び像側に凹の負メニスカスレンズからなる第3レンズ(L3)で構成されている。上記第1〜第3レンズ(L1〜L3)の全てが両面非球面レンズとされ、第1レンズ(L1)の像側のレンズ面には回折面が形成されている。また、第1レンズ(L1)と第3レンズ(L3)とが樹脂製レンズであり、第2レンズ(L2)がガラスレンズである。当該撮像光学系10Nにおける、各レンズのコンストラクションデータを表40〜表42に示す。
【0126】
【表40】

【0127】
【表41】

【0128】
【表42】

【実施例15】
【0129】
図18は、実施例15の撮像光学系10Oにおける3つのレンズの配列を示す、光軸(AX)を縦断した断面図(光路図)である。この撮像光学系10Oは、物体側から順に、光学絞り(ST)、物体側に凸の正メニスカスレンズからなる第1レンズ(L1)、像側に凸の正メニスカスレンズからなる第2レンズ(L2)、及び像側に凹の負メニスカスレンズからなる第3レンズ(L3)で構成されている。上記第1〜第3レンズ(L1〜L3)の全てが両面非球面レンズとされ、第1レンズ(L1)の像側のレンズ面には回折面が形成されている。また、第1〜第3レンズ(L1〜L3)の全てが樹脂製レンズである。当該撮像光学系10Oにおける、各レンズのコンストラクションデータを表43〜表45に示す。
【0130】
【表43】

【0131】
【表44】

【0132】
【表45】

【実施例16】
【0133】
図19は、実施例16の撮像光学系10Pにおける3つのレンズの配列を示す、光軸(AX)を縦断した断面図(光路図)である。この撮像光学系10Pは、物体側から順に、光学絞り(ST)、両凸の正レンズからなる第1レンズ(L1)、像側に凸の正メニスカスレンズからなる第2レンズ(L2)、及び像側に凹の負メニスカスレンズからなる第3レンズ(L3)で構成されている。上記第1〜第3レンズ(L1〜L3)の全てが両面非球面レンズとされ、第1レンズ(L1)の像側及び第2レンズ(L2)物体側のレンズ面には回折面が形成されている。また、第1〜第3レンズ(L1〜L3)の全てが樹脂製レンズである。当該撮像光学系10Pにおける、各レンズのコンストラクションデータを表46〜表48に示す。
【0134】
【表46】

【0135】
【表47】

【0136】
【表48】

【0137】
以上のようなレンズ配置、構成のもとでの、上記実施例2〜16に示した撮像光学系10B〜Pの球面収差、非点収差、そして歪曲収差を図21〜図35にそれぞれ示す。これらの図において、球面収差の図には、図20と同様に、一点鎖線で赤色、実線で黄色、そして破線で青色と、波長の異なる3つの光を用いた場合の収差がそれぞれ示してある。いずれの実施例における撮像光学系10B〜Pも、歪曲収差がほぼ5%以内と優れた光学特性を示している。
【0138】
また、この実施例2〜16の各撮像光学系10B〜Pに、上述した条件式(1)〜(6)を当てはめた場合のそれぞれの数値を、表49に示す。
【0139】
【表49】

【0140】
さらに、この実施例2〜16の各撮像光学系10B〜PにおけるF値と焦点距離(単位mm)とを、表50に示す。これらの表から、実施例1と同様に、短焦点で、明るい光学系が実現できていることがわかる。
【0141】
【表50】

【0142】
以上説明したように、上記実施例1〜16に係る撮像光学系10A〜10Pによれば、レンズ3枚構成という少ないレンズ枚数で、コンパクト化を達成しつつ、各種の収差が良好に補正できる高詳細な撮像光学系を提供できる。
【図面の簡単な説明】
【0143】
【図1】本発明にかかる撮像光学系の構成を模式的に示す図である。
【図2】本発明に係る撮像光学系を搭載したカメラ付携帯電話機の外観構成図であって、(a)は、その操作面を示す外観構成図、(b)は、操作面の裏面を示す外観構成図である。
【図3】本発明に係る撮像光学系を具備するデジタル機器の一例としての携帯電話機の撮像に係る機能部の構成を示す機能ブロック図である。
【図4】本発明の実施例1に係る撮像光学系の光路図を示す断面図である。
【図5】実施例2に係る撮像光学系の光路図を示す断面図である。
【図6】実施例3に係る撮像光学系の光路図を示す断面図である。
【図7】実施例4に係る撮像光学系の光路図を示す断面図である。
【図8】実施例5に係る撮像光学系の光路図を示す断面図である。
【図9】実施例6に係る撮像光学系の光路図を示す断面図である。
【図10】実施例7に係る撮像光学系の光路図を示す断面図である。
【図11】実施例8に係る撮像光学系の光路図を示す断面図である。
【図12】実施例9に係る撮像光学系の光路図を示す断面図である。
【図13】実施例10に係る撮像光学系の光路図を示す断面図である。
【図14】実施例11に係る撮像光学系の光路図を示す断面図である。
【図15】実施例12に係る撮像光学系の光路図を示す断面図である。
【図16】実施例13に係る撮像光学系の光路図を示す断面図である。
【図17】実施例14に係る撮像光学系の光路図を示す断面図である。
【図18】実施例15に係る撮像光学系の光路図を示す断面図である。
【図19】実施例16に係る撮像光学系の光路図を示す断面図である。
【図20】実施例1における撮像光学系の球面収差、非点収差及び歪曲収差を示す収差図である。
【図21】実施例2における撮像光学系の球面収差、非点収差及び歪曲収差を示す収差図である。
【図22】実施例3における撮像光学系の球面収差、非点収差及び歪曲収差を示す収差図である。
【図23】実施例4における撮像光学系の球面収差、非点収差及び歪曲収差を示す収差図である。
【図24】実施例5における撮像光学系の球面収差、非点収差及び歪曲収差を示す収差図である。
【図25】実施例6における撮像光学系の球面収差、非点収差及び歪曲収差を示す収差図である。
【図26】実施例7における撮像光学系の球面収差、非点収差及び歪曲収差を示す収差図である。
【図27】実施例8における撮像光学系の球面収差、非点収差及び歪曲収差を示す収差図である。
【図28】実施例9における撮像光学系の球面収差、非点収差及び歪曲収差を示す収差図である。
【図29】実施例10における撮像光学系の球面収差、非点収差及び歪曲収差を示す収差図である。
【図30】実施例11における撮像光学系の球面収差、非点収差及び歪曲収差を示す収差図である。
【図31】実施例12における撮像光学系の球面収差、非点収差及び歪曲収差を示す収差図である。
【図32】実施例13における撮像光学系の球面収差、非点収差及び歪曲収差を示す収差図である。
【図33】実施例14における撮像光学系の球面収差、非点収差及び歪曲収差を示す収差図である。
【図34】実施例15における撮像光学系の球面収差、非点収差及び歪曲収差を示す収差図である。
【図35】実施例16における撮像光学系の球面収差、非点収差及び歪曲収差を示す収差図である。
【符号の説明】
【0144】
10、10A〜10P 撮像光学系
11、L1 第1レンズ
12、L2 第2レンズ
13、L3 第3レンズ
14、ST 光学絞り
15、FT ローパスフィルタ
16、SR 撮像素子
AX 光軸
20 携帯電話機(デジタル機器)
25 撮像レンズ装置

【特許請求の範囲】
【請求項1】
物体側から像側に向かって、正の光学的パワーを有する第1レンズと、正の光学的パワーを有する第2レンズと、負の光学的パワーを有する第3レンズとを具備する撮像光学系において、
前記第1レンズ及び第2レンズが有するレンズ面のうち、少なくとも一つのレンズ面に回折面が形成され、その回折面を含むレンズの屈折によるパワーが下記(1)の条件式を満たすことを特徴とする撮像光学系。
0.2<P/P<2.0 ・・・(1)
但し、P:回折面を含むレンズの屈折によるパワー
P:全系の屈折と回折によるパワー
【請求項2】
下記(2)、(3)の条件式を満たすことを特徴とする請求項1に記載の撮像光学系。
0.0<PDOE/P<0.3 ・・・(2)
−2.00<P/P<−0.05 ・・・(3)
但し、PDOE:回折によるパワー
:第3レンズの屈折によるパワー
【請求項3】
撮像光学系が光学絞りを具備し、
前記回折面が前記光学絞りの近傍に配置されると共に、前記回折面を通る最大画角の主光線の光線高さが、下記(4)、(5)の条件式を満たすことを特徴とする請求項1又は2に記載の撮像光学系。
|DDOE|/D<0.7 ・・・(4)
|HDOE|/DDOE<1.2 ・・・(5)
但し、DDOE:光学絞りから回折面までの光軸上の距離
:光学絞りから像面までの距離
DOE:回折面を通る最大画角の主光線の光線高さ
【請求項4】
撮像光学系が光学絞りを具備し、前記光学絞りが、前記第1レンズと第2レンズとの間に配置されていることを特徴とする請求項1〜3のいずれかに記載の撮像光学系。
【請求項5】
撮像光学系が光学絞りを具備し、前記光学絞りが、前記第1レンズの物体側に配置されていることを特徴とする請求項1〜3のいずれかに記載の撮像光学系。
【請求項6】
下記(6)の条件式を満たすことを特徴とする請求項1〜5のいずれかに記載の撮像光学系。
0.6<D/f<1.9 ・・・(6)
但し、D:第1レンズの物体側面から第3レンズの像側面までの光軸上厚み
f:全系の焦点距離
【請求項7】
少なくとも1枚の光学樹脂材料製レンズを有することを特徴とする請求項1〜6のいずれかに記載の撮像光学系。
【請求項8】
前記回折面を有するレンズが、光学樹脂材料製レンズからなることを特徴とする請求項7に記載の撮像光学系。
【請求項9】
前記光学樹脂材料製レンズは、樹脂材料中に最大長が30ナノメートル以下の無機粒子を分散させてなる素材を用いて成形したレンズであることを特徴とする請求項8に記載の撮像光学系。
【請求項10】
前記第1レンズ及び第2レンズのうち、屈折のみによるパワーを持つレンズが、光学ガラス材料製レンズからなることを特徴とする請求項1〜9のいずれかに記載の撮像光学系。
【請求項11】
請求項1〜10のいずれかに記載の撮像光学系と、光学像を電気的な信号に変換する撮像素子とを備え、
前記撮像光学系が前記撮像素子の受光面上に被写体の光学像を形成可能とされていることを特徴とする撮像レンズ装置。
【請求項12】
請求項11に記載の撮像レンズ装置と、
前記撮像レンズ装置及び撮像素子に被写体の静止画撮影及び動画撮影の少なくとも一方の撮影を行わせる制御部とを具備し、
前記撮像レンズ装置の撮像光学系が、前記撮像素子の受光面上に被写体の光学像を形成可能に組み付けられていることを特徴とするデジタル機器。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate

【図26】
image rotate

【図27】
image rotate

【図28】
image rotate

【図29】
image rotate

【図30】
image rotate

【図31】
image rotate

【図32】
image rotate

【図33】
image rotate

【図34】
image rotate

【図35】
image rotate


【公開番号】特開2007−127960(P2007−127960A)
【公開日】平成19年5月24日(2007.5.24)
【国際特許分類】
【出願番号】特願2005−322289(P2005−322289)
【出願日】平成17年11月7日(2005.11.7)
【出願人】(303000408)コニカミノルタオプト株式会社 (3,255)
【Fターム(参考)】