説明

有機エレクトロルミネッセンス表示装置及びその製造方法

【課題】有機発光材料からなる有機発光インキを用いて隔壁で区画された画素電極内に成膜した場合でも、画素電極内膜厚の変化を小さくすることができる有機エレクトロルミネッセンス表示装置及びその製造方法を提供すること。
【解決手段】基板上に形成された第1の電極と、第1の電極の端部に形成された隔壁と、第1の電極上に形成された発光補助層と、発光補助層上に形成された有機発光層と、有機発光層上に形成された第2の電極と、を有し、第1の電極の表面から発光補助層の表面までの距離が、発光補助層の中央部から隔壁の方向に向って短くなっていることを特徴とする有機エレクトロルミネッセンス表示装置。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、有機エレクトロルミネッセンス表示装置及びその製造方法に関し、特に、有機発光材料からなる有機発光インキを用いて隔壁で区画された画素電極内に成膜した場合でも、画素内の膜厚の変化を小さくすることができる有機エレクトロルミネッセンス表示装置及びその製造方法に関する。
【背景技術】
【0002】
有機エレクトロルミネッセンス素子(以下、「有機EL素子」という)は、陽極と陰極との間に有機発光層が挟持された構造をもつ発光素子で、電圧の印加により陽極から正孔、陰極から電子が注入され、この正孔と電子の対が有機発光層の表面あるいは内部で再結合することによって発生したエネルギーを光として取り出す素子である。有機発光層は一層から多層のものがあるが、効率よく発光させるためには、それぞれの層の膜厚が非常に重要であり、有機発光層全体では1μm以下の薄膜にする必要がある。さらに、これをディスプレイ化するためには、有機発光層を均一な膜厚で高精細にパターニングする必要がある。
【0003】
有機EL素子の発光層に用いられる有機材料は、低分子の材料と高分子の材料とに分類されている。発光層の形成方法は材料によって異なり、低分子材料は主に蒸着法で成膜させる方法が用いられ、高分子材料は溶剤に溶解あるいは分散させて基板上に塗布する方法が行われている。
【0004】
有機EL素子をフルカラー化するために発光層をパターニングする手段としては、低分子系材料を用いる場合において、所望の画素形状に応じたパターンが形成されたマスクを用いて、異なる発光色の発光材料を所望の画素に対応した部分に蒸着し形成する方法が行われている。この方法は所望の形状に薄膜を均一に形成するには優れた方法であるが、蒸着される基板が大型になると、マスク精度の点からパターンの形成が困難になるという問題点がある。また、真空系を用いるため、スループットが悪い、コストが高い等のデメリットもある。
【0005】
一方、高分子系材料を用いる場合は、溶媒に溶解または分散させることにより有機高分子発光材料をインキ化し、主にインクジェット法によるパターン形成と、印刷法によるパターン形成方法が提案されている。例えば、特許文献1に開示されているインクジェット法は、インクジェットノズルから溶剤に溶かした発光材料を基板上に噴出させ、基板上で乾燥させることで所望のパターンを得る方法である。しかしながら、ノズルから噴出されたインク液滴は球状をしている為、基板上に着弾する際にインクが円形状に広がり、形成したパターンの形状が直線性に欠けたり、着弾精度が悪くパターンの直線性が得られなかったりするという問題点がある。
【0006】
これに対し、特許文献2では、予め基板上にフォトリソグラフィ法などを用いて、撥インク性のある材料でバンクを形成し、そこにインク液滴を着弾させることで、バンク形状に応じてインクがはじき、直線性のパターンが得られるという方法が開示されている。しかし、はじいたインクが画素内に戻るときに画素内部でインクが盛り上がり、画素内の有機発光層の膜厚にばらつきができてしまうという問題が残る。
【0007】
印刷法を用いたパターン形成方法としては、凹版印刷、平版印刷、スクリーン印刷、凸版印刷などが提案されている。しかしながら、被印刷基板としてガラス基板等を用いる有機EL素子やディスプレイでは、基板のキズやゆがみが好ましくないことから、凹版印刷の代表であるグラビア印刷法等のように金属製の印刷版等の硬い版を用いる方法は不向きである。また、有機発光層の形成材料を溶媒に溶解若しくは分散させたインキは一般に粘度が低いため、平版印刷の代表であるオフセット印刷やスクリーン印刷には適さない。
【0008】
これに対し、特許文献3では、ゴムやその他の樹脂を主成分とした感光性樹脂版を用いる凸版印刷法は、ガラス基板を傷つけることもなく、低粘度の有機ELインキにも適している。実際に、凸版印刷法による有機発光層の形成方法が開示されている。真空蒸着法と比較して、印刷法を用いたパターン形成は基板の大型化が比較的容易であり、大気下でおこなうことができるため、スループットが良い、コストが抑制できる等のメリットがある。
【0009】
これらのような湿式成膜法で有機発光層をパターニング形成する場合、有機発光インキが隣接画素電極にまで広がって混色してしまうことを避けるため、画素電極を区画するように絶縁性の隔壁を設けることが望ましい。しかし、隔壁で区画された画素電極上に有機発光インキを用いて有機発光層を形成した場合、隔壁の側面が有機発光インキに対し親インキ性を示すと、インキが隔壁に濡れ上がり、隔壁近傍の有機発光層の膜厚が画素中央の膜厚と比較して大きくなってしまう。よって、隔壁近傍と画素中央とにおける有機発光層の膜厚の差により画素内において輝度ムラが発生し、画素内の有効発光面積が小さくなってしまう。隔壁の側面が有機発光インキに対し撥インキ性を示すと、隔壁近傍の有機発光層の膜厚が画素中央の膜厚と比較して小さくなる。このとき、隔壁近傍の有機発光層において、その膜厚が小さいために電界集中による破壊が生じてしまう。また、画素内における輝度ムラも発生する。
【0010】
上記のような、有機発光インキに対する隔壁の親インキ性や撥インキ性による画素内の有機発光層膜厚の変化に伴う画素内の輝度ムラや電界集中による破壊を防ぐためには、有機発光インキや隔壁の形成材料を適宜選択する必要がある。これらの材料選定では、有機発光インキや隔壁材料に添加剤を混合することが提案されているが、これらの添加剤は有機EL表示装置の発光特性に悪影響を与えることがあり、添加剤の選定は非常に困難であった。
【0011】
また、高分子系有機発光材料を用いる場合は、印加電圧を下げるために、陽極と有機発光層との間に正孔輸送層が設けられることが一般的である。代表的な例としては、水中にドナー性分子とアクセプタ性分子との会合体が分散した高分子材料よりなるインキを用いて成膜することで、優れた電荷注入特性を示すことが知られている。しかしながら、高分子材料からなる正孔輸送層は、高電圧領域では膜に高負荷がかかり材料自身が劣化してしまう。また、イオン性の成分が通電に伴う電場によって拡散し、他の有機発光媒体層へ悪影響を及ぼす可能性がある。このように、高分子材料からなる正孔輸送層を用いた有機EL表示装置には、発光特性の劣化や寿命の低下といった懸念点がある。
【0012】
さらに、有機発光層を成膜する場合と同様に、インキに対する隔壁の親インキ性や撥インキ性によって、画素内の正孔輸送層の膜厚の変化が生じてしまうという問題もある。隔壁へのインキの濡れ性を変化させるために添加剤を混合することは、有機EL表示装置の発光特性に悪影響を与えることがあるため好ましくない。
【0013】
一方、特許文献4では、遷移金属の酸化物や窒化物、酸窒化物やP型化合物半導体といった無機物を正孔注入層として用いることが開示されている。この場合、特に高電圧、高輝度領域で高分子材料を用いた場合より安定した特性を示すことが知られている。このような金属化合物は、主に真空蒸着法やスパッタリング法等の乾式法によって成膜される。
【特許文献1】特開平10−12377号公報
【特許文献2】特開2002−305077号公報
【特許文献3】特開2001−155858号公報
【特許文献4】特開2006−114759号公報
【発明の開示】
【発明が解決しようとする課題】
【0014】
本発明は、有機発光材料からなる有機発光インキを用いて隔壁で区画された画素電極内に成膜した場合でも、画素電極内の膜厚の変化を小さくすることができる有機エレクトロルミネッセンス表示装置及びその製造方法を提供することである。
【課題を解決するための手段】
【0015】
本発明の請求項1に係る発明は、基板上に形成された第1の電極と、第1の電極の端部に形成された隔壁と、第1の電極上に形成された発光補助層と、発光補助層上に形成された有機発光層と、有機発光層上に形成された第2の電極と、を有し、第1の電極の表面から発光補助層の表面までの距離が、発光補助層の中央部から隔壁の方向に向って短くなっていることを特徴とする有機エレクトロルミネッセンス表示装置としたものである。
【0016】
本発明の請求項2に係る発明は、第1の電極の表面から発光補助層の表面までの距離は、発光補助層の中央部と発光補助層の端部との差が1nm以上10nm以下であることを特徴とする請求項1に記載の有機エレクトロルミネッセンス表示装置としたものである。
【0017】
本発明の請求項3に係る発明は、隔壁の高さが、0.5μm以上5.0μm以下であることを特徴とする請求項1又は2に記載の有機エレクトロルミネッセンス表示装置としたものである。
【0018】
本発明の請求項4に係る発明は、発光補助層は、正孔輸送層又は電子輸送層であることを特徴とする請求項1乃至3のいずれかに記載の有機エレクトロルミネッセンス表示装置としたものである。
【0019】
本発明の請求項5に係る発明は、正孔輸送層が無機物であることを特徴とする請求項1乃至4のいずれかに記載の有機エレクトロルミネッセンス表示装置としたものである。
【0020】
本発明の請求項6に係る発明は、有機発光層と第2の電極との間にさらに発光補助層を備えていることを特徴とする請求項1乃至5のいずれかに記載の有機エレクトロルミネッセンス表示装置としたものである。
【0021】
本発明の請求項7に係る発明は、基板上に第1の電極を形成し、第1の電極の端部に隔壁を形成し、第1の電極上に発光補助層を第1の電極の表面から発光補助層の表面までの距離が、発光補助層の中央部から隔壁の方向に向って短くなるように形成し、発光補助層上に有機発光層を形成し、有機発光層上に第2の電極を形成することを特徴とする有機エレクトロルミネッセンス表示装置の製造方法としたものである。
【0022】
本発明の請求項8に係る発明は、第1の電極の表面から発光補助層の表面までの距離は、発光補助層の中央部と発光補助層の端部との差が、1nm以上10nm以下であることを特徴とする請求項7に記載の有機エレクトロルミネッセンス表示装置の製造方法としたものである。
【0023】
本発明の請求項9に係る発明は、隔壁の高さが、0.5μm以上5.0μm以下であることを特徴とする請求項7又は8に記載の有機エレクトロルミネッセンス表示装置の製造方法としたものである。
【0024】
本発明の請求項10に係る発明は、有機発光層が、印刷法によりパターニング形成されていることを特徴とする請求項7乃至9のいずれかに記載の有機エレクトロルミネッセンス表示装置の製造方法としたものである。
【0025】
本発明の請求項11に係る発明は、印刷法は、凸版印刷法を用いることを特徴とする請求項7乃至10のいずれかに記載の有機エレクトロルミネッセンス表示装置の製造方法としたものである。
【0026】
本発明の請求項12に係る発明は、発光補助層は、正孔輸送層及び電子輸送層であることを特徴とする請求項7乃至11のいずれかに記載の有機エレクトロルミネッセンス表示装置の製造方法としたものである。
【0027】
本発明の請求項13に係る発明は、正孔輸送層が無機物であることを特徴とする請求項7乃至12のいずれかに記載の有機エレクトロルミネッセンス表示装置の製造方法としたものである。
【0028】
本発明の請求項14に係る発明は、有機発光層と第2の電極との間にさらに発光補助層を備えていることを特徴とする請求項7乃至13のいずれかに記載の有機エレクトロルミネッセンス表示装置の製造方法としたものである。
【発明の効果】
【0029】
本発明によれば、有機発光材料からなる有機発光インキを用いて隔壁で区画された画素電極内に成膜した場合でも、画素内の膜厚の変化を小さくすることができる有機エレクトロルミネッセンス表示装置及びその製造方法を提供することができる。
【発明を実施するための最良の形態】
【0030】
以下、本発明の実施の形態を図面に参照して説明する。本発明はこれらに限定されるものではなく、図示したものは概略図であり一部分のみを抜き出して示した。なお、実施の形態において、同一構成要件には同一符号を付け、実施の形態間において重複する説明は省略する。
【0031】
図1(a)〜(c)及び図2(a)〜(c)は、有機EL素子10の画素部分を拡大断面図を示すものである。図1(a)〜(c)及び図2(a)〜(c)は、基板1、第1の電極2、発光補助層3、有機発光層4、隔壁5を備えている。ここで、第1の電極2上に形成された隔壁5によって画素が定義される。なお、第1の電極2は、本発明の実施の形態において画素電極であり、発光補助層3は本発明の実施の形態において正孔輸送層である。図1(a)〜(c)は、有機発光層4のインキに対し親インキ性の隔壁5を用いた場合の断面図である。図2(a)〜(c)は、有機発光層4のインキに対し撥インキ性の隔壁5を用いた場合の断面図である。
【0032】
図1(a)及び図2(a)は第1の電極2の表面から発光補助層3の表面までの距離が発光補助層3の中央部から隔壁5の方向に向かって短くなっている場合の形状を示す断面図であり、図1(b)及び図2(b)は第1の電極2の表面から発光補助層3の表面までの距離が同じである場合の形状を示す断面図であり、図1(c)及び図2(c)は第1の電極2の表面から発光補助層3の表面までの距離が発光補助層3の中央部から隔壁5の方向に向かって伸びている形状の場合を示す断面図である。
【0033】
図1(a)に示すように、隔壁5へのインキの濡れ上がりはあるものの、発光補助層3の端部の膜厚が薄くなっているため、画素内の電極部分(図の点線に挟まれた、電流の流れる部分)の有機発光層4の膜厚変化を小さく抑えることができ、画素内輝度ムラを小さくすることができる。
【0034】
図1(b)及び(c)に示すように、親インキ性の隔壁5を用いた場合、隔壁5へのインキの濡れ上がりのため、有機発光層4の画素内の電極部分(図の点線に挟まれた、電流の流れる部分)の膜厚変化が大きくなってしまい、EL発光時の画素内輝度ムラが発生する。
【0035】
図2(a)に示すように、インキは隔壁5にはじかれるものの、発光補助層3の端部の膜厚が薄くなっているため、発光補助層3の端部の有機発光層4の膜厚が極端に小さくなることを防止することができ、電界集中による破壊は生じなかった。
【0036】
図2(b)及び(c)に示すように、撥インキ性の隔壁5を用いた場合、隔壁5にインキがはじかれるため、発光補助層3の端部の有機発光層4が薄くなってしまい、電界集中による破壊が生じる。
【0037】
図1(a)及び図2(a)のような効果を発揮するために、第1の電極2の表面から発光補助層3の表面までの距離は、発光補助層3の中央部と発光補助層3の端部との差が1nm以上10nm以下であることが好ましい。発光補助層3の中央部と発光補助層3の端部との差が1nmより小さいと、有機発光層4の膜厚の画素内平坦化の効果が小さくなってしまう。発光補助層3の中央部と発光補助層3の端部との差が10nmより大きいと、隔壁5とインキの濡れ性とのバランスにもよるが、かえって画素内の有機発光層4の膜厚変化が大きくなってしまう。
【0038】
基板1と第1の電極2と有機発光層4と隔壁5との材料、形成方法の説明は後述し、ここでは発光補助層3として形成される正孔輸送層について説明をする。正孔輸送層は、真空加熱蒸着法等の乾式法で成膜する。湿式法で成膜する場合は、インキと隔壁5との相性で膜形状が変化しやすく、添加剤等を用いずに最適な成膜条件を見出すのが困難であった。乾式法を用いることで、添加剤等を加えずに最適な形状の膜を形成することが可能となった。正孔輸送層の形状をコントロールするには、例えば、蒸着マスクの厚みや開口の形状、隔壁5の形状等を調整すればよい。
【0039】
正孔輸送層としては、真空加熱蒸着法等の乾式法で薄膜を形成できる既存の材料を用いることができ、例えば、遷移金属の酸化物や窒化物、酸窒化物やP型化合物半導体といった無機物や、銅フタロシアニン、テトラ(t−ブチル)銅フタロシアニン等の金属フタロシアニン類及び無金属フタロシアニン類、キナクリドン化合物、1,1−ビス(4−ジ−p−トリルアミノフェニル)シクロヘキサン、N,N’−ジフェニル−N,N’−ビス(3−メチルフェニル)−1,1’−ビフェニル−4,4’−ジアミン、N,N’−ジ(1−ナフチル)−N,N’−ジフェニル−1,1’−ビフェニル−4,4’−ジアミン等の芳香族アミン系等の有機物が挙げられる。
【0040】
発光補助層3の上に、湿式法で有機発光層4を形成する。湿式法で薄膜をパターン形成する方法としては、インクジェット法や、凹版印刷、平版印刷、スクリーン印刷、凸版印刷などの印刷法等が利用できる。本発明の有機発光層4のパターン形成方法の一例として、凸版印刷法について説明する。
【0041】
図3に示すように、本発明の実施の形態に係る凸版印刷機30は、ステージ38、被印刷基板37、印刷パターン39、ドクター32、アニロックスロール33、インキチャンバー41、インキタンク31を有し、版胴35の周囲に印刷用凸版36が配置される。インキタンク31には、溶剤に溶解させて調液した有機発光層4の発光材料を含むインキ34が収容されており、インキチャンバー41にはインキタンク31より有機発光層4の発光材料を含むインキ34が送り込まれるようになっている。アニロックスロール33は、インキチャンバー41のインキ供給部及び印刷用凸版36に接して回転するようになっている。
【0042】
アニロックスロール33の回転にともない、インキチャンバー41から供給された有機発光層4の発光材料を含むインキ34はアニロックスロール33表面に均一に保持されたあと、版胴35に取り付けられた印刷用凸版36に転移する。被印刷基板37は摺動可能な基板固定台(ステージ)38上に固定され、印刷用凸版36のパターンと被印刷基板37のパターンの位置調整機構により、位置調整しながら印刷開始位置まで移動する。版胴36の回転に合わせて印刷用凸版36が被印刷基板37に接しながらさらに移動し、ステージ38上にある被印刷基板37の所定位置にパターニング(印刷パターン39)して有機発光層の材料のインキ34を転移し、有機発光層4を形成する。
【0043】
印刷用凸版36のパターンを形成する樹脂としては、インキ34に対する耐溶剤性があればよく、ニトリルゴム、シリコーンゴム、イソプレンゴム、スチレンブタジエンゴム、ブタジエンゴム、クロロプレンゴム、ブチルゴム、アクリロニトリルゴム、エチレンプロピレンゴム、ウレタンゴムなどのゴムの他に、ポリエチレン、ポリスチレン、ポリブタジエン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ酢酸ビニル、ポリアミド、ポリエーテルスルホン、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリエーテルスルホン、ポリビニルアルコールなどの合成樹脂やそれらの共重合体、セルロース誘導体などや、フッ素系エラストマーやポリ四フッ化エチレン、ポリフッ化ビニリデン、ポリ六フッ化ビニリデンやそれらの共重合体といったフッ素系樹脂から一種類以上を選択することができる。
【0044】
有機発光層4の形成方法を凸版印刷法を用いることにより、高スループットで面内に均一に薄膜を形成することができる。
【0045】
[有機EL素子10の構造]
図4に図3の有機EL素子10の製造用である凸版印刷機30により製造されたパッシブマトリックス方式の有機EL素子10の断面図を示した。有機EL素子10の駆動方法としては、パッシブマトリックス方式とアクティブマトリックス方式とがあるが、本発明の実施の形態に係る有機EL素子10は、パッシブマトリックス方式及びアクティブマトリックス方式のどちらにも適用可能である。
【0046】
パッシブマトリックス方式とはストライプ状の第1の電極2と第2の電極6とを直交させるように対向させ、その交点を発光させる方式であるのに対し、アクティブマトリックス方式は画素毎にトランジスタを形成した、いわゆるTFT基板を用いることにより、画素毎に独立して発光する方式である。
【0047】
図4に示すように、本発明の実施の形態に係る有機EL素子10は、基板1の上に、画素電極としてストライプ状に第1の電極2を有している。隔壁5は第1の電極2間に設けられ、第1の電極2の端部のバリ等よるショートを防ぐことを目的として第1の電極2の端部を覆うことが好ましい。
【0048】
そして、本発明の実施の形態に係る有機EL素子10は、第1の電極2上であって、隔壁5で区画された領域に有機発光層4(4R、4G、4B)及び発光補助層3を有している。発光補助層3としては正孔輸送層、正孔注入層、電子輸送層、電子注入層が挙げられる。図4では発光補助層3としての正孔輸送層と有機発光層4(4R、4G、4B)との積層構造からなる構成を示している。第1の電極2上には、真空加熱蒸着法等の乾式法で発光補助層3を形成する。この時、第1の電極2の表面から発光補助層3の表面までの距離は、発光補助層3の中央部から隔壁5の方向に向って短くなり、凸形状になるように発光補助層3を形成する。発光補助層3上には、赤色(R)有機発光層4R、緑色(G)有機発光層4G、青色(B)有機発光層4Bがそれぞれ設けられている。これらの有機発光層4(4R、4G、4B)はインクジェット法や印刷法等の湿式法で形成する。
【0049】
次に、有機発光層4(4R、4G、4B)上に画素電極である第1の電極2と対向するように陰極として第2の電極6が配置される。パッシブマトリックス方式の場合、ストライプ状を有する第1の電極2と直交する形で第2の電極6はストライプ状に設けられる。アクティブマトリックス方式の場合、第2の電極6は、隔壁5、有機発光層4(4R、4G、4B)等の全面を覆うように形成される。さらに、環境中の水分、酸素が第1の電極2、有機発光層4、発光補助層3(例えば、正孔輸送層)、第2の電極6への侵入を防ぐために有効画素全面に対してガラスキャップ17等による封止体が設けられ、接着剤18を介して基板1と貼りあわされる。
【0050】
本発明の実施の形態に係る有機EL素子10は、基板1と、第1の電極2と、発光補助層3と、有機発光層4と、第2の電極6とを具備する。本発明の実施の形態に係る有機EL素子10は、図4とは逆に、第1の電極2を陰極、第2の電極6を陽極とする構造であっても良い。また、ガラスキャップ17等の封止体の代わりに有機発光層4や電極(例えば、第1の電極2及び第2の電極6)を外部の酸素や水分の浸入から保護するためにパッシベーション層や外部応力から保護する保護層、あるいはその両方の機能備えた封止基材を備えてもよい。
【0051】
[有機EL素子10の製造方法]
本発明の実施の形態に係る有機EL素子10の製造方法の一例として、図4及び図5に基づいて説明する。
【0052】
本発明の実施の形態に係る基板1としては、絶縁性を有する基板1であればいかなる基板1も使用することができる。この基板1側から光を取り出すボトムエミッション方式の有機EL表示装置10とする場合には、基板1として透明なものを使用する必要がある。
【0053】
例えば、基板1の材料としてはガラス基板や石英基板が使用できる。また、ポリプロピレン、ポリエーテルサルフォン、ポリカーボネート、シクロオレフィンポリマー、ポリアリレート、ポリアミド、ポリメチルメタクリレート、ポリエチレンテレフタレート、ポリエチレンナフタレート等のプラスチックフィルムやシートであっても良い。これら、プラスチックフィルムやシートに、有機発光層4への水分の侵入を防ぐことを目的として、金属酸化物薄膜、金属弗化物薄膜、金属窒化物薄膜、金属酸窒化膜薄膜、あるいは高分子樹脂膜を積層したものを基板1として利用してもよい。
【0054】
また、これらの基板1は、あらかじめ加熱処理を行うことにより、基板1の内部や表面に吸着した水分を極力低減することがより好ましい。また、基板1上に積層される材料に応じて、密着性を向上させるために、超音波洗浄処理、コロナ放電処理、プラズマ処理、UVオゾン処理などの表面処理を施してから使用することが好ましい。
【0055】
また、基板1上に薄膜トランジスタ(以下、「TFT」という。)を形成して、アクティブマトリックス方式の有機EL素子用基板50とすることが可能である。本発明のアクティブマトリクス方式の有機EL素子用基板50の一例の概略断面図を図5に示す。
【0056】
本発明の有機EL素子用基板50には、TFT31上に、平坦化層32が形成してあるとともに、平坦化層32上に有機EL素子10の第1の電極2が設けられており、かつ、TFT31と第1の電極2とが平坦化層32に設けたコンタクトホール33を介して電気接続してあることが好ましい。このように構成することにより、TFT31と、有機EL素子10との間で、優れた電気絶縁性を得ることができる。
【0057】
TFT31や、その上方に構成される有機EL素子10は支持体34で支持される。支持体34としては機械的強度や、寸法安定性に優れていることが好ましく、具体的には先に基板1として述べた材料を用いることができる。
【0058】
支持体34上に設けるTFT31は、公知のTFT31を用いることができる。具体的には、主として、ソース39/ドレイン38領域及びチャネル領域が形成される活性層35、ゲート絶縁膜36及びゲート電極37から構成されるTFT31が挙げられる。TFT31の構造としては、特に限定されるものではなく、例えば、スタガ型、逆スタガ型、トップゲート型、コプレーナ型等が挙げられる。
【0059】
活性層35は、特に限定されるものではなく、例えば、非晶質シリコン、多結晶シリコン、微結晶シリコン、セレン化カドミウム等の無機半導体材料又はチオフエンオリゴマー、ポリ(p−フェリレンビニレン)等の有機半導体材料により形成することができる。これらの活性層35は、例えば、アモルファスシリコンをプラズマCVD法により積層し、イオンドーピングする方法、SiHガスを用いてLPCVD法によりアモルファスシリコンを形成し、固相成長法によりアモルファスシリコンを結晶化してポリシリコンを得た後、イオン打ち込み法によりイオンドーピングする方法、Siガスを用いてLPCVD法により、また、SiHガスを用いてPECVD法によりアモルファスシリコンを形成し、エキシマレーザ等のレーザによりアニールし、アモルファスシリコンを結晶化してポリシリコンを得た後、イオンドーピング法によりイオンドーピングする方法(低温プロセス)、減圧CVD法又はLPCVD法によりポリシリコンを積層し、1000℃以上で熱酸化してゲート絶縁膜36を形成し、その上にnポリシリコンのゲート電極37を形成し、その後、イオン打ち込み法によりイオンドーピングする方法(高温プロセス)等が挙げられる。
【0060】
ゲート絶縁膜36としては、通常、ゲート絶縁膜36として使用されているものを用いることができ、例えば、PECVD法、LPCVD法等により形成されたSiO、ポリシリコン膜を熱酸化して得られるSiO等を用いることができる。
【0061】
ゲート電極37としては、通常、ゲート電極37として使用されているものを用いることができ、例えば、アルミ、銅等の金属、チタン、タンタル、タングステン等の高融点金属、ポリシリコン、高融点金属のシリサイド、ポリサイド等が挙げられる。
【0062】
TFT31は、シングルゲート構造、ダブルゲート構造、ゲート電極37が3つ以上のマルチゲート構造であってもよい。また、LDD構造、オフセット構造を有していてもよい。さらに、1つの画素中に2つ以上のTFT31が配置されていてもよい。
【0063】
本発明の実施の形態に係る有機EL素子10はTFT31が有機EL素子10のスイッチング素子として機能するように接続される必要があり、TFT31のドレイン電極38と有機EL素子10の第1の電極2とが電気的に接続されている。さらにトップエミッション構造をとるための第1の電極2は一般に光を反射する金属が用いられる必要がある。
【0064】
TFT31とドレイン電極38と有機EL素子10の第1の電極2との接続は、平坦化膜32を貫通するコンタクトホール33内に形成された接続配線を介して行われる。
【0065】
平坦化膜32の材料についてはSiO、スピンオンガラス、SiN(Si)、TaO(Ta)等の無機材料、ポリイミド樹脂、アクリル樹脂、フォトレジスト材料、ブラックマトリックス材料等の有機材料等を用いることができる。これらの材料に合わせてスピンコーティング法、CVD法、真空蒸着法等を選択できる。必要に応じて、平坦化膜32として感光性樹脂を用いフォトリソグラフィ法の手法により、あるいは一旦全面に平坦化膜32を形成後、下層のTFT31に対応した位置にドライエッチング、ウェットエッチング等でコンタクトホール33を形成する。コンタクトホール33はその後導電性材料で埋めて平坦化膜32上層に形成される第1の電極2との導通を図る。平坦化膜32の厚みは下層のTFT31、コンデンサ、配線等を覆うことができればよく、厚みは数μm、例えば3μm程度あればよい。
【0066】
有機EL素子用基板50上には第1の電極2が設けられる。第1の電極2を画素電極とした場合、その材料としては、ITO(インジウムスズ複合酸化物)、IZO(インジウム亜鉛複合酸化物)、酸化錫、酸化亜鉛、酸化インジウム、亜鉛アルミニウム複合酸化物等の金属複合酸化物や金、白金、クロムなどの金属材料を単層または積層したものをいずれも使用できる。第1の電極2の形成方法は、材料に応じて、抵抗加熱蒸着法、電子ビーム蒸着法、反応性蒸着法、イオンプレーティング法、スパッタリング法等の乾式成膜法を用いることができる。
【0067】
なお、低抵抗であること、溶剤耐性があること、また、ボトムミッション方式としたときには透明性が高いことなどからITOが好ましく使用できる。ITOはスパッタリング法により基板1上に形成されて、フォトリソグラフィ法によりパターニングされて第1の電極2となる。
【0068】
第1の電極2を形成後、第1の電極2の端部を覆うようにして隔壁5が形成される。隔壁5は絶縁性を有する必要があり、感光性材料等を用いることができる。感光性材料としては、ポジ型であってもネガ型であってもよく、光ラジカル重合系、光カチオン重合系の光硬化性樹脂、あるいはアクリロニトリル成分を含有する共重合体、ポリビニルフェノール、ポリビニルアルコール、ノボラック樹脂、ポリイミド樹脂、およびシアノエチルプルラン等を用いることができる。また、隔壁5の形成材料として、SiO、TiO等を用いることもできる。
【0069】
隔壁5の形成材料が感光性材料の場合、形成材料溶液をスリットコート法やスピンコート法により全面コーティングしたあと、露光、現像といったフォトリソグラフィ法によりパターニングがおこなわれる。スピンコート法の場合、隔壁5の高さは、スピンコートするときの回転数等の条件でコントロールできるが、1回のコーティングでは限界の高さがあり、それ以上高くするときは複数回スピンコートを繰り返す手法を用いる。
【0070】
隔壁5の高さは0.5μm以上5.0μm以下にすることにより混色等の表示不良を発生させることなく、有機発光層4の画素内の膜厚の変化を小さくすることができる。隔壁5の高さを0.5μmより小さくすると、混色等の表示不良が発生してしまい、隔壁5の高さを5.0μmより大きくすると、有機発光層4の画素内の膜厚の変化が大きくなってしまう。
【0071】
感光性材料を用いてフォトリソグラフィ法により隔壁5を形成する場合、その形状は露光条件や現像条件により制御可能である。例えば、ネガ型の感光性樹脂を塗布し、露光・現像した後、ポストベークして、隔壁5を得るときに、隔壁5の端部の形状を順テーパー形状としたい場合には、この現像条件である現像液の種類、濃度、温度、あるいは現像時間を制御すればよい。現像条件を穏やかなものとすれば、隔壁5の端部は順テーパー形状となり、現像条件を過酷にすれば、隔壁5の端部は逆テーパー形状となる。
【0072】
また、隔壁5の形成材料がSiO、TiOの場合、スパッタリング法、CVD法といった乾式成膜法で形成可能である。この場合、隔壁5のパターニングはマスクやフォトリソグラフィ法により行うことができる。
【0073】
次に、有機発光層4及び発光補助層3を形成する。電極間に挟まれる層(第1の電極2と第2の電極6との間)としては、有機発光層4及び発光補助層3である正孔輸送層から構成されたものでもよいし、正孔注入層、電子輸送層、電子注入層といった発光を補助するための発光補助層3を積層してもよい。なお、正孔注入層、電子輸送層、電子注入層は必要に応じて適宜選択される。
【0074】
本発明の実施の形態では、真空加熱蒸着法等の乾式法で発光補助層3である正孔輸送層を形成する。この時、第1の電極2の表面から発光補助層3の表面までの距離が、発光補助層3の中央部から隔壁5の方向に向って短くなり、凸形状になるように発光補助層3を形成する。
【0075】
発光補助層3である正孔輸送層の材料としては、遷移金属の酸化物や窒化物、酸窒化物やP型化合物半導体といった無機物や、銅フタロシアニン、テトラ(t−ブチル)銅フタロシアニン等の金属フタロシアニン類及び無金属フタロシアニン類、キナクリドン化合物、1,1−ビス(4−ジ−p−トリルアミノフェニル)シクロヘキサン、N,N’−ジフェニル−N,N’−ビス(3−メチルフェニル)−1,1’−ビフェニル−4,4’−ジアミン、N,N’−ジ(1−ナフチル)−N,N’−ジフェニル−1,1’−ビフェニル−4,4’−ジアミン等の芳香族アミン系の有機物、その他既存の正孔輸送層の材料の中から選ぶことができる。
【0076】
そして、本発明の実施の形態に係る有機発光層4の材料を溶媒に溶解、または分散させたインキを用いて、湿式法により、有機発光層4を形成する。以降、本発明において、有機発光層4の材料を溶媒に溶解、または分散させた有機発光インキを用いた場合について示す。
【0077】
有機発光層4は電流を流すことにより発光する層である。有機発光層4の形成する有機発光材料としては、9,10−ジアリールアントラセン誘導体、ピレン、コロネン、ペリレン、ルブレン、1,1,4,4−テトラフェニルブタジエン、トリス(8−キノラート)アルミニウム錯体、トリス(4−メチル−8−キノラート)アルミニウム錯体、ビス(8−キノラート)亜鉛錯体、トリス(4−メチル−5−トリフルオロメチル−8−キノラート)アルミニウム錯体、トリス(4−メチル−5−シアノ−8−キノラート)アルミニウム錯体、ビス(2−メチルー5−トリフルオロメチルー8−キノリノラート)[4−(4−シアノフェニル)フェノラート]アルミニウム錯体、ビス(2−メチルー5−シアノー8−キノリノラート)[4−(4−シアノフェニル)フェノラート]アルミニウム錯体、トリス(8−キノリノラート)スカンジウム錯体、ビス[8−(パラートシル)アミノキノリン]亜鉛錯体及びカドミウム錯体、1,2,3,4−テトラフェニルシクロペンタジエン、ポリー2,5−ジヘプチルオキシーパラーフェニレンビニレンなどの低分子系発光材料が使用できる。
【0078】
また、クマリン系蛍光体、ペリレン系蛍光体、ピラン系蛍光体、アンスロン系蛍光体、ポリフィリン系蛍光体、キナクリドン系蛍光体、N,N’−ジアルキル置換キナクリドン系蛍光体、ナフタルイミド系蛍光体、N,N’−ジアリール置換ピロロピロール系蛍光体等、Ir錯体等の燐光性発光体などの低分子系発光材料を、高分子中に分散させたものが使用できる。高分子としてはポリスチレン、ポリメチルメタクリレート、ポリビニルカルバゾール等が使用できる。
【0079】
また、ポリ(2−デシルオキシ−1,4−フェニレン)(DO−PPP)、ポリ[2,5−ビス−[2−(N,N,N−トリエチルアンモニウム)エトキシ]−1,4−フェニル−アルト−1,4−フェニルレン]ジブロマイド(PPP−NEt3+)、ポリ[2−(2’−エチルヘキシルオキシ)−5−メトキシ−1,4−フェニレンビニレン](MEH−PPV)、ポリ[5−メトキシ−(2−プロパノキシサルフォニド)−1,4−フェニレンビニレン](MPS−PPV)、ポリ[2,5−ビス−(ヘキシルオキシ)−1,4−フェニレン−(1−シアノビニレン)](CN−PPV)、ポリ(9,9−ジオクチルフルオレン)(PDAF)、ポリスピロなどの高分子発光材料であってもよい。PPV前駆体、PPP前駆体などの高分子前駆体が挙げられる。また、その他既存の発光材料を用いることもできる。
【0080】
有機発光層4の材料を溶解または分散する溶媒としては、トルエン、キシレン、アセトン、ヘキサン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、メタノール、エタノール、イソプロピルアルコール、酢酸エチル、酢酸ブチル、2−メチル−(t−ブチル)ベンゼン、1,2,3,4−テトラメチルベンゼン、ペンチルベンゼン、1,3,5−トリエチルベンゼン、シクロヘキシルベンゼン、1,3,5−トリ−イソプロピルベンゼン等を単独又は混合して用いることができる。また、有機発光インキには、必要に応じて、界面活性剤、酸化防止剤、粘度調整剤、紫外線吸収剤等が添加されてもよい。
【0081】
上述した有機EL素子10を、本発明の実施の形態において図3で示す凸版印刷機30を用いて製造するには、基板1上に第1の電極2と発光補助層3が設けられている被印刷基板37を用い、有機発光層4の発光材料を含むインキ42を用いる。有機発光層4の発光材料または発光補助層3の材料を含むインキ42は上述のように印刷用凸版36に供給され、上述の被印刷基板37へ印刷される。
【0082】
次に、第2の電極6を形成する。第2の電極6を陰極とした場合、その材料としては電子注入効率の高い物質を用いる。具体的にはMg、AL、Yb等の金属単体を用いたり、有機発光層4と接する界面にLiや酸化Li、LiF等の化合物を1nm程度挟んで、安定性・導電性の高いAlやCuを積層して用いたりできる。または電子注入効率と安定性を両立させるため、低仕事関数であるLi、Mg、Ca、Sr、La、Ce、Er、Eu、Sc、Y、Yb等の金属を1種以上と、安定なAg、Al、Cu等の金属元素との合金系が用いられる。具体的にはMgAg、AlLi,CuLi等の合金が使用できる。また、トップエミッション方式の有機EL素子10とする場合は、第2の電極6である陰極は透明性を有する必要があり、例えば、これら金属とITO等の透明導電層の組み合わせによる透明化が可能となる。
【0083】
第2の電極6の形成方法は、材料に応じて、抵抗加熱蒸着法、電子ビーム蒸着法、反応性蒸着法、イオンプレーティング法、スパッタリング法等の乾式成膜法を用いることができる。また、第2の電極6をパターンとする必要がある場合には、マスク等によりパターニングすることができる。第2の電極6の厚さは10nm以上1000nm以下が好ましい。なお、本発明では第1の電極2を陰極、第2の電極6を陽極とすることも可能である。
【0084】
有機EL素子10としては電極間(第1の電極2と第2の電極6との間)に有機発光層4を挟み、電流を流すことで発光させることが可能であるが、有機発光層4の材料や発光補助材料、電極形成材料の一部は大気中の水分や酸素によって容易に劣化してしまうため通常は外部と遮断するための封止体を設ける。
【0085】
封止体は、例えば第1の電極2、有機発光層4、発光補助層3(例えば、正孔輸送層)、第2の電極6が形成された基板1に対して、凹部を有するガラスキャップ17、金属キャップを用いて、第1の電極2、有機発光層4、発光補助層3(例えば、正孔輸送層)、第2の電極6上に凹部があたるようにして、その周辺部についてガラスキャップ17と基板1を、接着剤18を介して貼り合わせることにより封止がおこなわれる。
【0086】
また、封止体は、例えば第1の電極2、有機発光層4、発光補助層3(例えば、正孔輸送層)、第2の電極6が形成された基板1に対して、封止材上に樹脂層を設け、樹脂層により封止材と基板1を貼りあわせることによりおこなうことも可能である。
【0087】
このとき封止材としては、水分や酸素の透過性が低い基材である必要がある。また、材料の一例として、アルミナ、窒化ケイ素、窒化ホウ素等のセラミックス、無アルカリガラス、アルカリガラス等のガラス、石英、アルミニウムやステンレスなどの金属箔、耐湿性フィルムなどを挙げることができる。耐湿性フィルムの例として、プラスチック基材の両面にSiOxをCVD法で形成したフィルムや、透過性の小さいフィルムと吸水性のあるフィルムまたは吸水剤を塗布した重合体フィルムなどがあり、耐湿性フィルムの水蒸気透過率は、10−6g/m/day以下であることが好ましい。
【0088】
樹脂層としては、エポキシ系樹脂、アクリル系樹脂、シリコーン樹脂などからなる光硬化型接着性樹脂、熱硬化型接着性樹脂、2液硬化型接着性樹脂や、エチレンエチルアクリレート(EEA)ポリマー等のアクリル系樹脂、エチレンビニルアセテート(EVA)等のビニル系樹脂、ポリアミド、合成ゴム等の熱可塑性樹脂や、ポリエチレンやポリプロピレンの酸変性物などの熱可塑性接着性樹脂を挙げることができる。樹脂層を封止材の上に形成する方法の一例として、溶剤溶液法、押出ラミ法、溶融・ホットメルト法、カレンダー法、ノズル塗布法、スクリーン印刷法、真空ラミネート法、熱ロールラミネート法などを挙げることができる。必要に応じて吸湿性や吸酸素性を有する材料を含有させることもできる。封止材上に形成する樹脂層の厚みは、封止する有機EL素子10の大きさや形状により任意に決定されるが、5μm以上500μm以下程度が望ましい。
【0089】
第1の電極2、有機発光層4、発光補助層3(例えば、正孔輸送層)、第2の電極6が形成された基板1と封止体の貼り合わせは封止室でおこなわれる。封止体を、封止材と樹脂層の2層構造とし、樹脂層に熱可塑性樹脂を使用した場合は、加熱したロールで圧着のみ行うことが好ましい。熱硬化型接着樹脂を使用した場合は、加熱したロールで圧着した後、さらに硬化温度で加熱硬化を行うことが好ましい。光硬化性接着樹脂を使用した場合は、ロールで圧着した後、さらに光を照射することで硬化を行うことができる。なお、ここでは封止材上に樹脂層を形成したが、基板1上に樹脂層を形成して封止材と貼りあわせることも可能である。
【0090】
封止体を用いて封止を行う前やその代わりに、例えばパッシベーション膜として、CVD法を用いて、窒化珪素膜を150nm成膜するなど、無機薄膜による封止体とすることも可能であり、また、これらを組み合わせることも可能である。
【0091】
本発明の実施の形態によれば、第1の電極2の表面から発光補助層3の表面までの距離が発光補助層3の中央部から隔壁5の方向に向って短くなっている形状の発光補助層3上に湿式成膜法によって有機発光層4を形成することにより、有機発光層4の画素内の膜厚の変化を小さくすることができ、電界集中による破壊や画素内における輝度ムラ等の不具合を低減することができる。
【0092】
また、発光補助層3を乾式法にて成膜することにより、添加物等を使用することなく、所望の膜形状を得ることができる。特に、第1の電極2の表面から発光補助層3の表面までの距離は発光補助層3の中央部と発光補助層3の端部との差が1nm以上10nm以下である場合に、有機発光層4の画素内の膜厚の変化を小さくする効果が大きかった。
【実施例】
【0093】
以下、本発明の実施例及び比較例について具体的に説明する。
【0094】
[実施例1]
300mm角のガラス基板1上に、スパッタリング法を用いてITO膜を形成し、フォトリソグラフィ法と酸溶液によるエッチングでITO膜をパターニングした。第1の電極2である画素電極のラインパターンは、線幅40μm、スペース20μmで、ラインが1950ライン形成されるパターンとした。
【0095】
第1の電極2を形成したガラス基板1上に、ポジ型感光性ポリイミド、東レ社製商品名「フォトニース DL−1000」を全面にスピンコートした。全面に塗布した感光性材料に対し、フォトリソグラフィ法により露光、現像を行い、230℃30分でオーブンにて焼成して、第1の電極2の間にラインパターンを有する高さ2μmの隔壁5を形成した。
【0096】
隔壁5を形成したガラス基板1にUV/O洗浄装置にて紫外線照射を前処理としておこなった後、発光補助層3である正孔輸送層として酸化バナジウム(V)を厚さ30μm、開口幅40μmのマスクを用いて真空加熱蒸着法によりパターン形成した。形成した発光補助層3の画素内の膜形状は、画素中央部が72nm、画素開口端部が66nmの凸形状であった。
【0097】
次に、ポリ(パラフェニレンビニレン)誘導体からなる有機発光材料を1.7重量%濃度になるようにトルエンに溶解させたインキを用い、ガラス基板1上に形成した第1の電極2のラインパターンに合わせて、凸版印刷法により有機発光層4を形成した。形成した有機発光層4の画素内膜形状は、画素中央部が93nm、画素開口端部が105nmであった。
【0098】
その上にカルシウムとアルミニウムからなる陰極である第2の電極6を第1の電極2のラインパターンと直交するようなラインパターンで積層形成した。最後にこれらの有機EL素子10の構成体をガラスキャップ17と接着剤18を用いて密閉封止し、有機EL表示装置を作製した。電圧を5V印加し発光状態を確認したところ、画素内の発光面積は94%であった。
【0099】
[比較例1]
第1の電極2及び隔壁5は実施例1と同様に作製した。UV/O洗浄装置にて紫外線照射を前処理としておこなった後、発光補助層3として酸化バナジウム(V)を表示領域全面に形成した。形成した発光補助層3の画素内の膜形状は、画素中央部から画素開口端部にかけて平坦であり、膜厚は70nmであった。
【0100】
このガラス基板1上に、実施例1と同様にして、凸版印刷法により有機発光層4を形成した。形成した有機発光層4の画素内の膜形状は、画素中央部が92nm、画素開口端部が116nmであった。その上に、実施例1と同様に、陰極である第2の電極6を積層形成した後、ガラスキャップ17で密閉封止して有機EL表示装置を作製した。電圧を5V印加し発光状態を確認したところ、画素内の発光面積は78%であった。
【0101】
[比較例2]
第1の電極2及び隔壁5は実施例1と同様に作製した。UV/O洗浄装置にて紫外線照射を前処理としておこなった後、発光補助層3である正孔輸送層としてPEDOTからなる高分子膜をスピンコート法で表示領域全面に形成した。形成した発光補助層3の画素内の膜形状は、画素中央部が56nm、画素開口端部が82nmの凹形状であった。
【0102】
このガラス基板1上に、実施例1と同様にして、凸版印刷法により有機発光層4を形成した。形成した有機発光層4の膜形状は、画素中央部が90nm、画素開口端部が122nmであった。その上に、実施例1と同様に、陰極である第2の電極6を積層形成した後、ガラスキャップ17で密閉封止して有機EL表示装置20を作製した。電圧を5V印加し発光状態を確認したところ、画素内の発光面積は56%であった。
【0103】
上記の実施例1及び比較例1及び2により、本発明によって、画素内の輝度バラツキ・発光ムラの少ない、高性能な有機EL素子が製造できることが確認できた。
【図面の簡単な説明】
【0104】
【図1】(a)〜(c)は本発明の実施の形態に係る隔壁が親インキ性の場合において画素内膜形状を示す断面図である。
【図2】(a)〜(c)は本発明の実施の形態に係る隔壁が撥インキ性の場合において画素内膜形状を示す断面図である。
【図3】本発明の実施の形態に係る凸版印刷装置を示す概略図である。
【図4】本発明の実施の形態に係る有機EL素子を示す概略断面図である。
【図5】本発明の実施の形態に係るアクティブマトリクス方式の一例を示す概略断面図である。
【符号の説明】
【0105】
1 基板
2 第1の電極
3 発光補助層
4 有機発光層
4R 赤色有機発光層
4G 緑色有機発光層
4B 青色有機発光層
5 隔壁
6 第2の電極
10 有機EL素子
17 ガラスキャップ
18 接着剤
30 凸版印刷機
31 インキタンク
32 ドクター
33 アニロックスロール
34 インキ
35 版胴
36 印刷用凸版
37 被印刷基板
38 ステージ
39 印刷パターン
41 インキチャンバー
31 TFT
32 平坦化層
33 コンタクトホール
34 支持体
35 活性層
36 ゲート絶縁膜
37 ゲート電極
38 ドレイン電極
39 ソース電極
40 層間絶縁膜
51 データ線
50 有機EL素子用基板

【特許請求の範囲】
【請求項1】
基板上に形成された第1の電極と、
前記第1の電極の端部に形成された隔壁と、
前記第1の電極上に形成された発光補助層と、
前記発光補助層上に形成された有機発光層と、
前記有機発光層上に形成された第2の電極と、を有し、
前記第1の電極の表面から前記発光補助層の表面までの距離が、前記発光補助層の中央部から前記隔壁の方向に向って短くなっていることを特徴とする有機エレクトロルミネッセンス表示装置。
【請求項2】
前記第1の電極の表面から前記発光補助層の表面までの距離は、前記発光補助層の中央部と前記発光補助層の端部との差が1nm以上10nm以下であることを特徴とする請求項1に記載の有機エレクトロルミネッセンス表示装置。
【請求項3】
前記隔壁の高さが、0.5μm以上5.0μm以下であることを特徴とする請求項1又は2に記載の有機エレクトロルミネッセンス表示装置。
【請求項4】
前記発光補助層は、正孔輸送層又は電子輸送層であることを特徴とする請求項1乃至3のいずれかに記載の有機エレクトロルミネッセンス表示装置。
【請求項5】
前記正孔輸送層が無機物であることを特徴とする請求項1乃至4のいずれかに記載の有機エレクトロルミネッセンス表示装置。
【請求項6】
前記有機発光層と前記第2の電極との間にさらに発光補助層を備えていることを特徴とする請求項1乃至5のいずれかに記載の有機エレクトロルミネッセンス表示装置。
【請求項7】
基板上に第1の電極を形成し、
前記第1の電極の端部に隔壁を形成し、
前記第1の電極上に発光補助層を前記第1の電極の表面から前記発光補助層の表面までの距離が、前記発光補助層の中央部から前記隔壁の方向に向って短くなるように形成し、
前記発光補助層上に有機発光層を形成し、
前記有機発光層上に第2の電極を形成することを特徴とする有機エレクトロルミネッセンス表示装置の製造方法。
【請求項8】
前記第1の電極の表面から前記発光補助層の表面までの距離は、前記発光補助層の中央部と前記発光補助層の端部との差が、1nm以上10nm以下であることを特徴とする請求項7に記載の有機エレクトロルミネッセンス表示装置の製造方法。
【請求項9】
前記隔壁の高さが、0.5μm以上5.0μm以下であることを特徴とする請求項7又は8に記載の有機エレクトロルミネッセンス表示装置の製造方法。
【請求項10】
前記有機発光層が、印刷法によりパターニング形成されていることを特徴とする請求項7乃至9のいずれかに記載の有機エレクトロルミネッセンス表示装置の製造方法。
【請求項11】
前記印刷法は、凸版印刷法を用いることを特徴とする請求項7乃至10のいずれかに記載の有機エレクトロルミネッセンス表示装置の製造方法。
【請求項12】
前記発光補助層は、正孔輸送層及び電子輸送層であることを特徴とする請求項7乃至11のいずれかに記載の有機エレクトロルミネッセンス表示装置の製造方法。
【請求項13】
前記正孔輸送層が無機物であることを特徴とする請求項7乃至12のいずれかに記載の有機エレクトロルミネッセンス表示装置の製造方法。
【請求項14】
前記有機発光層と前記第2の電極との間にさらに発光補助層を備えていることを特徴とする請求項7乃至13のいずれかに記載の有機エレクトロルミネッセンス表示装置の製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公開番号】特開2009−158585(P2009−158585A)
【公開日】平成21年7月16日(2009.7.16)
【国際特許分類】
【出願番号】特願2007−332615(P2007−332615)
【出願日】平成19年12月25日(2007.12.25)
【出願人】(000003193)凸版印刷株式会社 (10,630)
【Fターム(参考)】