説明

有機顔料微粒子を含む光重合性組成物

【課題】高い感度および光沢感のある高画質な画像を提供することができる光重合性組成物を提供すること、また高い感度および光沢感のある高画質な画像を提供する活性光線硬化型のインクジェット記録用インクを提供することを目的とする。
【解決手段】以下の成分を含む光重合性組成物により解決される。
a)光重合性化合物、b)光重合開始剤、及びc)体積平均粒径Mvが20〜50nmであり、かつ体積平均粒径Mvと個数平均粒径Mnの比Mv/Mnが1〜1.5の範囲である有機顔料微粒子。
上記光重合性組成物において、有機顔料微粒子はさらに重合性化合物の重合体が固定化された有機顔料微粒子であることが好ましい。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、3次元光造形やホログラフィー、平版印刷用版材やカラープルーフ、フォトレジスト及びカラーフィルターといった画像形成材料やインク、接着剤等の光硬化樹脂材料用途に利用できる光重合性材料に関する。特に、硬化性が良好で光沢性に優れ高画質の画像を形成することができる活性光線硬化型インクジェット記録用インク組成物に関する。
【背景技術】
【0002】
開始剤(光増感剤)を含有させた光重合性組成物は、熱による乾燥工程が省略できること、短時間に硬化すること、複雑な形状の製品を容易に製造できること、環境汚染が少ないことなどの利点があり、光硬化性インキ、光硬化性接着剤、感光平版印刷版、プリント基板用フォトレジスト等として広く利用されている。これらの組成物中には、必要に応じて顔料等の着色剤が含有されており、光照射後、着色硬化物として得られる。
【0003】
顔料を含有する光重合性組成物においては、顔料粒子の大きさ、分布幅によって、その画像品質が大きく異なってくる。
有機顔料微粒子の製造方法は、バルク物質から粉砕などにより製造するブレイクダウン法、気相中または液相中からの粒子成長により製造するビルドアップ法に大別される(非特許文献1参照)。一般にブレイクダウン法(粉砕法)が広く用いられているが、この方法では有機物質をナノメートルサイズで得ることは難しく、また極めて生産性が低く、適用できる物質も限定されてしまう。
これに対し、近年ビルドアップ法によりナノメートルサイズの有機微粒子を製造する方法が検討されている。例えば、マイクロ化学プロセスによる製造方法が挙げられる(特許文献1参照)。しかしながら、インクジェット用インクなど、近年の高い要求に応えるには未だ十分ではなく、さらなる改良開発が望まれている。
【0004】
一方、画像データ信号に基づき、紙などの被記録媒体に画像を形成する画像記録方法として、電子写真方式、昇華型及び溶融型熱転写方式、インクジェット方式などがある。電子写真方式は、感光体ドラム上に帯電及び露光により静電潜像を形成するプロセスを必要とし、システムが複雑となり、結果的に製造コストが高価になるなどの問題がある。また熱転写方式は、装置は安価であるが、インクリボンを用いるため、ランニングコストが高くかつ廃材が出るなどの問題がある。一方インクジェット方式は、安価な装置で、且つ必要とされる画像部のみにインクを吐出し被記録媒体上に直接画像形成を行うため、インクを効率良く使用でき、ランニングコストが安い。さらに、騒音が少なく、画像記録方式として優れている。
【0005】
インクジェット方式の画像記録方式において、紫外線などの放射線による硬化可能なインクジェット方式は、比較的低臭気であり、速乾性、インク吸収性の無い被記録媒体への記録が出来る点で、近年注目されつつある。このような放射線硬化型インク組成物では、十分に高い感度(硬化性)および光沢感のある高画質な印刷物の提供が求められている。
しかしながら従来の顔料では、このような要求に応えるには未だ十分ではなく、さらなる改良開発が望まれているのが現状である。
【0006】
【特許文献1】特開2005−307154
【非特許文献1】日本化学会編「第4版実験化学講座」第12巻、年、411〜488頁、(株)丸善。
【発明の開示】
【発明が解決しようとする課題】
【0007】
本発明は、高い感度および光沢感のある高画質な画像を提供することができる光重合性組成物を提供することを目的とする。
本発明はまた、高い感度および光沢感のある高画質な画像を提供する活性光線硬化型のインクジェット記録用インクを提供することを目的とする。
【課題を解決するための手段】
【0008】
本発明の課題は、以下の成分を含む光重合性組成物により上記課題が達成されることが見出された。
a)光重合性化合物、b)光重合開始剤、及びc)重合性化合物の重合体が固定化されており、体積平均粒径Mvが50nm以下でありかつ体積平均粒径Mvと個数平均粒径Mnの比Mv/Mnが1〜1.5の範囲である有機顔料微粒子。
上記光重合性組成物において、有機顔料微粒子はさらに重合性化合物の重合体が固定化された有機顔料微粒子であることが好ましい。
また、本発明は、以下の成分を含むインクジェット記録用インク組成物により解決されることが見出された。
a)光重合性化合物、b)光重合開始剤、及びc)重合性化合物の重合体が固定化されており、体積平均粒径Mvが50nm以下でありかつ体積平均粒径Mvと個数平均粒径Mnの比Mv/Mnが1〜1.5の範囲である有機顔料微粒子。
上記インク組成物の有機顔料微粒子は水で分散されたものであることが望ましい。
【発明の効果】
【0009】
本発明の光重合性組成物を用いることにより、高い感度および光沢感のある高画質な画像を提供することができる。
また、本発明の光重合性組成物を活性光線硬化型インク組成物として用いると、高い感度および光沢感のある高画質な画像を提供することができ、さらに驚くべきことに、従来の顔料と比べて良好な透明感を有するインク組成物を得ることができた。
【発明を実施するための最良の形態】
【0010】
(1)光重合性組成物
本発明の光重合性組成物は、以下の成分を含む。
a)光重合性化合物、
b)光重合開始剤、及び
c)重合性化合物の重合体が固定化されており、体積平均粒径Mvが50nm以下でありかつ体積平均粒径Mvと個数平均粒径Mnの比Mv/Mnが1〜1.5の範囲である有機顔料微粒子。
【0011】
(1-1)有機顔料微粒子
本発明の組成物において、有機顔料微粒子には重合性化合物の重合体が固定化されており、また体積平均粒径Mvは20〜50nmであり、かつ体積平均粒径Mvと個数平均粒径Mnの比Mv/Mnは1〜1.5の範囲である。
本明細書において、“体積平均粒径”Mvとは、体積基準で測定し算術平均した粒径を意味し、静的光散乱法、動的光散乱法、遠心沈降法の他、実験化学講座題4版の417〜418頁に記載されている方法など、公知の方法で容易に測定することができる。本明細書では、日機装(株)社製のマイクロトラックUPA150により測定した値を記載した。
本明細書において、“個数平均粒径”Mnとは、個数基準で測定し算術平均した粒径を意味し、前述の体積平均粒径と同様の手法により測定することができる。本明細書では、日機装(株)社製のマイクロトラックUPA150により測定した値を記載した。
体積平均粒径Mvを個数平均粒径Mnで除した値(Mv/Mn)は単分散性の指標として表される数値である。この値が小さく1に近いほど単分散性に優れているといえる。
【0012】
体積平均粒径Mvは50nm以下であり、好ましくは3〜40nm、さらに好ましくは10〜30nmである。前記値では、特にインクジェット用インクとして高品質の画像が得られるため、これらが好ましい。
体積平均粒径Mvと個数平均粒径Mnの比Mv/Mnは1〜1.5の範囲であり、1.80以下であることが好ましく、1.60以下であることがより好ましく、1.40以下であることが特に好ましい。
【0013】
微粒子の粒子サイズが揃っていること、すなわち単分散微粒子系は、含まれる粒子の大きさが揃っているだけではなく、粒子内の化学組成や結晶構造にも粒子間の変動がないことを意味し、粒子の性能を決める重要な要素である。特に粒子サイズがナノメートルの超微粒子においてはその粒子の特性を支配する因子として重視される。後述する有機顔料微粒子分散液の製造方法により、粒径の小さい微粒子とするだけでなく、その大きさをコントロールし、そのサイズを揃えることも可能である。
【0014】
さらにまた、本発明において有機顔料微粒子は安定性が高いことが好ましく、この安定性を示す指標として保存処理による粒径の変化率で表すことができ、例えば、上述した体積平均粒径Mvの変化率で表すことができる。本発明の有機顔料微粒子は、例えば、加熱保存処理(例えば60〜80℃、50〜300時間の保存処理)したときの変化率が6.0%以下であることが好ましく、5.0%以下であることがより好ましく、4.0%以下であることが特に好ましい。
【0015】
本発明の組成物中、有機顔料微粒子の含有量は目的に応じて適宜決定することができるが、高品質な画像を得るための色濃度及び、特にインクジェット用に適したインク粘度を考慮すると、組成物全質量に対して0.3〜15質量%の範囲であることが好ましい。
【0016】
上述した有機顔料微粒子は以下の方法により有機顔料微粒子の分散液として製造することができる:有機顔料(原料)を溶解させたアルカリ性もしくは酸性の溶液aまたは水性媒体bの少なくとも一方に重合性化合物を含有させ、これらa,b両者を混合する工程において前記顔料を微粒子として析出させたのち、前記重合性化合物を重合させ、前記顔料微粒子に前記重合性化合物の重合体を固定化したことを特徴とする有機顔料微粒子分散液の製造方法。
本発明の有機顔料微粒子の分散液の製造方法においては、有機顔料を溶解した溶液aと水性媒体bとを混合させ、その過程で前記顔料を微粒子として析出させる。混合させる方法は、有機顔料溶液aに水性媒体bを注ぐ方法、水性媒体bに有機顔料溶液aを注ぐ方法、有機顔料溶液aと水性媒体bを同時に混合するなどが挙げられる。その際、攪拌により混合を促進することが好ましい。
【0017】
また、流路を用いて混合させることもでき、この場合、例えば有機顔料溶液aと水性媒体bとを流路中に液流として流通させて両液を接触混合させることができる。すなわち連続フロー法で目的の顔料分散液を得ることができる(なお、この流路中で複数の液流を接触混合させる方法は、接触時間や反応時間の精密制御ができないジェット法(ノズルから噴霧して接触させる方法。特開2002−155221号公報、米国特許6,537,364号明細書等参照。)とは異なる。)。このとき両者を流路中で層流とし、その層流過程で互いに接触させ、層流界面で接触させることが好ましい。用いられる装置は、層流を形成しうる流路を有するものであればよく、その流路はマイクロ反応場を形成しうる等価直径の流路であることが好ましい。
【0018】
等価直径(equivalent diameter)は相当(直)径、とも呼ばれ、機械工学の分野で用いられる用語である。任意断面形状の配管(本発明では流路)に対し等価な円管を想定するとき、その等価円管の直径を等価直径という。等価直径(deq)は、A:配管の断面積、p:配管のぬれぶち長さ(周長)を用いて、deq=4A/pと定義される。円管に適用した場合、この等価直径は円管直径に一致する。等価直径は等価円管のデータを基に、その配管の流動あるいは熱伝達特性を推定するのに用いられ、現象の空間的スケール(代表的長さ)を表す。等価直径は、一辺aの正四角形管ではdeq=4a2/4a=a、一辺aの正三角形管では、
【0019】
【数1】

流路高さhの平行平板間の流れではdeq=2hとなる(例えば、(社)日本機械学会編「機械工学事典」1997年、丸善(株)参照)。
【0020】
管の中に水を流し、その中心軸状に細い管を挿入し着色した液を注入すると、水の流速が遅い間は、着色液は一本の線となって流れ、水は管壁に平行にまっすぐに流れる。しかし、流速を上げ、ある一定の流速に達すると急に水流の中に乱れが生じ、着色液は水流と混じって全体が着色した流れになる。前者の流れを層流(laminar flow)、後者を乱流(turbulent flow)という。
【0021】
流れが層流になるか乱流になるかは流れの様子を示す無次元数であるレイノルズ数(Reynolds number)が、ある臨界値以下であるかによって決まる。レイノルズ数が小さいほど層流を形成しやすい。管内の流れのレイノルズ数Reは次式で表される。
Re=D<υx>ρ/μ
Dは管の等価直径、<υx>は断面平均速度、ρは流体の密度、μは流体の粘度を表す。この式からわかるように等価直径が小さいほどレイノルズ数は小さくなるので、μmサイズの等価直径の場合は安定な層流を形成しやすくなる。また、密度や粘度の液物性もレイノルズ数に影響し、密度が小さく、粘度が大きいほどレイノルズ数は小さくなるので層流を形成しやすいことがわかる。
【0022】
臨界値を示すレイノルズ数を臨界レイノルズ数(critical Reynolds number)と呼ぶ。臨界レイノルズ数は必ずしも一定とはいえないが、凡そ次の値が基準となる。
Re<2300 層流
Re>3000 乱流
3000≧Re≧2300 過渡状態
【0023】
流路の等価直径が小さくなるにつれ、単位体積あたりの表面積(比表面積)は大きくなるが、流路がマイクロスケールになると比表面積は格段に大きくなり、流路の器壁を通じた熱伝達効率は非常に高くなる。流路を流れる流体中の熱伝達時間(t)は、t=deq2/α(α:液の熱拡散率)で表されるので、等価直径が小さくなるほど熱伝達時間は短くなる。すなわち、等価直径が1/10になれば熱伝達時間は1/100になることになり、等価直径がマイクロスケールである場合、熱伝達速度は極めて速い。
【0024】
すなわち、等価直径がマイクロスケールであるマイクロサイズ空間ではレイノルズ数が小さいので安定な層流支配のもとでフロー反応を行うことができる。そして層流間の界面表面積が非常に大きいので、層流を保ったまま、界面間の分子拡散により高速で精密な成分分子の混合が可能となる。また、大きな表面積を有する流路壁の利用により精密温度制御、フロー反応の流速コントロールによる反応時間の精密制御なども可能となる。したがって、本発明においては、層流を形成する流路のうち、上述のような高度に反応制御可能な場である等価直径を有するマイクロスケールの流路を、マイクロ反応場と定義する。
【0025】
前記レイノルズ数の説明で示したように、層流の形成は等価直径の大きさだけでなく粘度および密度という液物性を含めた流動条件にも大きく影響される。よって、本発明では流路を層流にできれば、流路の等価直径は限定されないが、容易に層流が形成できるサイズが好ましい。好ましくは10mm以下であり、より好ましくはマイクロ反応場を形成する1mm以下である。更に好ましくは10μm〜1mmであり、特に好ましくは20〜300μmである。
【0026】
本発明において、特に好ましいマイクロスケールのサイズの流路(チャンネル)を有する反応装置の代表的なものは一般に「マイクロリアクター」と総称され、最近大きな発展を遂げている(例えば、W.Ehrfeld,V.Hessel,H.Loewe,“Microreactor”,1Ed(2000)WILEY−VCH参照)。
【0027】
前記一般のマイクロリアクターには、その断面を円形に換算した場合の等価直径が数μm〜数百μm程度の複数本のマイクロ流路、及びこれらのマイクロ流路と繋がる混合空間が設けられており、このようなマイクロリアクターでは、複数本のマイクロ流路を通して複数の溶液をそれぞれ混合空間へ導入することで、複数の溶液を混合し、又は混合と共に化学反応を生じさせる。
【0028】
次に、マイクロリアクターによる反応がタンク等を用いたバッチ方式と異なる主な点を説明する。液相の化学反応、二相系の液相の化学反応は、一般に反応液の界面において分子同士が出会うことによって反応が起こるので、微小空間(マイクロ流路)内で反応を行うと相対的に界面の面積が大きくなり、反応効率は著しく増大する。また分子の拡散そのものも拡散時間は距離の二乗に比例する。このことは、スケールを小さくするに従って、反応液を能動的に混合しなくても、分子の拡散によって混合が進み、反応が起こり易くなることを意味している。また、微小空間においては、レイノルズ数(流れを特徴づける無次元の数)が小さいために層流支配の流れとなり、溶液同士が層流状態となっている界面でそれぞれの溶液内に存在する分子の交換が起こり、移動した分子により析出や反応が引き起こされる。
【0029】
このような特徴を有するマイクロリアクターを用いれば、反応の場として大容積のタンク等を用いた従来のバッチ方式と比較し、溶液同士の反応時間及び温度の精密な制御が可能になる。またバッチ方式の場合には、特に、反応速度が速い溶液間では混合初期の反応接触面で反応が進行し、さらに溶液間の反応により生成された一次生成物が容器内で引き続き反応を受けてしまう場合があるから、生成物が不均一になったり、混合容器内で生成物の結晶が必要以上に成長したりして粗大化してしまうおそれがある。これに対して、マイクロリアクターによれば、溶液が混合容器内に殆ど滞留することなく連続的に流通するので、溶液間の反応により生成された一次生成物が混合容器内に滞留する間に引き続き反応を受けてしまうことを抑止でき、従来では取り出すことが困難であった純粋な一次生成物を取り出すことも可能になり、また混合容器内での結晶の凝集や粗大化も生じ難くなる。
【0030】
また、実験的な製造設備により製造された少量の化学物質を大規模の製造設備により多量に製造(スケールアップ)する際には、従来、実験的な製造設備に対し、バッチ方式による大規模の製造設備での再現性を得るために多大の労力及び時間を要していたが、必要となる製造量に応じてマイクロリアクーを用いた製造ラインを並列化(ナンバリングアップ)することにより、このような再現性を得るための労力及び時間を大幅に減少できる可能性がある。
【0031】
有機顔料微粒子の分散液の製造方法に用いることができる層流流路の作製方法を以下に説明する。流路が1mm以上のサイズの場合は通常の機械加工技術を用いることで比較的容易に作製可能であるが、サイズが1mm以下のマイクロサイズ、特に500μm以下になると格段に作製が難しくなる。マイクロサイズの流路(マイクロ流路)は固体基板上に微細加工技術を用いて作製される場合が多い。基板材料としては腐食しにくい安定な材料であれば何でもよい。例えば、金属(例えば、ステンレス、ハステロイ(Ni−Fe系合金)、ニッケル、アルミニウム、銀、金、白金、タンタルまたはチタン)、ガラス、プラスチック、シリコーン、テフロン(登録商標)またはセラミックスなどである。
【0032】
マイクロ流路を作製するための微細加工技術として代表的なものを挙げれば、X線リソグラフィを用いるLIGA(Roentgen−Lithographie Galvanik Abformung)技術、EPON SU−8(商品名)を用いた高アスペクト比フォトリソグラフィ法、マイクロ放電加工法(μ−EDM(Micro Electro Discharge Machining))、Deep RIE(Reactive Ion Etching)によるシリコンの高アスペクト比加工法、Hot Emboss加工法、光造形法、レーザー加工法、イオンビーム加工法、およびダイアモンドのような硬い材料で作られたマイクロ工具を用いる機械的マイクロ切削加工法などがある。これらの技術を単独で用いてもよいし、組み合わせて用いてもよい。好ましい微細加工技術は、X線リソグラフィを用いるLIGA技術、EPON SU−8を用いた高アスペクト比フォトリソグラフィ法、マイクロ放電加工法(μ−EDM)、および機械的マイクロ切削加工法である。また、近年では、エンジニアリングプラスチックへの微細射出成型技術の適用が検討されている。
【0033】
マイクロ流路を作製する際、よく接合技術が用いられる。通常の接合技術は大きく固相接合と液相接合に分けられ、一般的に用いられている接合方法は、固相接合として圧接や拡散接合、液相接合として溶接、共晶接合、はんだ付け、接着等が代表的な接合方法である。さらに、組立に際しては高温加熱による材料の変質や大変形による流路等の微小構造体の破壊を伴わない寸法精度を保った高度に精密な接合方法が望ましいが、そのような技術としてはシリコン直接接合、陽極接合、表面活性化接合、水素結合を用いた直接接合、HF水溶液を用いた接合、Au−Si共晶接合、ボイドフリー接着などがある。
【0034】
マイクロ流路は、固体基板上に微細加工技術を用いて作製されたものに限らず、例えば、入手可能な数μm〜数百μmの内径を有する各種ヒューズドシリカキャピラリーチューブでもよい。高速液体クロマトグラフ用、ガスクロマトグラフ用部品として市販されている数μm〜数百μmの内径を有する各種シリコンチューブ、フッ素樹脂製管、ステンレス管、PEEK管(ポリエーテルエーテルケトン管)も同様に利用可能である。
【0035】
これまでにマイクロリアクターに関しては、反応の効率向上などを目指したデバイスに関する報告がなされている。例えば、特開2003−210960、特開2003−210963、特開2003−210959、特開2005−46650、特開2005−46651、特開2005−46652、特開2005−288254はマイクロミキサー、およびマイクロリアクターに関するものであり、本発明における有機顔料微粒子の分散液の製造では、上記のマイクロデバイスなどを使用することもできる。
【0036】
マイクロ流路は目的に応じて表面処理してもよい。特に水溶液を操作する場合、ガラスやシリコンへの試料の吸着が問題になることがあるので表面処理は重要である。複雑な製作プロセスを要する可動部品を組み込むことなく、マイクロサイズの流路内における流体制御を実現することが望ましい。例えば、流路内に表面処理により親水性と疎水性の領域を作製し、その境界に働く表面張力差を利用して流体を操作することが可能である。ガラスやシリコンの表面処理する方法として多用されるのはシランカップリング剤を用いた疎水または親水表面処理である。
【0037】
流路中へ試薬やサンプルなどを導入して混合するためには、流体制御機能が必要である。特に、マイクロ流路内における流体の挙動は、マクロスケールとは異なる性質を持つため、マイクロスケールに適した制御方式を考えなければならない。流体制御方式は形態分類すると連続流動方式と液滴(液体プラグ)方式があり、駆動力分類すると電気的駆動方式と圧力駆動方式がある。
【0038】
これらの方式を以下に詳しく説明する。流体を扱う形態として、最も広く用いられるのが連続流動方式である。連続流動式の流体制御では、マイクロ流路内は全て流体で満たされ、外部に用意したシリンジポンプなどの圧力源によって、流体全体を駆動するのが一般的である。この方法は、デッドボリュームが大きいことなどが難点であるが比較的簡単なセットアップで制御システムを実現できることが大きな利点である。
【0039】
連続流動方式とは異なる方式として、液滴(液体プラグ)方式がある。この方式では、リアクター内部やリアクターに至る流路内で、空気で仕切られた液滴を動かすものであり、個々の液滴は空気圧によって駆動される。その際、液滴と流路壁あるいは液滴同士の間の空気を必要に応じて外部に逃がすようなベント構造、および分岐した流路内の圧力を他の部分と独立に保つためのバルブ構造などを、リアクターシステム内部に用意する必要がある。また、圧力差を制御して液滴の操作を行うために、外部に圧力源や切り替えバルブからなる圧力制御システムを構築する必要がある。このように液滴方式では、装置構成やリアクターの構造がやや複雑になるが、複数の液滴を個別に操作して、いくつかの反応を順次行うなどの多段階の操作が可能で、システム構成の自由度は大きくなる。
【0040】
流体制御を行うための駆動方式として、流路(チャンネル)両端に高電圧をかけて電気浸透流を発生させ、これによって流体移動させる電気的駆動方法と、外部に圧力源を用いて流体に圧力をかけて移動させる圧力駆動方法が一般に広く用いられている。両者の違いは、たとえば流体の挙動として、流路断面内で流速プロファイルが電気的駆動方式の場合にはフラットな分布となるのに対して、圧力駆動方式では双曲線状に、流路中心部が速くて、壁面部が遅い分布となることが知られており、サンプルプラグなどの形状を保ったまま移動させるといった目的には、電気的駆動方式の方が適している。電気的駆動方式を行う場合には、流路内が流体で満たされている必要があるため、連続流動方式の形態をとらざるを得ないが、電気的な制御によって流体の操作を行うことができるため、例えば連続的に2種類の溶液の混合比率を変化させることによって、時間的な濃度勾配をつくるといった比較的複雑な処理も実現されている。圧力駆動方式の場合には、流体の電気的な性質にかかわらず制御可能であること、発熱や電気分解などの副次的な効果を考慮しなくてよいことなどから、基質に対する影響がほとんどなく、その適用範囲は広い。その反面、外部に圧力源を用意しなければならないこと、圧力系のデッドボリュームの大小に応じて、操作の応答特性が変化することなど、複雑な処理を自動化する必要がある。
流体制御方法として用いられる方法はその目的によって適宜選ばれるが、好ましくは連続流動方式の圧力駆動方式である。
【0041】
流路内の温度制御は、流路を持つ装置全体を温度制御された容器中に入れることにより制御してもよいし、金属抵抗線やポリシリコンなどのヒーター構造を装置内に作り込み、加熱についてはこれを使用し、冷却については自然冷却でサーマルサイクルを行ってもよい。温度のセンシングは、金属抵抗線を使用する場合はヒーターと同じ抵抗線をもう一つ作り込んでおき、その抵抗値の変化に基づいて温度検出を行うのが好ましく、ポリシリコンを使用する場合は熱電対を用いて検出を行うのが好ましい。また、ペルチェ素子を流路に接触させることによって外部から加熱、冷却を行ってもよい。どの方法を用いるかは用途や流路本体の材料などに合わせて選択される。
【0042】
流路中の流通過程で微粒子を析出させる場合、その反応時間は流路中に滞留する時間で制御することができる。滞留する時間は等価直径が一定である場合、流路の長さと反応液の導入速度で決まる。流路の長さには特に制限はないが、好ましくは1mm以上10m以下であり、より好ましくは5mm以上10m以下で、特に好ましくは10mm以上5m以下である。
【0043】
有機顔料微粒子の分散液の製造方法において、用いられる流路の数量に特に限定はなく適宜定められればよく、1つでも構わないが、必要に応じて流路を何本も並列化(ナンバリングアップ)し、その処理量を増大させることができる。
【0044】
本発明における有機顔料微粒子の分散液の製造方法に好ましく用いられる反応装置を図1−1〜8に示す。尚、本発明がこれらに限定されないことはいうまでもない。
【0045】
図1−1はY字型流路を有する反応装置(10)の説明図であり、図1−2はそのI−I線の断面図である。流路の長さ方向に直交する断面の形は使用される微細加工技術により異なるが、台形または矩形に近い形である。流路幅・深さ(特にC,H)がマイクロサイズにて作られている場合、導入口11及び導入口12からポンプなどにより注入された溶液は導入流路13aまたは導入流路13bを経由して流体合流点13dにて接触し、安定な層流を形成して反応流路13cを流れる。そして層流として流れる間に層流間の界面における分子拡散により互いの層流に含まれる溶質の混合または反応が行われる。拡散の極めて遅い溶質は、層流間での拡散混合が起きず、排出口14に達した後に初めて混合する場合もある。注入される2つの溶液がフラスコ中で容易に混合するような場合には、流路長Fを長く取れば排出口では液の流れは均一な流れになりうるが、流路長Fが短い時には排出口まで層流が保たれる。注入される2つの溶液がフラスコ中で混合せず層分離する場合は、当然ながら2つの溶液は層流として流れて排出口14に到達する。
【0046】
図2−1は片側に挿通した流路を設けた円筒管型流路を有する反応装置(20)の説明図であり、図2−2は同装置のIIa−IIa線の断面図であり、図2−3は同装置のIIb−IIb線の断面図である。流路の長さ方向に直交する断面の形は円かそれに近い形である。円筒管の流路直径(D,E)がマイクロサイズの場合、導入口21及び導入口22からポンプなどにより注入された溶液は導入流路23aと導入流路23bを通じて流体合流点23dにて接触し、安定な円筒層流を形成して反応流路23cを流れる。そして円筒層流として流れる間に層流間の界面における分子拡散により互いの層流に含まれる溶質の混合または反応が行われるのは上記図1−1の装置と同じである。円筒管型流路をもつ本装置は、上記図1−1の装置に比べて2液の接触界面を大きく取れること、更に接触界面が装置壁面に接触する部分がないため、固体(結晶)が反応により生成する場合など壁面との接触部分からの結晶成長などがなく、流路を閉塞する可能性が低いのが特徴である。
【0047】
図3−1および図4は、2液の流れが層流のまま出口まで到達する場合、それらを分離できるように図1−1および図2−1の装置に改良を加えたものである。これらの装置を用いると反応と分離が同時にできる。また、最終的に2液が混合してしまって反応が進みすぎたり、結晶が粗大化したりすることを避けることができる。一方の液中に選択的に生成物や結晶が存在する場合には、生成物や結晶を2液が混合してしまう場合に比べて高濃度の状態で得ることができる。また、これらの装置を幾つか連結することにより、抽出操作が効率的に行われるなどのメリットがある。
【0048】
図5に示すマイクロリアクター装置50は、溶液Aを供給する1本の供給流路51の途中から分岐して溶液Aを2つに分割できるようにした2本の分割供給流路51A,51Bと、溶液Bを供給する分割していない1本の供給流路52と、溶液Aと溶液Bとの反応を行うマイクロ流路53とが、1つの合流領域54で連通するように形成されるものである。また、これら分割供給流路51A,51B、供給流路52、及びマイクロ流路53は、実質的に同一の平面内で合流領域54の周りに90°の等間隔で配置される。即ち、各流路51A、51B、52、53の中心軸(一点鎖線)は合流領域54において十文字状(交差角度α=90°)に交差する。尚、図5では溶液Bに比べて供給量の多い溶液Aの供給流路51のみを分割したが、溶液Bの供給流路52も複数に分割してもよい。また、合流領域54の周りに配置する各流路51A,51B,52、53の交差角度αは、90°に限らず適宜設定できる。また、供給流路51、52の分割数は、特に限定されるものではないが、数が多すぎるとマイクロリアクター装置50の構造が複雑になるので、2〜10が好ましく、2〜5がより好ましい。
【0049】
図6は、図5の平面型のマイクロリアクター装置50の別の態様を示す説明図である。この装置においては、供給流路62の中心軸に対して分割供給流路61A,61Bの中心軸の成す交差角度βは図5の90°よりも小さく45°に形成される。また、分割供給流路61A,61Bの中心軸に対してマイクロ流路63の中心軸の成す交差角度αが135°になるように形成される。
【0050】
図7は、図5の平面型のマイクロリアクター装置の更に別の態様を示す説明図である。この装置においては、液Bが流れる供給流路72の中心軸に対して溶液Aが流れる分割供給流路71A,71Bの中心軸の成す交差角度βは図5の90°よりも大きく135°に形成される。また、分割供給流路71A,71Bの中心軸に対してマイクロ流路73の中心軸の成す交差角度αが45°になるように形成される。供給流路72、分割供給流路71A,71B、及びマイクロ流路73の互いの交差角度α、βは適宜設定できるが、合流された溶液Bと溶液Aの全ての溶液の厚み方向の断面積の総和をS1とし、マイクロ流路73の径方向の断面積をS2としたときに、S1>S2を満足するように交差角度α、βを設定することが好ましい。これにより、溶液A,B同士の接触面積の一層の増大と拡散混合距離の一層の縮小を図ることができるので、より瞬時混合が生じ易くなるからである。
【0051】
図8は、立体型のマイクロリアクター装置80の一例であり、マイクロリアクター装置80を構成する3つのパーツを分解した状態を斜視図で示した分解斜視図である。立体型のマイクロリアクター装置80は、主として、それぞれが円柱状の形状をした供給ブロック81、合流ブロック82、及び反応ブロック83により構成される。そして、マイクロリアクター装置80を組み立てるには、円柱状をしたこれらのブロック81、82、83を、この順番で互いの側面同士を合わせて円柱状になるようにし、この状態で各ブロック81、82、83をボルト・ナット等により一体的に締結する。
【0052】
供給ブロック81の合流ブロック82に対向する側面83には、2本の環状溝84、85が同芯状に穿設されており、マイクロリアクター装置80を組み立て状態において、2本の環状溝86、85は溶液Bと溶液Aとがそれぞれ流れるリング状流路を形成する。そして、供給ブロック81の合流ブロック82に対向しない反対側の側面94から外側環状溝86と内側環状溝85に達する貫通孔88、87がそれぞれ形成される。かかる2本の貫通孔88、87のうち、外側の環状溝86に連通する貫通穴88には、溶液Aを供給する供給手段(ポンプ及び連結チューブ等)が連結され、内側環状溝85に連通する貫通孔87には、溶液Bを供給する供給手段(ポンプ及び連結チューブ等)が連結される。図8では、外側環状溝86に溶液Aを流し、内側環状溝85に溶液Bを流すようにしたが、逆にしてもよい。
【0053】
合流ブロック82の反応ブロック83に対向する側面89の中心には円形状の合流穴90が形成され、この合流穴90から放射状に4本の長尺放射状溝91、91...と4本の短尺放射状溝92、92...が交互に穿設される。これら合流穴90や放射状溝91,92はマイクロリアクター装置80を組み立て状態において、合流領域90となる円形状空間と溶液A,Bが流れる放射状流路とを形成する。また、8本の放射状溝91,92のうち、長尺放射状溝91の先端から合流ブロック82の厚み方向にそれぞれ貫通穴95、95...が形成され、これらの貫通穴95は供給ブロック81に形成されている前述の外側環状溝86に連通される。同様に、短尺放射状溝92の先端から合流ブロック82の厚み方向にそれぞれ貫通穴96、96...が形成され、これらの貫通穴96は供給ブロック81に形成されている内側環状溝85に連通される。
また、反応ブロック83の中心には、反応ブロック83の厚み方向に合流穴90に連通する1本の貫通孔93が形成され、この貫通孔93がマイクロ流路となる。
【0054】
これにより、溶液Aは供給ブロック81の貫通孔→外側環状溝86→合流ブロック82の貫通孔95→長尺放射溝91から構成される供給流路を流れて4つの分割流に分割されて合流領域(合流穴90)に至る。一方、溶液Bは供給ブロック81の貫通孔87→内側環状溝85→合流ブロック82の貫通孔96→短尺放射溝92から構成される供給流路を流れて4つの分割流に分割されて合流領域(合流穴90)に至る。合流領域において溶液Aの分割流と溶液Bの分割流とがそれぞれの運動エネルギーを有して合流した後、90°流れ方向を変えてマイクロ流路に流入する。
【0055】
本発明における有機顔料微粒子の分散液の製造方法に用いられる有機顔料は、色相的に限定されるものではなく、マゼンタ顔料、イエロー顔料、またはシアン顔料であることができる。詳しくは、例えば、ペリレン、ペリノン、キナクリドン、キナクリドンキノン、アントラキノン、アントアントロン、ベンズイミダゾロン、ジスアゾ縮合、ジスアゾ、アゾ、インダントロン、フタロシアニン、トリアリールカルボニウム、ジオキサジン、アミノアントラキノン、ジケトピロロピロール、チオインジゴ、イソインドリン、イソインドリノン、ピラントロンまたはイソビオラントロン系顔料またはそれらの混合物などのマゼンタ顔料、イエロー顔料、またはシアン顔料である。
【0056】
更に詳しくは、例えば、C.I.ピグメントレッド190(C.I.番号71140)、C.I.ピグメントレッド224(C.I.番号71127)、C.I.ピグメントバイオレット29(C.I.番号71129)等のペリレン系顔料、C.I.ピグメントオレンジ43(C.I.番号71105)、もしくはC.I.ピグメントレッド194(C.I.番号71100)等のペリノン系顔料、C.I.ピグメントバイオレット19(C.I.番号73900)、C.I.ピグメントバイオレット42、C.I.ピグメントレッド122(C.I.番号73915)、C.I.ピグメントレッド192、C.I.ピグメントレッド202(C.I.番号73907)、C.I.ピグメントレッド207(C.I.番号73900、73906)、もしくはC.I.ピグメントレッド209(C.I.番号73905)のキナクリドン系顔料、C.I.ピグメントレッド206(C.I.番号73900/73920)、C.I.ピグメントオレンジ48(C.I.番号73900/73920)、もしくはC.I.ピグメントオレンジ49(C.I.番号73900/73920)等のキナクリドンキノン系顔料、C.I.ピグメントイエロー147(C.I.番号60645)等のアントラキノン系顔料、C.I.ピグメントレッド168(C.I.番号59300)等のアントアントロン系顔料、C.I.ピグメントブラウン25(C.I.番号12510)、C.I.ピグメントバイオレット32(C.I.番号12517)、C.I.ピグメントイエロー180(C.I.番号21290)、C.I.ピグメントイエロー181(C.I.番号11777)、C.I.ピグメントオレンジ62(C.I.番号11775)、もしくはC.I.ピグメントレッド185(C.I.番号12516)等のベンズイミダゾロン系顔料、C.I.ピグメントイエロー93(C.I.番号20710)、C.I.ピグメントイエロー94(C.I.番号20038)、C.I.ピグメントイエロー95(C.I.番号20034)、C.I.ピグメントイエロー128(C.I.番号20037)、C.I.ピグメントイエロー166(C.I.番号20035)、C.I.ピグメントオレンジ34(C.I.番号21115)、C.I.ピグメントオレンジ13(C.I.番号21110)、C.I.ピグメントオレンジ31(C.I.番号20050)、C.I.ピグメントレッド144(C.I.番号20735)、C.I.ピグメントレッド166(C.I.番号20730)、C.I.ピグメントレッド220(C.I.番号20055)、C.I.ピグメントレッド221(C.I.番号20065)、C.I.ピグメントレッド242(C.I.番号20067)、C.I.ピグメントレッド248、C.I.ピグメントレッド262、もしくはC.I.ピグメントブラウン23(C.I.番号20060)等のジスアゾ縮合系顔料、C.I.ピグメントイエロー13(C.I.番号21100)、C.I.ピグメントイエロー83(C.I.番号21108)、もしくはC.I.ピグメントイエロー188(C.I.番号21094)等のジスアゾ系顔料、C.I.ピグメントレッド187(C.I.番号12486)、C.I.ピグメントレッド170(C.I.番号12475)、C.I.ピグメントイエロー74(C.I.番号11714)、C.I.ピグメントレッド48(C.I.番号15865)、C.I.ピグメントレッド53(C.I.番号15585)、C.I.ピグメントオレンジ64(C.I.番号12760)、もしくはC.I.ピグメントレッド247(C.I.番号15915)等のアゾ系顔料、C.I.ピグメントブルー60(C.I.番号69800)等のインダントロン系顔料、C.I.ピグメントグリーン7(C.I.番号74260)、C.I.ピグメントグリーン36(C.I.番号74265)、ピグメントグリーン37(C.I.番号74255)、ピグメントブルー16(C.I.番号74100)、C.I.ピグメントブルー75(C.I.番号74160:2)、もしくは15(C.I.番号74160)等のフタロシアニン系顔料、C.I.ピグメントブルー56(C.I.番号42800)、もしくはC.I.ピグメントブルー61(C.I.番号42765:1)等のトリアリールカルボニウム系顔料、C.I.ピグメントバイオレット23(C.I.番号51319)、もしくはC.I.ピグメントバイオレット37(C.I.番号51345)等のジオキサジン系顔料、C.I.ピグメントレッド177(C.I.番号65300)等のアミノアントラキノン系顔料、C.I.ピグメントレッド254(C.I.番号56110)、C.I.ピグメントレッド255(C.I.番号561050)、C.I.ピグメントレッド264、C.I.ピグメントレッド272(C.I.番号561150)、C.I.ピグメントオレンジ71、もしくはC.I.ピグメントオレンジ73等のジケトピロロピロール系顔料、C.I.ピグメントレッド88(C.I.番号73312)等のチオインジゴ系顔料、C.I.ピグメントイエロー139(C.I.番号56298)、C.I.ピグメントオレンジ66(C.I.番号48210)等のイソインドリン系顔料、C.I.ピグメントイエロー109(C.I.番号56284)、もしくはC.I.ピグメントオレンジ61(C.I.番号11295)等のイソインドリノン系顔料、C.I.ピグメントオレンジ40(C.I.番号59700)、もしくはC.I.ピグメントレッド216(C.I.番号59710)等のピラントロン系顔料、またはC.I.ピグメントバイオレット31(60010)等のイソビオラントロン系顔料である。
【0057】
好ましい顔料は、キナクリドン、ジケトピロロピロール、ジスアゾ縮合顔料、またはフタロシアニン系顔料であり、特に好ましくはキナクリドン、ジスアゾ縮合顔料、またはフタロシアニン系顔料である。
【0058】
有機顔料微粒子の分散液の製造方法において用いられる有機溶媒は、1種類であっても、2種類以上であっても、それらの固溶体であっても、有機顔料と無機顔料を組み合わせたものであってもよい。
【0059】
有機顔料微粒子分散液の製造方法において用いられる有機顔料溶液(有機顔料を溶解させたアルカリ性もしくは酸性の溶液a)は、有機顔料を均一に溶解させたものであることが好ましく、その方法は特に限定されず、添加剤を用いずに溶剤に溶解しても、アルカリ性もしくは酸性の水性媒体を用いて溶解しても、水性媒体とは別にアルカリ性もしくは酸性の添加剤等を添加して溶解してもよい。酸性で溶解するかアルカリ性で溶解するかは、顔料がどちらの条件でより均一に溶解するかで選択することができる。一般に分子内にアルカリ性で解離可能な基を有する顔料の場合はアルカリ性を、アルカリ性で解離する基が存在せず、プロトンが付加しやすい窒素原子を分子内に多く有するときは酸性を用いることができる。例えば、キナクリドン、ジケトピロロピロール、ジスアゾ縮合系顔料はアルカリ性で、フタロシアニン系顔料は酸性でより均一に溶解することができる。
【0060】
アルカリ性で溶解させる場合に用いられる塩基は、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、もしくは水酸化バリウムなどの無機塩基が挙げられ、またはトリアルキルアミン、ジアザビシクロウンデセン(DBU)、金属アルコキシド(NaOCH3、KOC25)などの有機塩基が挙げられ、好ましくは無機塩基である。
【0061】
使用される塩基の量は、顔料を均一に溶解可能な量であり、特に限定されないが、無機塩基の場合、好ましくは顔料に対して1.0〜30モル当量であり、より好ましくは2.0〜25モル当量であり、特に好ましくは3.0〜20モル当量である。有機塩基の場合は好ましくは顔料に対して1.0〜100モル当量であり、より好ましくは5.0〜100モル当量であり、さらに好ましくは20〜100モル当量である。
【0062】
酸性で溶解させる場合に用いられる酸は、硫酸、塩酸、もしくは燐酸などの無機酸が挙げられ、または酢酸、トリフルオロ酢酸、シュウ酸、メタンスルホン酸、もしくはトリフルオロメタンスルホン酸などの有機酸が挙げられるが、好ましくは無機酸でありより好ましくは硫酸である。
【0063】
使用される酸の量は、顔料を均一に溶解可能な量であり、特に限定されないが、塩基に比べて過剰量用いられる場合が多い。無機酸および有機酸の場合を問わず、好ましくは顔料に対して3〜500モル当量であり、より好ましくは10〜500モル当量であり、特に好ましくは30〜200モル当量である。
【0064】
次に水性媒体bについて説明する。本発明において、“水性媒体”とは水単独または水に可溶な有機溶媒の混合溶媒をいう。有機溶媒は、例えば、顔料や分散剤を均一に溶解するために水のみでは不十分な場合、流路中を流通するのに必要な粘性を得るのに水のみでは不十分な場合、層流の形成に必要な場合、などに用いることが好ましく、多くの場合、水溶性有機溶媒の添加により均一に有機顔料などを溶解させることができる。
【0065】
添加する有機溶媒は例えば、エチレングリコール、プロピレングリコール、ジエチレングリコール、ポリエチレングリコール、チオジグリコール、ジチオジグリコール、2−メチル−1,3−プロパンジオール、1,2,6−ヘキサントリオール、アセチレングリコール誘導体、グリセリン、もしくはトリメチロールプロパン等に代表される多価アルコール系溶媒、エチレングリコールモノメチル(又はエチル)エーテル、ジエチレングリコールモノメチル(又はエチル)エーテル、もしくはトリエチレングリコールモノエチル(又はブチル)エーテル等の多価アルコールの低級モノアルキルエーテル系溶媒、エチレングリコールジメチルエーテル(モノグライム)、ジエチレングリコールジメチルエーテル(ジグライム)、もしくはトリエチレングリコールジメチルエーテル(トリグライム)等のポリエーテル系溶媒、ジメチルホルムアミド、ジメチルアセトアミド、2−ピロリドン、N−メチル−2−ピロリドン、1,3−ジメチル−2−イミダゾリジノン、尿素、もしくはテトラメチル尿素等のアミド系溶媒、スルホラン、ジメチルスルホキシド、もしくは3−スルホレン等の含イオウ系溶媒、ジアセトンアルコール、ジエタノールアミン等の多官能系溶媒、酢酸、マレイン酸、ドコサヘキサエン酸、トリクロロ酢酸、もしくはトリフルオロ酢酸等のカルボン酸系溶媒、メタンスルホン酸、もしくはトリフルオロスルホン酸等のスルホン酸系溶媒が挙げられる。これらの溶媒を2種以上混合して用いてもよい。
【0066】
好ましい有機溶媒は、アルカリ性の場合はアミド系溶媒または含イオウ系溶媒であり、酸性の場合はカルボン酸系溶媒、イオウ系溶媒またはスルホン酸系溶媒であるが、更に好ましくはアルカリ性の場合は含イオウ系溶媒であり、酸性の場合はスルホン酸系溶媒である。特に好ましくは、アルカリ性の場合はジメチルスルホキシド(DMSO)、酸性の場合はメタンスルホン酸である。
【0067】
水と有機溶媒の混合比は均一溶解に適した比率であればよく、特に限定は無い。好ましくはアルカリ性の場合には水/有機溶媒=0.05〜10(質量比)である。酸性の場合で無機酸を用いる場合は、有機溶媒を使わず、例えば硫酸単独で用いるのが好ましい。有機酸を用いるときは有機酸自身が有機溶媒であり、粘性と溶解性を調整するために複数の酸を混合したり、水を添加したりする。好ましくは水/有機溶剤(有機酸)=0.005〜0.1(質量比)である。
【0068】
有機顔料微粒子分散液の製造方法において、流路を用いて有機顔料溶液aと水性媒体bとを接触混合させる場合、均一に溶解した溶液を流路に投入することが好ましい。懸濁液を投入すると粒子サイズが大きくなったり、粒子分布が広い顔料微粒子になったりし、流路を閉塞する場合がある。本発明において、「均一に溶解」とは、可視光線下で観測した場合にほとんど濁りが観測されない状態をさし、その溶液は1μm以下のミクロフィルターを通して得られる溶液、または1μmのフィルターを通した場合に濾過される物を含まない溶液を均一に溶解した溶液をいう。
【0069】
次に水素イオン指数(pH)について説明する。水素イオン指数(pH)は、水素イオン濃度(モル濃度)の逆数の常用対数であり、水素指数と呼ばれることもある。水素イオン濃度とは、溶液中の水素イオンH+の濃度であり、1Lの溶液中に存在する水素イオンのモル数を意味する。水素イオン濃度は非常に広い範囲で変化するので通常は水素イオン指数(pH)を用いて表す。例えば、純粋な水は1気圧、25℃では10-7モルの水素イオンを含むから、そのpHは7で中性である。pH<7の水溶液は酸性、pH>7の水溶液はアルカリ性である。pHの値を測定する方法としては、電位差測定法および比色測定法がある。
【0070】
有機顔料微粒子分散液の製造方法において、流路を用いて有機顔料溶液aと水性媒体bとを接触混合させる場合、流路中を流通する過程で水素イオン指数(pH)を変化させ、顔料微粒子を製造することができ、その方法は有機顔料の均一溶液の導入口とは異なる導入口を有する流路、例えば、図1−1、又は図2−1に示されるような少なくとも2つの導入口を有する流路を用いて行うことができ、図1−1の導入口11、または図2−1の導入口21に有機顔料の均一溶液aを導入し、図1−1の導入口12、または図2−1の導入口22に、有機顔料溶液aのpHに応じて中性、酸性またはアルカリ性の水、またはそれらに分散剤を溶解した水溶液(水性媒体b)を導入することにより、両液を流路13c又は23c中で接触させて、有機顔料を含む溶液の水素イオン濃度、すなわち水素イオン指数(pH)を中性(pH7)の方向に変化させることができる。流路の等価直径がマイクロスケールの場合は、レイノルズ数が小さいため安定な層流(図2−1では円筒層流)を形成し、両液の層間の安定界面を介して水やイオンが拡散移動して徐々に有機顔料を含む溶液の水素イオン指数(pH)を中性方向に変化させることができる。顔料は中性付近では水性媒体に溶解しにくくなるため、有機顔料を含む溶液の水素イオン指数(pH)が中性方向に変化するに従い、徐々に微粒子として析出させることができる。
【0071】
水素イオン指数(pH)の変化は、アルカリ性水性媒体に溶解した顔料から顔料微粒子を製造する場合は、おおむね変化はpH16.0から5.0の範囲内での変化であり、好ましくはpH16.0から10.0の範囲内での変化である。酸性水性媒体に溶解した顔料から顔料微粒子を製造する場合は、おおむね変化はpH1.5から9.0の範囲内での変化であり、好ましくはpH1.5から4.0の範囲内での変化である。変化の幅は有機顔料溶液の水素イオン指数(pH)の値によるが、有機顔料の析出をうながすのに十分な幅でよい。
【0072】
マイクロスケールの流路中で生成した顔料微粒子は、拡散せず一方の層流に含まれたまま出口へと流れるので、図3−1または図4に示されるように設計された出口を持つ流路装置を用いると、有機顔料微粒子を含む層流を分離することができる。この方法を用いると、濃厚な顔料分散液を得ることができると同時に、均一溶液を調製するために用いた水溶性有機溶媒、アルカリ性や酸性水、および過剰な分散剤を除去できるので有利である。また、最終的に2液が混合してしまうことにより、結晶が粗大化したり、顔料の結晶が変質したりすることを避けることができる。
【0073】
顔料微粒子を製造する場合の反応温度は、溶媒が凝固、あるいは気化しない範囲内であることが望ましいが、好ましくは、−20〜90℃、より好ましくは0〜50℃である。特に好ましくは5〜15℃である。
【0074】
流路内での流体の速度(流速)は0.1mL〜300L/hrが好ましく、0.2mL〜30L/hrがより好ましく、0.5mL〜15L/hrが更に好ましく、1.0mL〜6L/hrが特に好ましい。
本発明において、基質(有機顔料やその反応成分)の濃度範囲は、通常0.5〜20質量%であり、好ましくは1.0〜10質量%である。
【0075】
有機顔料微粒子分散液の製造方法においては、有機顔料溶液の中または/および水性媒体の中に重合性化合物を添加したものを用いることが好ましい。すなわち、有機顔料微粒子分散液の製造方法において、重合性化合物は、有機顔料溶液および水性媒体の少なくとも1つに含まれることが好ましいが、有機顔料溶液に含まれることがさらに好ましい。
【0076】
重合性化合物は(1)析出した顔料表面に素早く吸着して、微細な顔料粒子を形成し、かつ(2)これらの粒子が再び凝集することを防ぐ作用を有するものである。
また、有機顔料微粒子分散液の製造方法において、有機顔料を微粒子として析出し、そのまま分散液中の重合性化合物を重合させるため、顔料分散液において極めて高い分散安定性を実現することができる。この作用効果は以下のように考えられる。溶解状態の顔料を析出させて微粒子化する過程に重合性化合物が存在するため、重合性化合物が析出微粒子と一体となって吸着し、その微粒子は隙間なく効率よく重合性化合物に取り囲まれる。このため、単に顔料微粒子と重合性化合物とを混合したのでは得られない、重合性化合物の吸着状態が得られる。これを、そのまま重合反応させることで、重合性化合物が顔料微粒子表面全体を緻密に包み込むよう確実に重合させることができ、好ましくは強固かつ均一に固定化し、離脱しないようにすることができる。特に重合性化合物が重合性界面活性剤の場合には、微粒子表面に、より強く吸着し微粒子を取り囲むため、安定化効果は一層高まる。このように本発明では重合性化合物を用いることで、ビルドアップ時のサイズ制御機能とその後のカプセル化機能の両方を発揮させることができる。これにより、微細分散化した顔料微粒子をそのままカプセル化することができ、粒径の揃ったナノサイズの顔料微粒子に高い分散安定性、保存安定性を付与することができる。
【0077】
本発明により製造される有機顔料微粒子分散液あるいは有機顔料微粒子は、重合性化合物の重合体が該顔料微粒子に固定化されている。本発明において固定化とは、含有する重合性化合物のすべて(あるいはその一部)が単独(あるいは共重合した状態)で該顔料微粒子と接している状態をいう。このとき重合体は、顔料微粒子表面上、顔料微粒子内部のいずれに存在していてもよく、重合体のすべて(あるいはその一部)が該顔料微粒子と接している状態であればよく、微粒子の分散液中での移動によっても脱離しないように接着していることが好ましい。ここで重合体とは、重合性化合物2分子以上が重合した結果生じた化合物をいい、微粒子上のすべての重合性化合物が重合反応に関与している必要はなく、未反応の重合性化合物が残存していてもよい。
【0078】
重合性化合物としては、水溶性および非水溶性重合性化合物のいずれも用いることができ、有機顔料と共に分散可能なものであれば特に限定はないが、エチレン性不飽和単量体が好ましい。具体的には、例えば(メタ)アクリル酸エステル類(例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸ベンジル、アクリル酸2−エチルヘキシル、アクリル酸フェニル、アクリル酸シクロヘキシル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸ヘキシル、メタクリル酸2−エチルヘキシル、メタクリル酸オクチル、メタクリル酸シクロヘキシル、β−ヒドロキシアクリル酸エチル、γ−アミノアクリル酸プロピル、γ−ヒドロキシアクリル酸プロピル、δ−ヒドロキシアクリル酸ブチル、β−ヒドロキシメタクリル酸エチル、メタクリル酸ステアリル、メタクリル酸ジメチルアミノエチル、ジエチレングリコールメタクリル酸メチル、エチレングリコールジメタクリル酸エチル、テトラエチレングリコールジメタクリル酸メチル等、およびその誘導体)、ビニル芳香族単量体(例えば、スチレン、o−メチルスチレン、m−メチルスチレン、p−メチルスチレン、p−メトキシスチレン、p−フェニルスチレン、p−クロルスチレン、p−エチルスチレン、p−ブチルスチレン、p−t−ブチルスチレン、p−ヘキシルスチレン、p−オクチルスチレン、p−ノニルスチレン、p−デシルスチレン、p−ドデシルスチレン、2,4−ジメチルスチレン、3,4−ジクロルスチレン、α−メチルスチレン、ジビニルベンゼン、ジビニルナフタレン等、およびその誘導体)、ビニルエステル類(酢酸ビニル、プロピオン酸ビニル、ベンゾエ酸ビニル等、およびその誘導体)、N−ビニルアミド類(例えばN−ビニルピロリドン)、(メタ)アクリル酸アミド類、アルキル置換(メタ)アクリルアミド類、メタクリルアミド類、N−置換マレイミド類、ビニルエーテル類(ビニルメチルエーテル、ビニルエチルエーテル、ビニルイソブチルエーテル、ビニルフェニルエーテル、ジビニルエーテル等、およびその誘導体)、オレフィン類(エチレン、プロピレン、イソブチレン、1−ブテン、1−ペンテン、4−メチル−1−ペンテン、ブタジエン、イソプレン、クロロプレン等、およびその誘導体)フタル酸ジアリル、無水マレイン酸、(メタ)アクリロニトリル、メチルビニルケトン、塩化ビニリデン、等が使用できる。
【0079】
さらに、スルホン酸基、リン酸基、カルボン酸基等のアニオン性基を有する水溶性単量体も用いられ、例えば、アクリル酸、メタクリル酸、マレイン酸、フマル酸、イタコン酸、p−ビニル安息香酸などのカルボキシル基を有する単量体、もしくはそのアルカリ金属塩、アルカリ土類金属塩、アンモニウム塩、アミン塩等が挙げられる。さらには、スチレンスルホン酸、スチレンスルホン酸ナトリウム、2−アクリルアミド−2−メチルプロパンスルホン酸、2−ヒドロキシメチルメタクリロイルホスフェート、2−ヒドロキシエチルメタクリロイルホスフェート、3−クロロ−2−ヒドロキシプロピルメタクリロイルホスフェートも具体例として挙げられる。これらは単独で用いても、互いに併用して用いてもよい。
【0080】
重合性化合物のうち、その分子に親疎水性の機能を分離して持たせたものは重合性界面活性剤、反応性界面活性剤、あるいは反応性乳化剤とよばれ、本願発明の有機顔料微粒子分散液の製造方法に好ましく用いることができる。例えば、ビニル基、アリル基、プロペニル基、(メタ)アクリロイル基などのα,β−エチレン性不飽和基とスルホン酸基またはその塩などのイオン解離可能な基やアルキレンオキシ基などの親水性基を有しているものが挙げられる。これらは一般に乳化重合に用いられ、分子内にラジカル重合可能な不飽和結合を少なくとも1つ以上有するアニオン性、またはノニオン性の界面活性剤である。
有機顔料微粒子分散液の製造方法において、重合性界面活性剤は、単独で用いても、異なるものを併用しても、または重合性界面活性剤以外の重合性化合物と共に用いてもよい。好ましい重合性界面活性剤としては、例えば、花王(株)社、三洋化成(株)社、第一工業製薬(株)社、旭電化工業(株)社、日本乳化剤(株)社、日本油脂(株)社等より市販されているものが挙げられ、「微粒子・粉体の最先端技術、第1章3反応乳化剤を用いる微粒子設計、pp23−31」、2000年(株)シーエムシーに記載されたものなどが挙げられる。
【0081】
重合性界面活性剤の具体例を以下に記載するが、本発明はこれらに限定されるものではない。
【0082】
【化1】

【0083】
【化2】

【0084】
重合性化合物の含有量は、顔料の均一分散性および保存安定性をより一層向上させるために、顔料100質量部に対して0.1〜1000質量部の範囲であることが好ましく、より好ましくは1〜500質量部の範囲であり、特に好ましくは10〜250質量部の範囲である。0.1質量部未満であると有機顔料微粒子の分散安定性の向上が見られない場合がある。
体積平均粒径Mvが50nm以下でありかつ体積平均粒径Mvと個数平均粒径Mnの比Mv/Mnが1〜1.5の範囲である有機顔料微粒子を得るためには、重合性化合物の含有量は顔料100質量部に対して80〜400質量部の範囲であることが好ましく、100〜250質量部の範囲であることがさらに好ましい。
【0085】
有機顔料微粒子分散液の製造方法に用いられる重合性化合物の重合方法は、有機顔料微粒子分散液中で重合できる方法であれば特に限定されないが、重合開始剤を用いてラジカルを発生させて重合させる方法が好ましい。重合を開始するきっかけは種々あるが、熱、光、超音波、マイクロ波等を用いることが好ましい。重合開始剤としては、水溶性、または油溶性の過硫酸塩、過酸化物、アゾ系化合物等を使用することができる。具体的には、過硫酸アンモニウム、過硫酸カリウム、過硫酸ナトリウム、過酸化水素、t−ブチルハイドロパーオキシド、2,2−アゾビスイソブチロにトリル、2,2’−アゾビス(2−アミジノプロパン)二塩酸塩、2,2−アゾビス(2−N−ベンジルアミジノプロパン)二塩酸塩、2,2’−アゾビス[2−N−(2−ヒドロキシエチル)アミジノプロパン]二塩酸塩等を挙げることができ、例えば、和光純薬工業(株)社のホームページ(www.wako−chem.co.jp)には、各種水溶性アゾ重合開始剤、油溶性アゾ重合開始剤、高分子アゾ重合開始剤が10時間半減期温度とその構造式と共に記載され入手可能である。重合開始剤の添加量は特に限定されないが、全モノマー成分に対して0.1〜30重量%、より好ましくは1〜20重量%、特に好ましくは2〜10重量%である。
【0086】
有機顔料微粒子分散液の製造方法においては、分散液中に重合性化合物と共重合するモノマーとを共存させて共重合させてもよい。共重合モノマーを含有させる時期は特に限定されないが、有機顔料溶液および水性媒体の少なくとも一方に、少なくとも1つの共重合モノマーを含有させることが好ましい。共重合モノマーは、微粒子析出や分散液の安定化を妨げなければ特に限定されず、例えば、先に挙げた重合性化合物等が挙げられる。
【0087】
有機顔料微粒子分散液の製造方法において、重合性化合物を重合させる時期や方法は特に限定されないが、例えば、以下のような2つの過程を例に挙げて示すと、重合反応を、過程(1)の途中もしくはその後に行っても、過程(2)の途中もしくはその後に行っても、その両方で行ってもよい。
(1) 有機顔料を溶解した溶液と水性媒体を混合する過程。
(2) 混合後の分散液を濃縮、精製する過程。
【0088】
同様に重合開始剤についても、その添加時期や方法は特に限定されないが、例えば、以下のような4つの態様によって説明すると、そのいずれによっても、または組み合わせて行ってもよい。
(1) 有機顔料を溶解した溶液に添加する。
(2) 水性媒体に添加する。
(3) 有機顔料を溶解した溶液と水性媒体を混合した後に添加する。
(4) 混合後の分散液を濃縮、精製した後に添加する。
【0089】
有機顔料微粒子分散液の製造方法において、重合性化合物は、有機顔料溶液aおよび水性媒体bの少なくとも1つに含まれるが、有機顔料溶液aに含まれることが好ましい。他の重合性化合物や分散剤を併用する場合、その態様は特に限定されないが、例えば、それらを有機顔料溶液および水性媒体のいずれに溶解させてもよく、混合後の分散液に添加してもよい。また微粒子析出の際、本発明の効果を妨げなければ、必要に応じて有機顔料溶液または水性媒体以外の液体を混合させてもよく、3液以上を同時にまたは逐次に混合させてもよい。
重合反応温度は、重合開始剤の種類に応じて選択でき、40℃〜100℃が好ましく、より好ましくは50℃〜90℃、特に好ましくは50℃〜80℃で行うことができる。
重合反応時間は、用いる重合性化合物とその濃度、重合開始剤の反応温度にもよるが、1〜12時間で行うことができる。
【0090】
有機顔料微粒子分散液の製造方法においてさらに分散剤を添加してもよい。分散剤の添加により、重合性化合物の奏する効果(1)析出した顔料表面に素早く吸着して、微細な顔料粒子を形成し、かつ(2)これらの粒子が再び凝集することを防ぐ作用を増強するからである。分散剤としては、アニオン性、カチオン性、両イオン性、ノニオン性もしくは顔料性の、低分子または高分子分散剤を使用することができる。これらの分散剤は、単独あるいは併用して使用することができる。顔料の分散に用いる分散剤に関しては、「顔料分散安定化と表面処理技術・評価」(化学情報協会、2001年12月発行)の29〜46頁に詳しく記載されている。
【0091】
アニオン性分散剤(アニオン性界面活性剤)としては、N−アシル−N−アルキルタウリン塩、脂肪酸塩、アルキル硫酸エステル塩、アルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、ジアルキルスルホコハク酸塩、アルキルリン酸エステル塩、ナフタレンスルホン酸ホルマリン縮合物、ポリオキシエチレンアルキル硫酸エステル塩等を挙げることができる。なかでも、N−アシル−N−アルキルタウリン塩が好ましい。N−アシル−N−アルキルタウリン塩としては、特開平3−273067号明細書に記載されているものが好ましい。これらアニオン性分散剤は、単独であるいは2種以上を組み合わせて用いることができる。
【0092】
カチオン性分散剤(カチオン性界面活性剤)には、四級アンモニウム塩、アルコキシル化ポリアミン、脂肪族アミンポリグリコールエーテル、脂肪族アミン、脂肪族アミンと脂肪族アルコールから誘導されるジアミンおよびポリアミン、脂肪酸から誘導されるイミダゾリンおよびこれらのカチオン性物質の塩が含まれる。これらカチオン性分散剤は、単独であるいは2種以上を組み合わせて用いることができる。
【0093】
両イオン性分散剤は、前記アニオン性分散剤が分子内に有するアニオン基部分とカチオン性分散剤が分子内に有するカチオン基部分を共に分子内に有する分散剤である。
【0094】
ノニオン性分散剤(ノニオン性界面活性剤)としては、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルアリールエーテル、ポリオキシエチレン脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンアルキルアミン、グリセリン脂肪酸エステルなどを挙げることができる。なかでも、ポリオキシエチレンアルキルアリールエーテルが好ましい。これらノニオン性分散剤は、単独であるいは2種以上を組み合わせて用いることができる。
【0095】
顔料性分散剤とは、親物質としての有機顔料から誘導され、その親構造を化学修飾することで製造される顔料性分散剤と定義する。例えば、糖含有顔料分散剤、ピペリジル含有顔料分散剤、ナフタレンまたはペリレン誘導顔料分散剤、メチレン基を介して顔料親構造に連結された官能基を有する顔料分散剤、ポリマーで化学修飾された顔料親構造、スルホン酸基を有する顔料分散剤、スルホンアミド基を有する顔料分散剤、エーテル基を有する顔料分散剤、あるいはカルボン酸基、カルボン酸エステル基またはカルボキサミド基を有する顔料分散剤などがある。
【0096】
高分子分散剤としては、具体的には、ポリビニルピロリドン、ポリビニルアルコール、ポリビニルメチルエーテル、ポリエチレンオキシド、ポリエチレングリコール、ポリプロピレングリコール、ポリアクリルアミド、ビニルアルコール−酢酸ビニル共重合体、ポリビニルアルコール−部分ホルマール化物、ポリビニルアルコール−部分ブチラール化物、ビニルピロリドン−酢酸ビニル共重合体、ポリエチレンオキシド/プロピレンオキシドブロック共重合体、ポリアクリル酸塩、ポリビニル硫酸塩、ポリ(4−ビニルピリジン)塩、ポリアミド、ポリアリルアミン塩、縮合ナフタレンスルホン酸塩、スチレン−アクリル酸塩共重合物、スチレン−メタクリル酸塩共重合物、アクリル酸エステル−アクリル酸塩共重合物、アクリル酸エステル−メタクリル酸塩共重合物、メタクリル酸エステル−アクリル酸塩共重合物、メタクリル酸エステル−メタクリル酸塩共重合物、スチレン−イタコン酸塩共重合物、イタコン酸エステル−イタコン酸塩共重合物、ビニルナフタレン−アクリル酸塩共重合物、ビニルナフタレン−メタクリル酸塩共重合物、ビニルナフタレン−イタコン酸塩共重合物、セルロース誘導体、澱粉誘導体などが挙げられる。その他、アルギン酸塩、ゼラチン、アルブミン、カゼイン、アラビアゴム、トンガントゴム、リグニンスルホン酸塩などの天然高分子類も使用できる。なかでも、ポリビニルピロリドンが好ましい。これら高分子は、単独であるいは2種以上を組み合わせて用いることができる。
【0097】
有機顔料微粒子分散液の製造方法においては、分散液中に共重合するか否かにかかわらず種々の無機、または有機の機能性添加剤を共存させてもよい。機能性添加剤を含有させる時期は特に限定されないが、例えば、有機顔料溶液および水性媒体の少なくとも一方に添加しておく場合が好ましく挙げられる。機能性添加剤は、微粒子析出や分散液の安定化を妨げなければ特に限定されないが、例えば、金属封鎖剤、殺菌剤、防カビ剤、香料、紫外線吸収剤、酸化防止剤、表面張力調整剤、水溶性樹脂、pH調整剤、尿素などが挙げられる。
【0098】
顔料の堅牢性等を上げる目的で、紫外線吸収剤や酸化防止剤、香料、防カビ剤、表面張力調整剤、水溶性樹脂、殺菌剤、pH調整剤、尿素などの添加剤を併用してもよい。これらはその添加時期や方法は特に限定されないが、例えば、以下のような4つの態様によって説明すると、そのいずれによっても、または組み合わせて行ってもよい。
(1) 有機顔料を溶解した溶液に添加する。
(2) 水性媒体に添加する。
(3) 有機顔料を溶解した溶液と水性媒体を混合した後に添加する。
(4) 混合後の分散液を濃縮、精製した後に添加する。
重合の程度(分子量)を調整するために、各種の連鎖移動剤(例えば、カテコール類、アルコール類、チオール類、メルカプタン類)を用いてもよい。
【0099】
分散剤の含有量は、顔料の均一分散性および保存安定性をより一層向上させるために、顔料100質量部に対して0.1〜1000質量部の範囲であることが好ましく、より好ましくは1〜500質量部の範囲であり、特に好ましくは10〜250質量部の範囲である。0.1質量部未満であると有機顔料微粒子の分散安定性の向上が見られない場合がある。
【0100】
有機顔料微粒子分散液の製造方法において、用いられる溶媒は、それぞれ前述の、有機溶媒、分散剤、界面活性剤、重合性化合物、添加剤、または水、およびこれらを組み合わせたものが挙げられる。また、必要に応じて、例えばインク組成物に添加される水溶性有機溶媒、その他の成分をさらに添加してもよい。これら溶媒成分は、例えば、特開2002−194263、特開2003−26972の各公報に記載のあるような顔料分散剤の構成要素を適用することができる。
【0101】
混合させる流体は互いに混じり合う流体同士でもよく、混じり合わない流体同士でも構わない。混じり合う流体同士とは、同じもしくは比較的性質の近い有機溶媒を用いた溶液同士、あるいはメタノールなどの極性の高い有機溶媒を用いた溶液と水などであり、混じり合わない流体同士とは、ヘキサンなどの低極性の溶媒を用いた溶液とメタノールなどの高極性の溶媒を用いた溶液があげられる。
空気、窒素、酸素、アルゴン、ヘリウムなどの気体を用いる場合、それらは反応流体に溶解させるか、あるいは流路内に気体として導入する方法を取ることができ、気体として導入する方法が好ましい。
【0102】
本発明の有機顔料微粒子分散液の製造方法によれば、有機顔料を微粒子として析出させ、そのまま重合性化合物の重合反応を行い、好ましくは微粒子上に重合性皮膜を形成し固定することができる。すなわち、微粒子を粉砕する工程や、製造した微粒子を分離し、工程設備を切り替える必要がない。このことは、フローで連続生産法を導入することに他ならず、品質安定化、工程安定化、時間やエネルギー、さらには移送などの物理的なロスを大幅に減じるメリットがある。
【0103】
上記有機顔料微粒子分散液の製造方法で得られた顔料分散液は、重合処理の前および/またはその後に濾過あるいは遠心分離などにより精製、濃縮、分級を行うことができる。さらに使用目的に応じて、溶剤(湿潤剤等)、添加剤(金属封鎖剤、殺菌剤、防カビ剤、香料、紫外線吸収剤、酸化防止剤、表面張力調整剤、水溶性樹脂、pH調整剤、尿素等)などを加えて液物性を調整してもよい。
【0104】
本発明の有機顔料微粒子分散液は、例えば、インク組成物の顔料として用いることができるが、その場合、例えば、本発明の有機顔料微粒子分散液を、遠心分離及び/または限外ろ過により精製、濃縮をおこなって使用することができる。これに、グリセリン類、グリコール類等のような水溶性高沸点有機溶剤を添加、pHを7から9程度に調整し、さらに表面張力、粘度、防腐等のための添加物を添加することでインクジェットインクの調製が可能である。インクジェットインクとして調製したときに好ましい粘度は、顔料種、濃度により異なるが、一般的に例えば、5質量%の時は、20mPa・s以下であることが好ましく、10mPa・s以下であることがより好ましく、特にこのましくは5mPa・s以下である。
その他、前述した、分離、濃縮、液物性の調製などを適宜行って、カラーフィルター等に広く用いることができる。
【0105】
(1-2)光重合性化合物
本発明の組成物に用いられる光重合性化合物は、ラジカル重合可能なエチレン性不飽和結合を有する化合物であり、分子中にラジカル重合可能なエチレン性不飽和結合を少なくとも1つ有する化合物であればどの様なものでもよく、モノマー、オリゴマー、ポリマー等の化学形態を持つものが含まれる。ラジカル重合性化合物は1種のみ用いてもよく、また目的とする特性を向上するために任意の比率で2種以上を併用してもよい。
【0106】
また、本発明に用いられるラジカル重合可能なエチレン性不飽和結合を有する化合物は、併せて1分子中に少なくとも1個のカルボキシル基を有する化合物が好ましく、そのような化合物としては
(1)2塩基酸無水物とヒドロキシ基含有のアクリル酸エステル或いはメタクリル酸エステルとの反応生成物:それらの代表的な化合物としては、無水コハク酸、無水オルソフタル酸、無水マレイン酸などと、2−ヒドロキシエチルメタクリレート、3−クロロ−2−ヒドロキシプロピルメタクリレートとの反応物である。
【0107】
(2)エポキシ樹脂のアクリル酸エステルの2級水酸基に2塩基酸無水物を反応せしめた化合物:それらの代表的な化合物としては、ビスフェノール型エポキシ樹脂であるエピコート828、エピコート1001(商品名;油化シェルエポキシ製)、多価アルコール脂肪族エポキシ樹脂であるデナコール(商品名;ナガセ化成製)、例えば1、4−ブタンジオールジグリシジルエーテル、トリメチロールプロパンジグリシジルエーテル、ペンタエリスルトリグリシジルエーテル、環状脂肪族エポキシ樹脂であるセロキサイド(商品名;ダイセル化学製)などにアクリル酸エステルを反応させた後、残留しているか、新たに生成した水酸基に無水コアク酸、無水マレイン酸を反応させて得られる化合物である。
【0108】
(3)アクリル酸或いはメタクリル酸の多価アルコールエステルに2塩基酸無水物を反応せしめた化合物:これらの代表的な化合物としてはアクリル酸のグリコールないしポリエチレングリコールエステルに無水コハク酸、無水マレイン酸を反応させて得られる化合物である。ここで用いられるグリコールないしポリエチレングリコールとしては、分子量600以下程度のものがよい。
【0109】
(4)分子鎖の中にカルボキシル基側鎖を有する水溶性のウレタンアクリレート及びメタクリレート:紫外線硬化樹脂としてのオリゴマーの合成は公知であるが、カルボキシル側鎖を有するオリゴマー化合物を合成するには、オリゴマー合成反応の途中で無水トリメリット酸に代表される多塩基酸、或いは、ジメチロールプロピオン酸などに代表される、1分子中に2個の水酸基と1個のカルボキシル基を有する化合物が利用される。
【0110】
また、以上例示した化合物(1)〜(4)は、塩基によって中和され、水に易溶の化合物となる。用いる塩基の具体例としては、アンモニア、メチルアミン、エチルアミン、ジメチルアミン、ジエチルアミン、n−ブチルアミン、ジ−n−ブチルアミン、トリメチルアミン、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラアミン、テトアエチレンペンタミン、プロピレンジアミン、エタノールアミン、ヘキシルアミン、ラウリルアミン、ジエタノールアミン、トリエタノールアミン、モルフォリン、ピペリジン、プロピルアミン、イソプロピルアミン、イソブチルアミン、NaOH、LiOH、KOHなどが挙げられる。ここで、紫外線硬化性化合物にエッチング液に対する化学的な抵抗性を与え、且つ強アルカリで紫外線硬化性化合物を基板から剥離可能とするには、用いる塩基としては有機塩基が好ましく、その中でも揮発性の高い塩基がとりわけ好ましく、それ自身の沸点が常圧下で190℃以下である塩基が好ましい。
【0111】
また、本発明に用いられる光重合性化合物として水溶性のラジカル重合性化合物が挙げられる。そのような化合物としては、例えば、以下の化合物が挙げられるが、本発明はこれらに限定されるものではない。
【0112】
【化3】

【0113】
上記式(1)〜(4)及び(13)におけるXは水素原子またはメチル基を表す。
【0114】
紫外線によってラジカル重合する重合性物質としては、例えば、下記一般式において、Rがポリオールの残基である一般式群A、或いは、Rがポリオールのエポキシエステルの残基である一般式群Bから選ばれる水溶性の重合性化合物が挙げられる。一般式群A及びBについては、後述する。
【0115】
【化4】

【0116】
上記一般式をより明確に表現すると、下記一般式のようになる。
【0117】
【化5】

【0118】
更に、一般式群Aの物質としては、以下に例示するものを使用することが好ましい。ここで、下記一般式で示される重合性物質群A1〜A11におけるA、X、Rx、Ry、Rz及びRpは、夫々独立して下記の原子団を表している。
【0119】
【化6】

【0120】
尚、Rpの構造の1つを示す上記式(1−4)中のX2のハロゲン原子としては、例えば、フッ素原子、塩素原子、または臭素原子等が挙げられ、また、アルコキシル基としては、炭素数1〜3のアルコキシル基等が挙げられる。
【0121】
先ず、下記に示す一般式からなる重合性物質群A1に含まれる重合性化合物が挙げられるが、具体的には、下記式で表される重合性化合物A1−1及びA1−2を使用することができる。
【0122】
【化7】

【0123】
また、下記に示す一般式からなる重合性物質群A2に含まれる重合性化合物が挙げられるが、具体的には、下記式で表される重合性化合物A2−1を使用することができる。
【0124】
【化8】

【0125】
また、下記に示す一般式からなる重合性物質群A3に含まれる重合性化合物が挙げられるが、具体的には、下記式で表される重合性化合物A3−1〜A3−4を使用することができる。
【0126】
【化9】

【0127】
また、下記に示す一般式からなる重合性物質群A4に含まれる重合性化合物が挙げられるが、具体的には、下記式で表される重合性化合物A4−1を使用することができる。
【0128】
【化10】

【0129】
また、下記に示す一般式からなる重合性物質群A5に含まれる重合性化合物が挙げられるが、具体的には、下記式で表される重合性化合物A5−1を使用することができる。
【0130】
【化11】

【0131】
更に、下記に示す一般式からなる重合性物質群A6〜A11に含まれる各重合性化合物が挙げられる。
【0132】
【化12】

【0133】
【化13】

【0134】
【化14】

【0135】
【化15】

【0136】
【化16】

【0137】
先に例示した重合性化合物A10−1やA10−2等は、アクリル酸のビニル基に、カルボキシル基を有するアミン、即ち、広義のアミン酸を付加させることによって製造することができる。即ち、一般的には、下記式で表される。
【0138】
【化17】

【0139】
ここで、Rは、重合性化合物A10−1の場合はメチレン基、A10−2の場合はフェニレン基である。この方法に用いられるカルボキシル基を有するアミンとしては、例えば、パラアミノ安息香酸、グリシン、バリン、ロイシン、イソロイシン、セリン、トレオニン、メチオニン、フェニルアラニン、を挙げることができる。また、グルタミン酸、アスパラギン酸等の2個のカルボキシル基を有するアミノ酸からも、同等性能の物質を誘導することができる。
【0140】
一方、一般式群Bに属する重合性化合物としては、具体例には下記一般式で表される重合性物質群B1〜B4が挙げられる。尚、重合性物質群B1〜B4の一般式中においてA及びRpは、下記の原子団を表す。
【0141】
【化18】

【0142】
【化19】

【0143】
【化20】

【0144】
上記に挙げた多数の群の化合物の中でも、重合速度、硬化物の硬度、耐水摩擦性において特に優れているのは、分子中に、3個の重合性官能基を有する化合物である。そのような傾向となる大きな理由は、3個以上の反応基を持つ化合物を重合させた場合は架橋密度が高く、重合することによって親水性を大きく減少させる効果を持つことによると考えられる。
【0145】
本発明に係る光重合性化合物の含有量は、光重合性組成物の全量に対して10質量%〜70質量%含有させることが好ましく、更に好ましくは20質量%〜55質量%である。
【0146】
(1-3)光重合開始剤
本発明の組成物に含まれる光重合開始剤は、光の照射により上記光重合性組成物の重合を開始させる化合物である。光重合性組成物が水溶性である場合には、同じ相に存在することが好ましいため、光重合開始剤も水溶性であることが好ましい。
本発明の光重合性組成物を構成する水溶性光重合開始剤について説明する。一例としては、例えば、波長400nm前後までの触媒が挙げられる。このような触媒としては、例えば、長波長領域に官能性、即ち、紫外線を受けてラジカルを生成する感受性を持つ物質である下記一般式で表される光重合開始剤(以下、TX系と略称する)が挙げられ、本発明においては、これらの中から適宜に選択して使用することが特に好ましい。
【0147】
【化21】

【0148】
上記一般式TX−1〜TX−3中、R2は−(CH2)x−(x=0または1)、−O−(CH2)y−(y=1または2)、置換若しくは未置換のフェニレン基を表す。またR2がフェニレン基の場合には、ベンゼン環中の水素原子の少なくとも1つが、例えば、カルボキシル基若しくはその塩、スルホン酸若しくはその塩、炭素数1〜4の直鎖状若しくは分岐鎖状のアルキル基、ハロゲン原子(フッ素、塩素、臭素等)、炭素数1〜4のアルコキシル基、フェノキシ基等のアリールオキシ基等から選ばれる1つまたは2つ以上の基や原子で置換されていてもよい。Mは、水素原子若しくはアルカリ金属(例えば、Li、Na、K等)を表す。更に、R3及びR4は各々独立に、水素原子、または置換若しくは未置換のアルキル基を表す。ここでアルキル基の例としては、例えば、炭素数1〜10程度、特には、炭素数1〜3程度の直鎖状若しくは分岐鎖状のアルキル基が挙げられる。また、これらのアルキル基の置換基の例としては、例えば、ハロゲン原子(フッ素原子、塩素原子、シュウ素原子等)、水酸基、アルコキシル基(炭素数1〜3程度)等が挙げられる。また、mは1〜10の整数を表す。
【0149】
これらの親水性原子団で置換されたチオキサントンは、水溶性、アニオン系水性顔料分散体との共溶性があり、有機顔料自身の吸収の影響が少ないので、顔料系組成物において感度の高い触媒として作用する。
【0150】
更に、本発明に係る光重合性組成物を構成する水溶性光重合開始剤としては、下記一般式からなる光重合開始剤 Irgacure2959(商品名:Ciba Specialty Chemicals製)の水溶性の誘導体(以下、IC系と略称する)を使用することもできる。具体的には、下記式からなるIC−1〜IC−3を使用することができる。
【0151】
【化22】

【0152】
上記したIC−1〜IC−3は、ノニオン性であるが、紫外線に対して感受し得る波長領域が、先に挙げたTX−1〜TX−3として示した光重合開始剤よりも短波長域にある。また、IC−1〜IC−3も、前記したTX−1〜TX−3と同様、水溶性であるので、本発明の光重合性組成物の構成成分として有用である。更に、既存の紫外線重合システム用の触媒物質(光重合開始剤)から水性の誘導体を製造し、本発明の光重合性組成物を構成する光重合開始剤として利用することも可能と考えられる。
【0153】
本発明に係る光重合性開始剤の含有量は、光重合性組成物の全量に対して0.1質量%〜20質量%含有させることが好ましく、更に好ましくは1質量%〜10質量%である。あるいは光重合性化合物100質量部に対して2.5〜30質量部である。
【0154】
(2)インクジェット記録方法及び装置
本発明の光重合性組成物は活性光線硬化型のインクジェット用インク組成物として好適に使用することができる。本発明に好適に採用され得るインクジェット記録方法およびインクジェット記録装置について、以下説明する。
【0155】
(2-1)活性光線硬化型のインクジェット記録用インク組成物
インクジェット記録用インク組成物は、射出性を考慮し、射出時の温度(例えば、40〜80℃、好ましくは25〜30℃)において、粘度が、例えば、7〜30mPa・s、好ましくは7〜20mPa・sであることが好ましい。例えば、本発明のインク組成物の室温(25〜30℃)での粘度は、35〜500mPa・s、好ましくは35〜200mPa・sである。本発明のインク組成物は、粘度が上記範囲になるように適宜組成比を調整することが好ましい。室温での粘度を高く設定することにより、多孔質な被記録媒体を用いた場合でも、被記録媒体中へのインク浸透を回避し、未硬化モノマーの低減、臭気低減が可能となる。更にインク液滴着弾時のインクの滲みを抑えることができ、その結果として画質が改善される。
【0156】
本発明のインクジェット記録用インク組成物の表面張力は、例えば20〜30mN/m、好ましくは23〜28mN/mである。ポリオレフィン、PET、コート紙、非コート紙など様々な被記録媒体へ記録する場合、滲み及び浸透の観点から、20mN/m以上が好ましく、濡れ性の点はで30mN/m以下が好ましい。
【0157】
(2-2)インクジェット記録方法
本発明は、上記インクジェット記録用インク組成物を、被記録媒体上に噴射し、支持体上に着弾したインクに放射線を照射し、もってインク組成物を硬化して画像を形成する方法を提供する。即ち、本発明は、
(a)被記録媒体上に上記インク組成物を適用する工程;
(b)上記インク組成物に、200〜600nm、好ましくは、300〜450nm、より好ましくは350〜420nmのピーク波長を有する放射線で、2000mJ/cm2以下、好ましくは、10〜2000mJ/cm2、より好ましくは、20〜1000mJ/cm2さらに好ましくは、50〜800mJ/cm2の出力で照射して上記インク組成物を硬化する工程;及び(c)硬化したインク組成物により被記録媒体上に画像が形成される工程、を含む方法に関する。
【0158】
被記録媒体としては、特に制限はなく、通常の非コート紙、コート紙などの紙類、いわゆる軟包装に用いられる各種非吸収性樹脂材料或いは、それをフィルム状に成形した樹脂フィルムを用いることができ、各種プラスチックフィルムとしては、例えば、PETフィルム、OPSフィルム、OPPフィルム、ONyフィルム、PVCフィルム、PEフィルム、TACフィルム等を挙げることができる。その他、被記録媒体材料として使用しうるプラスチックとしては、ポリカーボネート、アクリル樹脂、ABS、ポリアセタール、PVA、ゴム類などが挙げられる。また、金属類や、ガラス類も被記録媒体として使用可能である。
【0159】
本発明のインク組成物において、硬化時の熱収縮が少ない材料を選択した場合、硬化したインク組成物と被記録媒体との密着性に優れるため、インクの硬化収縮、硬化反応時の発熱などにより、フィルムのカール、変形が生じやすいフィルム、例えば、熱でシュリンク可能な、PETフィルム、OPSフィルム、OPPフィルム、ONyフィルム、PVCフィルムなどにおいても、高精細な画像を形成しうるという利点を有する。
【0160】
〔インク組成物を噴射、着弾させる方法についての例〕
被記録媒体にインク組成物を噴射し、着弾させる方法としては、専用インクをノズルから微細な液滴として射出、用紙に付着させるインクジェット方式が好ましい。インクジェットヘッドには、ヒーターに電圧をかけることで気泡を発生させインクを押し出すバブルジェット(登録商標)方式、サーマルインクジェット方式と、ピエゾ素子の振動によりインクを押し出すピエゾ素子方式があるが、本発明のインク組成物は、これら方式のいずれにも使用することができる。
【実施例】
【0161】
(製造例1)
2,9−ジメチルキナクリドン(クラリアント社製、HOSTAPERM PINK E)0.5gを、ジメチルスルホキシド5.0mL、28%ナトリウムメトキシドのメタノール溶液(和光純薬(株)社製)0.85mL、0.5gのアクアロンKH−10(第一工業製薬(株)社製)と0.10gのアクリル酸メチルのDMSO溶液2.0mL、に室温で溶解した(IA液)。IA液のpHは測定限界(pH14)を超えており、測定不能であった。蒸留水をIIA液とした。これらを0.45μmのミクロフィルター(ザルトリウス社製)を通すことでごみ等の不純物を除いた。次に、図1−1の反応装置の流路構成を有する簡易型の反応装置を用いて下記の手順で反応を行った。すなわち、等価直径500μmを有するテフロン(登録商標)製Y字コネクター(東京理化器械(株)社製)の二つの入り口に長さ50cm、等価直径1mmのテフロン(登録商標)チューブ2本をコネクターを用いて接続し、その先にそれぞれIA液とIIA液を入れたシリンジを繋ぎ、ポンプにセットした。コネクターの出口には長さ1.5m、等価直径500μmを有するテフロン(登録商標)チューブを接続した。IA液を96mL/h、IIA液を600mL/hの送液速度にて送り出した(レイノルズ数約500)。チューブ出口先端より2,9−ジメチルキナクリドンの分散液が得られたのでこれを捕集し比較のための試料1とした。試料1のpHは約13.0であった。試料1の体積平均粒径Mvは23.0nmであり、単分散性の指標である体積平均粒径Mv/個数平均粒径Mnの比は1.49であった。
【0162】
次に、この顔料分散液を限外濾過装置(アドバンテック東洋社製、UHP−25K、分画分子量20万)により液量を保持するよう蒸留水を加えながら精製した。
さらに、この顔料分散液に含まれるアクアロンKH−10の5%量の過硫酸カリウム(K228)を添加し、70℃で5時間加熱し本発明の試料1aを得た。試料1aの体積平均粒径Mvは21.5nmであり、単分散性の指標である体積平均粒径Mv/個数平均粒径Mnの比は1.45であった。
試料1、試料1aをそれぞれ70℃で100時間、加熱保存処理をした。試料1の体積平均粒径の変化率は5.2%(体積平均粒径の変化率:加熱保存処理後の体積平均粒径Mvを加熱保存処理前の体積平均粒径Mvで除し1を減じた値)、試料1aの体積平均粒径の変化率は2.3%であった。この結果より、重合処理により安定性が向上していることが分かる。また、加熱保存処理による体積平均粒径の変化率の上記のような差は、例えば、インクジェット用インクとして用いたとき、長期保存安定性を保証することであり、変化率が小さいことはインクとしてより好適であることを示している。
【0163】
(製造例2)
アクアロンKH−10を、等質量のSE−10N(旭電化工業社製)に替えて行った以外実施例1と同様にして分散液を作製し、比較のための試料2を得た。さらに実施例1と同様にして重合処理し、本発明の試料2aを得た。試料2の体積平均粒径Mvは25.6nm、体積平均粒径Mv/個数平均粒径Mnは1.46であった。試料2aの体積平均粒径Mvは22.6nm、体積平均粒径Mv/個数平均粒径Mnは1.44であった。また、それぞれの試料を実施例1と同様に加熱保存処理し、体積平均粒径Mvの変化率を測定したところ、試料2の体積平均粒径の変化率は5.6%、試料2aの体積平均粒径の変化率は2.2%であった。この結果から、重合処理により安定性が向上していることがわかる。
【0164】
(製造例3)
2,9−ジメチルキナクリドンをピグメントイエロー128(チバ・スペシャルティ・ケミカルズ社製、CROMOPHTAL YELLOW 8GN)に変えた以外、実施例1と同様にして分散液の作製を行い、比較のための試料3を得た。さらに実施例1と同様にして重合処理し、本発明の試料3aを得た。試料3の体積平均粒径Mvは33.3nmであり、単分散性の指標である体積平均粒径Mv/個数平均粒径Mnの比は1.44であった。試料3aの体積平均粒径Mvは29.9nmであり、単分散性の指標である体積平均粒径Mv/個数平均粒径Mnの比は1.40であった。
試料3、試料3aをそれぞれ70℃で100時間、加熱保存処理した。試料3の体積平均粒径の変化率は5.6%、試料3aの体積平均粒径の変化率は3.2%であった。この結果より、重合処理により安定性が向上していることが分かる。
【0165】
(製造例4)
2,9−ジメチルキナクリドンをピグメントブルー16(東京化成工業(株)、フタロシアニンジナトリウム)に替え、ジメチルスルホキシドをN−メチルピロリドンに替えた以外、実施例1と同様にして分散液の作製を行い、比較のための試料4を得た。さらに実施例1と同様にして重合処理し、本発明の試料4aを得た。試料17の体積平均粒径Mvは42.7nmであり、単分散性の指標である体積平均粒径Mv/個数平均粒径Mnの比は1.49であった。試料17aの体積平均粒径Mvは39.6nmであり、単分散性の指標である体積平均粒径Mv/個数平均粒径Mnの比は1.43であった。
試料4、試料4aをそれぞれ70℃で100時間、加熱保存処理した。試料4の体積平均粒径の変化率は4.6%、試料4aの体積平均粒径の変化率は3.0%であった。この結果より、重合処理により安定性が向上していることが分かる。
【0166】
(比較製造例1)
実施例1における重合性化合物のDMSO溶液において、アクアロンKH−10を0.5gから0.25gに、及びアクリル酸メチルを0.10gから0.05gに変更した以外は、実施例1と同様にして分散液の作成を行い試料5を得た。試料5の体積平均粒径Mvは58.0nmであり、単分散性の指標である体積平均粒径Mv/個数平均粒径Mnは1.80であった。
次に、この顔料分散液に含まれるアクアロンKH−10の30質量%のアクアロンKH−10を添加、室温で1時間攪拌し、さらにアクアロンKH−10の5質量%のK228を添加し、70℃で5時間加熱の試料5aを得た。試料5aの体積平均粒径Mvは52.8nmであり、単分散性の指標である体積平均粒径Mv/個数平均粒径Mnの比は1.66であった。
試料5、試料5aをそれぞれ70℃で100時間、加熱保存処理をした。試料5の体積平均粒径の変化率は15.1%(体積平均粒径の変化率:加熱保存処理後の体積平均粒径Mvを加熱保存処理前の体積平均粒径Mvで除し1を減じた値)、試料19aの体積平均粒径の変化率は14.9%であった。
【0167】
製造例1で得られた顔料分散液1aをマゼンタ顔料分散液1、製造例2で得られた顔料分散液2aをマゼンタ顔料分散液2、製造例3で得られた顔料分散液3aをイエロー顔料分散液1、製造例4で得られた顔料分散液4aをブルー顔料分散液1、比較製造例1で得られた顔料分散液5aをマゼンタ顔料分散液3とした。
【0168】
実施例1
《インクの調製》
上記調製した各分散液を用いて、下記記載の方法に従い各色インクを調製した。
【0169】
(マゼンタインク1)
マゼンタ顔料分散液1 20質量部
光重合性化合物A3−1 35質量部
光重合開始剤1(下記参照) 3質量部
水 42質量部
【0170】
光重合開始剤1
【化23】

【0171】
(マゼンタインク2)
マゼンタ顔料分散液2 20質量部
光重合性化合物A3−1 35質量部
光重合開始剤1(上記参照) 3質量部
水 42質量部
【0172】
(イエローインク1)
イエロー顔料分散液1 20質量部
光重合性化合物A3−1 35質量部
光重合開始剤1(上記参照) 3質量部
水 42質量部
【0173】
(ブルーインク1)
ブルー顔料分散液1 20質量部
光重合性化合物A3−1 35質量部
光重合開始剤1(上記参照) 3質量部
水 42質量部
【0174】
(比較例:マゼンタインク3)
マゼンタ顔料分散液3 20質量部
光重合性化合物A3−1 35質量部
光重合開始剤1(上記参照) 3質量部
水 42質量部
【0175】
《分散安定性の評価》
まず、得られたインクの外観を観察したところ、マゼンタインク1〜2、イエローインク1、ブルーインク1は透明であったが、マゼンタインク3は濁り感が認められ、不透明であった。
次にインクの凝集状態を観察し、70℃・3カ月放置で凝集の発生の有無を確認したところ、マゼンタインク1〜2、イエローインク1、ブルーインク1では発生が無かったが、マゼンタインク3では明らかに凝集が確認された。
すなわち、本発明の有機顔料微粒子を用いると、分散安定性が明らかに向上することがわかる。
【0176】
《アルミ版への塗布、光硬化させた時の評価》
上記のように調整したマゼンタインク1〜3を、膜厚が20〜30μmとなるようにアルミ板にバーを用いて塗布し、スポットUV露光機を照射して光硬化させた。このとき露光エネルギーが一律300mJ/cm2で露光した。
このときの硬化性、得られる硬化物の光沢性を確認した。マゼンタインク1〜2、イエローインク1、ブルーインク1では一様な光沢感が認められたが、マゼンタインク3ではざらつきが目立った。
【0177】
《インクジェット画像記録時の評価》
次に、ピエゾ型インクジェットノズルを有する市販のインクジェット記録装置を用いて被記録媒体への記録を行った。インク供給系は、元タンク、供給配管、インクジェットヘッド直前のインク供給タンク、フィルター、ピエゾ型のインクジェットヘッドから成り、インク供給タンクからインクジェットヘッド部分までを断熱および加温を行った。温度センサーは、インク供給タンクおよびインクジェットヘッドのノズル付近にそれぞれ設け、ノズル部分が常に70℃±2℃となるよう、温度制御を行った。ピエゾ型のインクジェットヘッドは、8〜30plのマルチサイズドットを720×720dpiの解像度で射出できるよう駆動した。着弾後はUV−A光を露光面照度100mW/cm2、に集光し、被記録媒体上にインク着弾した0.1秒後に照射が始まるよう露光系、主走査速度及び射出周波数を調整した。また、露光時間を可変とし、露光エネルギーを照射した。なお、本発明でいうdpiとは、2.54cm当たりのドット数を表す。
【0178】
上記調製した各色インクを用い、環境温度25℃にて、マゼンタを射出、紫外線を照射した。触診で粘着性が無くなる様、完全に硬化するエネルギーとして、露光エネルギーが一律300mJ/cm2で露光した。被記録媒体としては、砂目立てしたアルミニウム支持体、印刷適性を持たせた表面処理済みの透明二軸延伸ポリプロピレンフィルム、軟質塩化ビニルシート、キャストコート紙、市販の再生紙に各カラー画像を記録した。
マゼンタインク1〜2、イエローインク1、ブルーインク1を用いた場合、いずれもドットの滲みの無い高解像度の画像が得られ、光沢感に優れていた。一方、マゼンタインク3を用いた場合、滲みが認められ、ざらつき感のある画像となった。
【図面の簡単な説明】
【0179】
【図1−1】片側にY字型流路を有する反応装置の説明図である。
【図1−2】図1−1のI−I線の断面図である。
【図2−1】片側に挿通した流路を設けた円筒管型流路を有する反応装置の説明図である。
【図2−2】図2−1のIIa−IIa線の断面図である。
【図2−3】図2−1のIIb−IIb線の断面図である。
【図3−1】両側にY字型流路を有する反応装置の説明図である。
【図3−2】図3−1のIII−III線の断面図である。
【図4】両側に挿通した流路を設けた円筒管型流路を有する反応装置の説明図である。
【図5】平面型のマイクロリアクター装置の態様を説明する説明図である。
【図6】平面型のマイクロリアクター装置の別の態様を説明する説明図である。
【図7】平面型のマイクロリアクター装置のさらに別の態様を説明する説明図である。
【図8】立体型のマイクロリアクター装置の分解した状態を示す分解斜視図である。
【符号の説明】
【0180】
10、20、30、40 反応装置本体
11、12、21、22、31、32、41、42 導入口
13、33 流路
13a、13b、23a、23b、33a、33b、43a、43b 導入流路
13c、23c、33c、43c 反応流路
13d、23d、33d、43d 流体合流点
33e、43e 流体分流点
33f、33g、43f、43g 排出流路
14、24、34、35、44、45 排出口
50、60、70、80 マイクロリアクター装置
51、52、61、62、71、72 溶液の供給流路
51A、61A、71A 分割供給流路
53、63、73 マイクロ流路
54、64、74 合流領域
81 供給ブロック
82 合流ブロック
83 反応ブロック
86 外側環状溝
85 内側環状溝
87、88 供給ブロックの貫通孔
90 合流穴(合流領域)
91 長尺放射状溝
92 短尺放射状溝
93 反応ブロックの貫通孔(マイクロ流路)
95、96 合流ブロックの貫通孔

【特許請求の範囲】
【請求項1】
以下の成分を含む光重合性組成物。
a)光重合性化合物、b)光重合開始剤、及びc)重合性化合物の重合体が固定化されており、体積平均粒径Mvが50nm以下でありかつ体積平均粒径Mvと個数平均粒径Mnの比Mv/Mnが1〜1.5の範囲である有機顔料微粒子。
【請求項2】
有機顔料微粒子が水で分散された分散液の形態である請求項1記載の光重合性組成物。
【請求項3】
活性光線硬化型のインクジェット記録用インク組成物である請求項1または2に記載の光重合性組成物。

【図1−1】
image rotate

【図1−2】
image rotate

【図2−1】
image rotate

【図2−2】
image rotate

【図2−3】
image rotate

【図3−1】
image rotate

【図3−2】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2008−50407(P2008−50407A)
【公開日】平成20年3月6日(2008.3.6)
【国際特許分類】
【出願番号】特願2006−225548(P2006−225548)
【出願日】平成18年8月22日(2006.8.22)
【出願人】(306037311)富士フイルム株式会社 (25,513)
【Fターム(参考)】