説明

機器を回転させるための位相検出器

【課題】回転部材間の回転位相関係を正確に検出する。
【解決手段】それぞれ回転可能に連結された部材に取り付けられた31個の数字の擬似ランダムM数列でコード化されている第1ディスクと第2ディスクとを有する。ディスクを31区画に分割し、ディスクの外周を、「1」に対応する区画は大きな半径を有し、「0」に対応する区画は小さな半径を有するように輪郭付ける。第1及び第2ディスクの外周付近に配置されたセンサーが、コード化された擬似ランダム数列を検出し、周期的にサンプル採取して、第1及び第2の検出された数列を生成する。第1及び第2の検出された数列は、ノイズを取り除き、+1から−1の間の範囲に処理され、その後、相互相関付けをして、取り付けられた回転部材の間の回転位相関係が求められる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、機械的構成要素を回転させるための位相検出器に関しており、具体的には、回転部材間の回転位相関係を非常に正確に検出することに関する。
【背景技術】
【0002】
製造及び加工機器の様な現代の産業用機械は、所望の機能を達成するために、機械の様々な様相の極めて正確な調整及び/又は制御に依存していることが多い。しかしながら、そのような機械は、複雑な機械の様々な構成要素の協調動作の間で達成可能な精度を制限する一定の製造許容値内で構築されている。また、機械の通常の磨耗と傷のために、設計パラメーターから変動し、異なる機械構成要素の間の関係と相互作用の精度に影響を与えることもある。他にも、作動中に加えられる負荷に対する構成要素の動的応答も、不確実さの原因となる。様々な構成要素の間の調整が所望のレベルに達していないと、最終製品の品質の劣化から機械の破局的な故障に亘る深刻な結果を招きかねない。
【0003】
幾つかの例では、装置の異なる構成要素の間の相対的動作の精度を所望のレベルに到達させ及び/又は維持するのに、コンピュータを使った検出及び制御システムが採用されている。しかしながら、その様なシステムの有効性は、機械の作動中に関係する構成要素の状態又は機能を正確且つ迅速に検出し比較する検出システムの能力を含む数多くの要因によって制限されるので、ユーザーは、作動パラメーターにおいて所望の精度が達成されているか否かを判断するのを妨げられている。
【0004】
機械の所望の機能は、同時回転軸又は他の回転構成要素を含む、及び/又はそれらによって制御されている関連構成要素の協働動作によって達成される。例えば、回転軸は、特定の関連構成要素を直接駆動することもあれば、接続しているハードウェアを通して別の構成要素に作用するクランク、カム又は偏心部分を含んでいることもある。異なる同時回転軸が異なる協働機械構成要素を駆動しているときは、同時回転軸は、通常、互いに特定の回転位相関係を維持しなければならない。位相関係の精度は、機械全体の適切な作動にとって非常に重要である。
【0005】
大型の機械システムで、特に、大きな及び/又は急激に変化する負荷が掛かる場合は、回転軸間の位相関係において高い精度を実現するのは難題である。構成要素の間に所望の位相関係を作り出す機械の設計は、通常、理想の機械に直結するものであるが、実際の機械では、構成要素間の位相関係は、例えば、(i)製造許容値、特にそのような許容値の累積、(ii)負荷が加えられている構成要素の、温度に関係する変化を含む弾性、(iii)温度変動による寸法及び材料特性の変化、及び(iv)時間の経過による機器の摩擦及び傷付き、を含め、数多くの要因によって変動する。構成要素の間の回転位相を正確に判定することは、機械の設計、適切な設定、制御及び/又は問題の検出にとって重要である。
【0006】
従って、機械システム内の回転構成要素の間の位相関係を判定するためのシステム及び方法が必要とされている。
【発明の開示】
【課題を解決するための手段】
【0007】
2つの回転可能に連結されている軸又は他の回転部材の間の回転位相差を非常に正確に判定するためのシステムと方法を開示している。本システムは、回転部材に取り付けられ、これと共に回転可能なディスクを含んでいる。各ディスクは、その周縁にコード化された擬似ランダム2進数列を有している。センサーは、軸が回転している間にコード化された数列を検出するため、各ディスクの周縁又は周縁近くに設けられている。各センサーは、周期的にサンプル採取して、各ディスク毎に検出した数列を生成する。検出された数列は、フィルターに掛けてノイズが除去され、後の処理がやり易いように正規化される。出来上がった数列同士の相互相関を取ると、2つの回転部材の間の位相関係を示す相互相関関係におけるスパイク又はピーク、及び、回転の周期だけ間隔の離れた同様なピークができる。位相検出の精度を改善するために、ここに記載するように、ピークの線形適合外挿法を使用して、2つの回転部材の間の位相又は時間位相関係をより正確に特定する。
【0008】
開示している実施形態では、ディスクは、鋼又は他の鉄系材料でディスクを形成し、ディスクを31個の数字の擬似ランダムM数列に対応する31個の円周区画に分割することによって、31個の数字の擬似ランダムM数列でコード化されている。代わりに、他のM数列を含め、別の擬似ランダム数列を使用してもよい。ディスクは、M数列の「0」に対応当する区画が、M数列の「1」に対応する区画よりも短い半径を有するように形成される。近接センサーは、ディスクの周縁近くに設けられ、長い半径の区画がセンサーにほぼ隣接しているときに検出する。或る特定の実施形態におけるサンプル採取速度は約50kHzで、コード化されたM数列に関係する、回転中に検出された数列を作る。検出された数列は、フィルターに掛けてノイズを除去し、後に続く計算を容易にするため、+1から−1の間の範囲に正規化される。1つのディスクから正規化された数列は、第2ディスクから正規化された数列と相互相関付けられ、対応する回転部材の回転位置の間の位相時間差が判定される。時間差は、回転の周期で割れば、2つの回転部材の回転位相を求めることができる。
【0009】
位相検出システムの或る特定の実施形態は、第1コード化ディスクが取り付けられている第1回転部材と、第1回転部材に連結されている第2回転部材と、第2回転部材に取り付けられている第2コード化ディスクを含んでいる。第1誘導近接センサーは、第1ディスクの周縁近くに設けられ、第2誘導近接センサーは、第2ディスクの周縁近くに設けられている。データ処理システムは、第1及び第2センサーから信号を受信するように設けられており、両センサーからの信号は、回転部材の間の位相関係を判定するのに使用することのできる第1及び第2の検出された信号の数列を作るために、周期的にサンプル採取される。
【発明を実施するための最良の形態】
【0010】
本発明の以上の態様及び多くの付随する利点は、以下の詳細な説明を添付図面と関連付けて参照すれば、容易に良く理解できるであろう。
【0011】
以下、本発明の好適な実施形態を、本発明を例証する事例として図面を参照しながら説明するが、各図を通して、同様の番号は同様の部品を示している。
【0012】
本発明の好適な実施形態の代表的な用途は、図1に示すプレス装置90の様な機械の中で協働的に係合されている2つの回転軸の間の回転位相角の関係を判定することである。この代表的なプレス機90は、数多くの個々のプレスモジュール92を含んでおり、各モジュールは、上方プレス部94と、反対側に配置され対抗動作をする下方プレス部96を有している。このプレス機90では、個々のプレスモジュール92は、各上方軸95が実質的に全て同位相で回転し、各下方軸97が実質的に全て同位相で、且つ上方軸95に対して逆回転するように正確に調整された方式で作動する多数のモーター93によって駆動されるクランク軸95、97を回転させることによって作動する。調整されたプレスモジュール92は、プレス機90の中央チャネルを通して、帯板材をプレスして送る。上方軸と下方軸95、97の内の少なくとも幾つかは、以下に説明するように、位相検出器アッセンブリ100を含んでいる。この図示の例は、同位相で作動する軸95、97を示しているが、本発明は、同位相で作動するように意図されている構成要素の間の回転位相を検出することに限定されるものではなく、異なる位相角で作動している構成要素の間の位相を判定するため、非常に直接的な方式で拡張できるものと理解頂きたい。
【0013】
次に図2と3は、上方軸95の端部に取り付けられている位相検出器アッセンブリ100を示している。図2は、位相検出器アッセンブリ100の斜視図を示しており、図3は、軸95に取り付けられている位相検出器アッセンブリ100の分解図を示している。位相検出器アッセンブリ100は、例えば軸95を支持している構造のような支持構造にしっかりと取り付けられている基部プレート102を含んでいる。支持プレート102は、軸95のキー付き取り付け柱を入れる寸法に作られた中心穴104を含んでいる。カバー部材110は、基部プレート102に取り付けられており、取り付けボルト91(分かり易くするために図3には示していない)で取り付けられている透明なカバープレート111を含んでいる。
【0014】
以下に説明するように、擬似ランダム数列をその周縁にコード化しているディスク120は、コード化されたディスク120が軸95と共に回転するように軸95のキー付き取り付け柱と係合するスロット99を含む中央穴124を含んでいる。コード化されたディスク120は、例えば、キー付き取り付け柱98と螺合する取り付けナット128で固定されている。カップ形状のカバー部材110は、ディスクの回転と干渉すること無く、ディスク120を閉じる。カバー部材110は、基部プレート102に、例えば、カバー部材110の穴115を貫通して伸張し、基部プレート102のねじ穴105と係合する取り付けボルト118で、固定されている。
【0015】
近接センサーの様なセンサー130は、センサー130がディスク120の外周付近に配置されるように、カバー部材110を貫通して半径方向に伸張する穴109内に取り付けられている。現在の実施形態では、センサー130は、誘導近接センサーである。適したセンサーは、例えば、オハイオ州ツインズバーグのPepperl+Fuchs社から販売されている誘導近接センサーモデル第NJ1.5−6.5−50−E−V3である。この具体的なセンサーは、面一に取り付けることができ、製造元の識別感知範囲は1.5mmである。どの様な代替センサーでも使用することができ、選択される具体的な検出器は、具体的な用途次第で、その選択は当業者の技量の範囲内にあると考えられる旨理解されたい。
【0016】
センサー130の作用は、コード化されたディスク120の平面図を示す図4Aを見れば明らかになるであろう。ディスク120は、軸95と共に回転するようにディスク120を回転方向に係止するキー付き中心穴124を含んでいる(図3)。開示している実施形態のディスク120は、軟鋼の様な鉄系の材料で作られており、長い半径R1を有する第1区画126と、短い半径R2を有する第2区画127を含んでいる。第1区画126と第2区画127は、以下に論じるように、例えば、擬似ランダムコードのM数列のような擬似ランダム2進数列をコード化するように形成されている。
【0017】
図4Bは、コード化されたディスク120の平面図を示している。ガイド破線は、ディスク120を、外周で31個の等区画に分割している。図4Bから、ディスク120の31個の各区画に、区画が第1区画126である場合は「1」を、第2区画127である場合は「0」を割り当てれば、31個の数字の擬似ランダムM数列が形成されることが分かる。本実施形態では、図4Bに示すようにディスク120の右側で始まり、反時計回りに進むので、2進数列0000 1010 1110 1100 0111 1100 1101 001が生成される。この2進数列は、周知の擬似ランダムコードの31個の数字のM数列である。
【0018】
図2と3に戻るが、理解頂けるように、コード化されたディスク120が回転すると、ディスク120の第1半径R1付近に配置されている近接センサー130は、ディスク120の長い第1区画126がセンサー130に隣接しているときには第1信号(例えば「高」信号)を生成し、第1区画126がセンサー130に隣接していないときには第2信号(例えばヌル信号)を生成する。
【0019】
図5は、従来型のコンピューターなどの様なデジタル処理システム200に接続されている2つの位相検出器アッセンブリ100、100’を概略的に示している。位相検出器アッセンブリ100、100’は、それぞれ、先に論じたように、各ディスク120、120’上にコード化された擬似ランダム数列を検出するセンサー130、130’を含んでいる。検出された信号は、デジタル処理システム200に送られる。代表的な作動モードでは、センサー130は、約50kHzの割合でサンプル採取する。検出された電圧信号は、記録され、コード化されたディスク120からコード化された擬似ランダム数列にほぼ一致する数列を生成する。
【0020】
図6は、ディスク120のほぼ一回転で検出された信号数列140の代表的なグラフである。センサー130は、殆どのサンプル採取期間に、「オン」(例えば、比較的高い電圧信号)か、「オフ」(例えばヌル信号)の何れかの信号を戻す。検出された信号数列140は、通常、図6に示すように、幾らかのノイズを含んでいる。
【0021】
図7は、図6に示す検出された信号数列140から得られた正規化信号数列142を示しており、信号140は、処理されてノイズが取り除かれ、+1から−1の範囲に正規化されている。それぞれに位相検出アッセンブリ100が装着されている、2つの同時に回転しているディスク120からの正規化信号数列142を相互相関付けることによって、回転している部材の間の回転位相関係が、非常に高い精度で判定される。
【0022】
検出された信号のサンプル採取率は、ランダム数列の通過率(この場合、1回転当たり31個の数字)より相当に大きい。目下の実施形態では、センサー130は、約1000rpmの回転速度を有するシステムで、約50kHzの割合でサンプル採取する。従って、図6に示す検出された信号数列140は、センサー130から1回転当たり約3000回の読み取り率で得られた信号から得られる。1回転当たりの読み取り回数が比較的大きいので、回転部材の間の位相関係を良好に解読することができる。
【0023】
図8は、図7に示す正規化信号数列142の様な2つの正規化信号数列142の代表的な計算された相互相関関係144を示している。図8では、第2の正規化信号数列が、第1の正規化信号数列と相互相関付けられている。図10は、第1の正規化信号数列142の、第2の正規化信号数列142との計算された相互相関関係144’を示している。周知の相互相関関数は、
【0024】
【数1】

【0025】
【数2】

【0026】
と定義され、ここに、添字「1」は第1の数列を指し、添字「2」は第2の数列を指す。式(1)は、第2信号数列fの、第1信号数列fとの相互相関関数を定義しており、式(2)は、第1信号数列fの、第2信号数列fとの相互相関関数である。理解頂けるように、正規化信号数列f及びfは、それぞれ、同じコード化された擬似ランダム数列を有する2つの同時回転しているディスク120から検出された信号から得られる。同じく理解頂けるように、正規化信号数列同士を相互相関付けると、検出された信号が整列するときにだけ最高の相関が起こる。この整列状態は、図8に示す計算された相互相関関数144で、グラフの急激なスパイク又はピーク146A、146Bにより明示されている。
【0027】
図8に示す信号2の信号1に対する相互相関関数144は、ディスク120の1回転より僅かに多くをカバーしている。計算された相互相関関係144のピーク146A、146Bは、第1及び第2信号が整列しているときに生じ、第2信号数列fが第1信号数列fに対して時間的にずれることを考えると、ピーク146A、146Bは、第1及び第2信号が整列するように第2信号数列がずれたときに生じる。従って、図8の計算された相互相関関係の第1ピーク146Aの水平方向位置は、第1と第2のディスク120の間の位相(時間)関係を示している。図8では、検出された数列同士は、同位相に非常に近い。図9は、第1ピーク146Aを拡大して示している。図11は、図10の第1ピーク146’Aを同様に拡大したものである。
【0028】
本実施形態では、2つのディスク120は、最初は、図8に示している計算された相互相関関係144の第1ピーク146Aの水平方向位置が、同時に回転しているディスク120(従って、付帯する軸)同士の回転位相の間の時間差を示すように、対応するセンサー130に対して実質的に同じ向きに整列している。角位相差は、第1ピーク146の時間をディスク120の回転の周期で割ることによって計算することができる。
【0029】
図9と11に戻るが、第1ピーク146A、146A’は、比較的狭い水平部と、右への下降部を有している。開示しているシステム及び方法は、これまで述べたように、ピーク146Aの狭い平坦部内の精度が十分であれば、ディスク120同士の間の位相関係を判定するのに用いられると理解されたい。或いは、例えば、ピーク146A、146Bの平坦部の「中間点」を予測し、その中間点を使って水平軸上の時間差を求めることによって、精度を改良することができる。
【0030】
位相関係を判定するための更に正確な方法について、ピーク146A及び146Bの両方を示す計算された相互相関関係144の破断グラフを示している図12を参照しながら説明する。計算された相互相関関係144は、ディスク120の1回転以上に亘って求められていると理解頂きたい。第2ピーク146Bは、上昇部147B、中間部148B、及び下降部149Bを有している。上昇部147Bと下降部149Bは、中間部148B付近では、それらの長さの部分に沿って実質的に直線状である。従って、下降部149Bの直線状の最良適合外挿を、例えば、従来型の最良適合アルゴリズムを使って、159Bとして示すように構築し、同様に、上昇部147Bの直線状の外挿を、157Bとして示すように構築することができる。これらの2つの線159Bと157Bは、中間部149Bの上方の点P(t、C)で交わり、ここに、tは水平軸からの時間座標であり、Cは垂直軸からの相互相関座標である。第1ピーク146Aも、下降部149Aと中間部148Aを含んでいる。図12の点P(t、C)でC1に対応する水平線と交わる下降部149Aの同様の最良適合直線状外挿を構築することができ、ここに、tは、Pに関する水平軸からの時間座標である。
【0031】
回転しているディスク120の回転の周期Tは、t−tとして計算できる旨理解頂きたい。また、tは、回転しているディスク120同士の間の時間差を表す。従って、第1と第2のディスク120(及び付帯する軸)の間の位相差は、Ph=t/Tとして計算することができる。
【0032】
位相差を計算するための前記アルゴリズムは、目下の好適なアルゴリズムであり、本発明を理解する上において、技術者を支援するよう意図しているものと理解頂きたい。しかしながら、正確な位相差を計算するために、本発明から逸脱すること無く他の方法を使用することも考えられる。
【0033】
以上、本発明の好適な実施形態について図示し説明してきたが、本発明の精神及び範囲から逸脱すること無く、様々な変更を加えることができるものと理解頂きたい。
【図面の簡単な説明】
【0034】
【図1】本発明の位相検出システムの代表的な適用例を示すプレス装置の斜視図である。
【図2】本発明による位相検出器アッセンブリの斜視図である。
【図3】図2に示す位相検出器アッセンブリの分解斜視図であり、分かり易くするために、透明なカバーを取り外している。
【図4A】図4Aは、図2に示すディスクの平面図であり、図4Bは、擬似ランダム数列の周縁のコード化を示している。
【図4B】図4Bは、図2に示すディスクの平面図であり、図4Bは、擬似ランダム数列の周縁のコード化を示している。
【図5】図2に示す2つの位相検出器アッセンブリによって検出される数列を処理するための代表的なシステムである。
【図6】図4Aに示す擬似ランダム数列でコード化されたディスクのほぼ1回転分の、検出された数列の代表的なグラフである。
【図7】図6に示す検出された数列から得られ、処理してノイズを取り除き、+1から−1の間に正規化された、正規化数列である。
【図8】図7に示す正規化数列と同様な、関係付けられ回転しているディスクからの2つの正規化された数列から計算された代表的な相互相関関数を示している。
【図9】図8に示す計算された相互相関関数の一部分を拡大した図である。
【図10】関係付けられ回転しているディスクからの2つの正規化された数列から計算された相互相関関数を示している。
【図11】図10に示す計算された相互相関関数の一部分の拡大図である。
【符号の説明】
【0035】
100 位相検出システム
120 ディスク
130 センサー
140 検出された信号数列
200 データ処理システム
R1 第1半径
R2 第2半径

【特許請求の範囲】
【請求項1】
位相検出システムにおいて、
第1回転部材と、
前記第1回転部材に回転可能に連結されている第2回転部材であって、前記第1及び第2回転部材は実質的に同じ速度で回転するように連結されている、第2回転部材と、
前記第1回転部材と共に回転するように前記第1回転部材に取り付けられている第1ディスクであって、その外周付近に順次的にコード化されている2進擬似ランダム数列を有している、第1ディスクと、
前記第2回転部材と共に回転するように前記第2回転部材に取り付けられている第2ディスクであって、その外周付近に順次的にコード化されている2進擬似ランダム数列を有している、第2ディスクと、
前記第1ディスクの外周付近の第1位置に配置されている第1センサーであって、前記第1ディスクが回転する際に、前記第1位置で前記2進擬似ランダム数列を周期的に検出し、前記検出された2進擬似ランダム数列から第1の検出された数列を生成するように作動する、第1センサーと、
前記第2ディスクの外周付近の第2位置に配置されている第2センサーであって、前記第2ディスクが回転する際に、前記第2位置で前記2進擬似ランダム数列を周期的に検出し、前記検出された2進擬似ランダム数列から第2の検出された数列を生成するように作動する、第2センサーと、
前記第1及び第2の検出された数列を受け取り、前記第1の検出された数列を前記第2の検出された数列と相互相関付けし、前記第1回転部材と前記第2回転部材の間の回転位相関係を求めるデータ処理システムと、を備えている位相検出システム。
【請求項2】
前記2進擬似ランダム数列はM数列である、請求項1に記載のシステム。
【請求項3】
前記2進擬似ランダム数列は、前記第1及び第2ディスクの外周を、前記2進擬似ランダム数列に対応するように輪郭付けることによって、前記第1及び第2ディスク上にコード化される、請求項2に記載のシステム。
【請求項4】
前記第1及び第2ディスクは、それぞれ、円周方向の区画を備えており、各区画は前記擬似ランダム数列の数字に対応しており、前記2進擬似ランダム数列は、前記第1及び第2ディスク上に、前記擬似ランダム数列のゼロに対応する区画は第1半径を有し、前記擬似ランダム数列の1に対応する区画は、前記第1半径とは異なる第2半径を有するようにコード化されている、請求項2に記載のシステム。
【請求項5】
前記2進擬似ランダム数列は31個の数字を有している、請求項2に記載のシステム。
【請求項6】
前記第1及び第2センサーは誘導近接センサーである、請求項4に記載のシステム。
【請求項7】
前記第1及び第2ディスクは鉄系材料で形成されている、請求項6に記載のシステム。
【請求項8】
前記第1の検出された数列は、前記第1センサーを約50kHzで読み取ることによって生成される、請求項6に記載のシステム。
【請求項9】
前記データ処理システムは、前記第1の検出された数列を前記第2の検出された数列と相互相関付けする前に、前記第1の検出された数列と前記第2の検出された数列を、+1と−1の間の範囲に正規化する、請求項4に記載のシステム。
【請求項10】
前記データ処理システムは、前記第1の検出された数列を前記第2の検出された数列と相互相関付けする前に、前記第1の検出された数列と前記第2の検出された数列からノイズを取り除く、請求項9に記載のシステム。
【請求項11】
2つの回転可能に連結された部材の間の回転位相関係を求めるための方法において、
2進擬似ランダム数列をコード化している外周部を有する第1ディスクを第1回転部材に取り付ける段階と、
前記2進擬似ランダム数列をコード化している外周部を有する第2ディスクを、前記第1回転部材に回転可能に連結されている第2回転部材に取り付ける段階と、
前記第1ディスクの外周付近の第1位置に第1センサーを設け、前記第1位置で、前記第1ディスクから、前記コード化された2進数列の値を周期的に検出し、前記周期的に検出された値を記録して第1数列を定める段階と、
前記第2ディスクの外周付近の第2位置に第2センサーを設け、前記第2位置で、前記第2ディスクから、前記コード化された2進数列の値を周期的に検出し、前記周期的に検出された値を記録して第2数列を定める段階と、
前記第1数列を前記第2数列と相互相関付けして、前記第1回転部材と前記第2回転部材の間の回転位相関係を求める段階と、から成る方法。
【請求項12】
前記2進擬似ランダム数列はM数列である、請求項11に記載の方法。
【請求項13】
前記2進擬似ランダム数列は、前記第1及び第2ディスクの外周を、前記2進擬似ランダム数列に対応するように輪郭付けることによって、前記第1及び第2ディスク上にコード化される、請求項12に記載の方法。
【請求項14】
前記第1及び第2ディスクは、それぞれ、円周方向の区画を備えており、各区画は前記擬似ランダム数列の数字に対応しており、前記2進擬似ランダム数列は、前記第1及び第2ディスク上に、前記擬似ランダム数列のゼロに対応する区画は第1半径を有し、前記擬似ランダム数列の1に対応する区画は、前記第1半径とは異なる第2半径を有するようにコード化されている、請求項12に記載の方法。
【請求項15】
前記2進擬似ランダム数列は31個の数字を有している、請求項12に記載の方法。
【請求項16】
前記第1及び第2センサーは誘導近接センサーである、請求項14に記載の方法。
【請求項17】
前記第1及び第2ディスクは鉄系材料で形成されている、請求項16に記載の方法。
【請求項18】
前記第1の検出された数列は、前記第1センサーを約50kHzで読み取ることによって生成される、請求項16に記載の方法。
【請求項19】
前記第1の検出された数列を前記第2の検出された数列と相互相関付ける前記段階の前に、前記第1の検出された数列と前記第2の検出された数列を、+1と−1の間の範囲に正規化する段階を更に含んでいる、請求項14に記載の方法。
【請求項20】
前記第1の検出された数列を前記第2の検出された数列と相互相関付ける前記段階の前に、前記第1の検出された数列と前記第2の検出された数列からノイズを取り除く段階を更に含んでいる、請求項14に記載の方法。
【請求項21】
前記第1の検出された数列の前記第2の検出された数列との相互相関付けは、少なくとも第1ピークと第2ピークを画定するために1回転の期間より長い期間に亘って行われ、
前記方法は、更に、
前記第2ピークの上昇部と下降部を直線状に外挿して、第1時間と第1相互相関値を定める交点を見つける段階と、
前記第1ピークの下降部を直線状に外挿して、前記直線状の外挿が前記第1相互相関値に達する第2時間に対応する第2時間の点を見つける段階と、
前記第1時間から前記第2時間を引いて回転周期を求める段階と、
前記第2時間を前記回転周期で割って前記第1及び第2回転部材の間の回転位相関係を計算する段階と、を含んでいる、請求項19に記載の方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4A】
image rotate

【図4B】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate


【公開番号】特開2007−93601(P2007−93601A)
【公開日】平成19年4月12日(2007.4.12)
【国際特許分類】
【外国語出願】
【出願番号】特願2006−259202(P2006−259202)
【出願日】平成18年9月25日(2006.9.25)
【出願人】(302009279)ウェヤーハウザー・カンパニー (36)
【Fターム(参考)】