説明

欠陥検査装置、欠陥情報取得装置及び欠陥検査方法

【課題】検出対象とする欠陥の検出精度を向上させ、当該欠陥に関する散乱光信号の取得量をより適正化することができる欠陥検査装置、欠陥情報取得装置及び欠陥検査方法を提供する。
【解決手段】移動する試料台11上のウエハ100に検査光21を斜方照射する検査光照射装置20と、ウエハ100からの散乱光1a−1cを検出する散乱光検出器30a−30bと、ウエハ100上の同一座標から同時に発生した散乱光1a−1cについての散乱光検出器30a−30bによる散乱光信号2a−2bを論理演算して当該散乱光信号が欠陥で散乱した欠陥信号か否かを判定し、欠陥信号と判定された散乱光信号のみを出力する欠陥判定部45と、欠陥判定部45から出力された散乱光信号を記憶する記憶部56と、複数の論理演算から選択した一又は複数を組み合わせて欠陥判定部45で欠陥の判定条件として用いる論理演算式を設定する操作部52とを備えたことを特徴とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、半導体ウエハ(以下、単に「ウエハ」と記載する)等の試料の表面上の異物、傷、欠陥、汚れ等(以下、これらを総称して「欠陥」と記載する)を検査する欠陥検査装置、欠陥情報取得装置及び欠陥検査方法に関する。
【背景技術】
【0002】
近年、半導体集積回路装置(IC)の高集積化及び回路パターンの微細化が進み、今日では線幅が1μm以下の回路パターンも製造されるようになってきている。このような微細化したICを高歩留まりで製造するためには、ウエハ表面の欠陥を検出し、欠陥のサイズや形状等の検査、各種半導体製造装置や工程の清浄度の定量的把握等をして製造プロセスを的確に管理することが重要である。そのため、ウエハ製造メーカやIC製造工場等では製造プロセスを的確に管理するためにウエハの欠陥検査が広く実施されている。
【0003】
この種の欠陥検査の一手法として、暗視野像を用いたものがある(特許文献1等参照)。これはウエハに対して斜めに検査光を照射してウエハ表面で散乱した散乱光を検出し、散乱光が発生したと推定されるウエハ上の座標や散乱光の強度から欠陥の位置情報や大きさを認識する方式である。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2008−241570号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
ここで、暗視野像を利用した欠陥検査装置においては、散乱光信号のノイズを抑えるため、複数設けた散乱光検出器の個々の散乱光信号を平均化処理や積分処理等の演算処理によって一つの散乱光信号にまとめ、この演算した散乱光信号をしきい値と比較して散乱光の発生元が欠陥か否かを判定することが一般に行われてきた。
【0006】
ところが、こうした判定手法では、検出された欠陥に関する演算後の散乱光信号と座標情報しか検査結果として取得(本願ではメモリに記憶されることを言う)されず、欠陥の形状分類等に有効なデータとなり得る複数の散乱光検出器の個々の散乱光信号が取得されない。反面、個々の散乱光信号を取得するにしても散乱光信号の取得量が肥大化してしまうため、これを抑えるために散乱光検出器毎に適切なしきい値を個別に設定しなければならない。多数の散乱光検出器について個別にしきい値を最適化することは簡単ではなく、個々の散乱光信号についてしきい値を最適化して散乱光信号の取得量の過不足を抑えることは容易なことではない。
【0007】
それに対し、上記特許文献1では、検出対象とする欠陥の散乱光パターンの特徴に応じて欠陥検出に関係する少なくとも一つの散乱光検出器を選択し、ウエハ上のある座標で発生した散乱光についてのそれら検出器の散乱光信号(選択信号と称する)が全て対応するしきい値を超えた場合に、検出対象とする欠陥が当該座標に存在しているものと判定し、当該欠陥に関する個々の散乱光信号を取得している。このように同文献では、欠陥検出に関わりのない散乱光信号についてしきい値を適正に設定する必要がない分、検出対象の欠陥を検出する上でしきい値の設定が容易になり、その一方で、欠陥判定のポイントとして選択した散乱光信号が一定以上となることを判定条件とすることにより、散乱光信号の取得量が抑えられる。
【0008】
しかしながら、選択信号の全てがしきい値を超えた場合に検出対象の欠陥であると判定する同文献の手法では、検出対象の欠陥信号以外の不要な散乱光信号の取得量が十分に抑えられるとは必ずしも言えない。例えば、散乱光パターンが似ていて、しきい値を超える散乱光信号を出力すべき散乱光検出器(換言すれば選択信号)は重複するものの、分類としては区別したい異種の欠陥が存在する場合、同文献の判定手法では選択信号が全てしきい値を超えてしまえば種類の異なるこれら欠陥の散乱光信号が区別なく取得されてしまう。
【0009】
本発明は上記に鑑みなされたもので、検出対象とする欠陥の検出精度を向上させ、当該欠陥に関する散乱光信号の取得量をより適正化することができる欠陥検査装置、欠陥情報取得装置及び欠陥検査方法を提供することを目的とする。
【課題を解決するための手段】
【0010】
選択肢として複数用意された論理演算を用いて構築した論理演算式を欠陥の判定条件として設定し、この判定条件を満たさない散乱光信号を取得しないようにする。
【発明の効果】
【0011】
選択肢として複数用意された論理演算を用いて欠陥の判定条件が任意に設定できるので、検出対象とする欠陥の検出精度を向上させ、当該欠陥に関する散乱光信号の取得量をより適正化することができる。
【図面の簡単な説明】
【0012】
【図1】本発明の一実施形態に係る欠陥検査装置を示す模式図である。
【図2】本発明の一実施形態に係る欠陥検査装置に備えられた信号フィルタ部の概略構成を表す機能ブロック図である。
【図3】本発明の一実施形態に係る欠陥検査装置に備えられた制御装置の概略構成を表す機能ブロック図である。
【図4】本発明の一実施形態に係る欠陥検査装置に備えられた信号取得条件の設定画面の一例を表す図である。
【図5】本発明の一実施形態に係る欠陥検査装置における欠陥の判定条件のデータの一例を模式的に表した図である。
【図6】本発明の一実施形態に係る欠陥検査装置に備えられた信号フィルタ部による欠陥信号の出力手順を表したフローチャートである。
【図7】欠陥形状による散乱光の散乱パターンの違いを比較するための模式図で、球形に近い欠陥で散乱した散乱光の散乱パターンをウエハの上方から見た平面図である。
【図8】欠陥形状による散乱光の散乱パターンの違いを比較するための模式図で、球形とは異なる形状の欠陥で散乱した散乱光の散乱パターンをウエハの上方から見た平面図である。
【図9】散乱光信号としきい値との比較の概念を表した図である。
【図10】本発明の一実施形態に係る欠陥検査装置による作用効果を説明するための説明図である。
【図11】従来設定し得た判定条件下で取得される散乱光信号を表した図である。
【図12】本発明の一実施形態に係る欠陥検査装置で設定し得る判定条件下で取得される散乱光信号を表した図である。
【図13】本発明の一実施形態に係る欠陥検査装置で設定し得る判定条件下で取得不要な信号を指定した場合に取得される散乱光信号を表した図である。
【発明を実施するための形態】
【0013】
以下に図面を用いて本発明の実施形態を説明する。
【発明を実施するための最良の形態】
【0014】
以下に図面を用いて本発明の実施形態を説明する。
【0015】
本実施形態に係る欠陥検査装置は、欠陥検査の対象であるウエハを試料台に載せ、試料台を移動させつつウエハに斜方照明して複数の散乱光検出器で散乱光を検出し、ウエハ上の同一座標で散乱して各散乱光検出器で同時に検出された一組の散乱光信号(散乱光強度)とそれぞれ対応するしきい値との比較を走査の進行に合わせて時系列的に実行していき、その結果、設定条件を満足する信号の組を欠陥で生じた散乱光信号(以下「欠陥信号」と適宜記載する)と判定して座標情報(走査情報)とともに取得する。これにより検出された欠陥について個々の散乱光検出器の散乱光信号等を柔軟に取得し得るので、欠陥の座標や大きさの情報の他、欠陥の分類に有益な形状等の情報が過不足を抑えて取得され得る。
【0016】
なお、本願明細書で「散乱光信号を取得する」とは散乱光信号を記憶部に記憶することを言い、欠陥信号であると判定されなかった散乱光信号については散乱光信号の取得量の抑制のため取得されない。本実施形態においては、欠陥情報として散乱光信号を過不足なく取得するにあたって欠陥判定の条件設定の自由度を大きく向上させた点に意義がある。以下、本発明の欠陥検査装置の一実施形態について具体的に説明していく。
【0017】
1.構成
(1)欠陥検査装置
図1は本発明の一実施形態に係る欠陥検査装置を示す模式図である。
【0018】
図1に示した欠陥検査装置は、ウエハ100を載置するステージ装置10と、ステージ装置10上のウエハ100の表面に検査光(レーザ光)21を斜方照射する検査光照射装置20と、ウエハ100からの散乱光1a−1cを検出しそれぞれ散乱光信号2a−2cを出力する複数の散乱光検出器30a−30cと、散乱光検出器30a−30cの散乱光信号から欠陥信号を選別する欠陥情報取得装置40と、ステージ装置10、検査光照射装置20及び欠陥情報取得装置40を制御する制御装置50とを備えている。
【0019】
(2)ステージ装置10
ステージ装置10は、ウエハ100を水平に保持する試料台11と、試料台11を移動させる試料台移動機構12とを備えている。試料台移動機構12は、鉛直軸を中心にθ方向に試料台11を水平面内で回転させるθテーブル13と、試料台11及びθテーブル13を水平方向(XY方向)に移動させるXYテーブル14と、試料台11及びテーブル13,14を上下方向(Z方向)に移動させて検査光21を自動的に合焦させる自動焦点合わせ機構(図示せず)とを備えている。ステージ装置10は、制御装置50からの指令信号に従ってθテーブル13を回転させながらXYテーブル14を適宜XY方向に移動させ、検査光21に対してウエハ100を移動させる。これによってウエハ100の表面が検査光21で走査される。この走査中のθテーブル13及びXYテーブル14の動作を指示する指令信号は、制御装置50によって欠陥情報取得装置40から出力された欠陥信号と同期して関連付けられ、検出された欠陥信号が発生したウエハ100上の座標情報として欠陥信号とともに制御装置50の記憶部56に記憶される。
【0020】
(3)検査光照射装置20
検査光照射装置20は、ステージ装置10の斜め上方に位置し、検査光21を集光する集光レンズ(図示せず)とともに照射光学系を構成しており、ウエハ100に対する検査光21の光軸はウエハ100の表面に直交する線に対して傾斜している。検査光照射装置20からウエハ100の表面に斜めに照射された検査光21は、上記集光レンズで集光されてステージ装置10上に載置されたウエハ100に低角度で照射される。
【0021】
(4)散乱光検出器30a−30c
散乱光検出器30a−30cは、ステージ装置10上のウエハ100よりも上方に位置しており、ウエハ100の表面で検査光21が乱反射して発生した散乱光1a−1cをそれぞれ集光し検出する。散乱光検出器30a−30cの検出信号2a−2cはそれぞれA/D変換器31a−31cに入力され、散乱光強度を数値的に表すデジタル信号に変換される。本実施形態では3つの散乱光検出器30a−30cを設けた場合を例示しているが、散乱光検出器は複数(すなわち2つ以上)あれば良く、2つ又は4つ以上にもなり得る。要求される欠陥の分類精度を向上させる上で、平面視及び側面視で設置角度を異にした散乱光検出器がさらに増設され得る。
【0022】
(5)欠陥情報取得装置40
欠陥情報取得装置40は、散乱光信号2a−2cを演算処理する演算処理部41と、欠陥の判定等を実行する信号フィルタ部42とを備えている。
【0023】
(5-1)演算処理部41
演算処理部41は、散乱光検出器30a−30cの個々の散乱光信号2a−2cを入力し、それら散乱光信号2a−2cを基に所定の数学演算処理(例えば平均化処理、積分処理等)を実行してノイズの少ない一つの散乱光信号2xを算出する。この演算処理部41で算出された散乱光信号2xも、散乱光検出器30a−30cの個々の散乱光信号2a−2cと同じく、欠陥判定に供され記憶部56に記憶され得る散乱光信号に含まれる。
【0024】
(5-2)信号フィルタ部42
信号フィルタ部42は、時系列的に随時入力される散乱光信号2a−2c,2xの中から欠陥信号以外を除去し、事前に設定した条件を満足する欠陥信号のみを選択して上記記憶部56に出力する回路である。
【0025】
図2は信号フィルタ部42の概略構成を表す機能ブロック図である。
【0026】
図2に示すように、信号フィルタ部42は、比較要否弁別部43a−43c,43xと、しきい値比較部44a−44c,44xと、欠陥判定部45と、取得信号弁別部46a−46c,46xとを備えている。
【0027】
(i)比較要否弁別部43a−43c,43x
比較要否弁別部43a−43c,43xには、個々の散乱光信号2a−2c,2xについて欠陥判定用のしきい値と比較する必要があるか否かの情報が設定されている。これら比較要否弁別部43a−43c,43xは、しきい値比較部44a−44c,44xにおいて夫々散乱光信号としきい値との大小関係を判定する必要があるか否かを弁別する。
【0028】
(ii)しきい値比較部44a−44c,44x
しきい値比較部44a−44c,44xには、個々の散乱光信号2a−2c,2xについて欠陥判定に用いるしきい値が設定されており、対応する比較要否弁別部で“比較判定要”と弁別されたしきい値比較部は、対応する比較要否弁別部から入力された散乱光信号をしきい値と比較し、その大小関係の判定情報を付して欠陥判定部45に出力する。対応する比較要否弁別部で“比較判定不要”と弁別されたしきい値比較部は、対応する比較要否弁別部から入力された散乱光信号をしきい値と比較せずに、そのまま欠陥判定部45に出力する。
【0029】
(iii)欠陥判定部45
欠陥判定部45は、ウエハ100上の同一座標から同時に発生した散乱光1a−1cについての散乱光検出器30a−30bによる一組の散乱光信号2a−2c,2xが欠陥で散乱した欠陥信号か否かを判定し、欠陥信号と判定された組の散乱光信号のみを選択して取得信号弁別部46a−46c−46xに出力する処理部である。この欠陥判定部45は、散乱光信号2a−2c,2xが欠陥で散乱した欠陥信号か否かを判定するのに、当該散乱光信号2a−2c,2xを論理演算する。ここで欠陥の判定条件として用いる論理演算式は、選択肢として用意された論理演算(後述)で散乱光信号2a−2c,2xのしきい値に対する大小関係の各比較結果を結合して構築され、欠陥判定部45に設定されている。
【0030】
(iv)取得信号弁別部46a−46c,46x
取得信号弁別部46a−46c,46xは、欠陥信号と判定された組の散乱光信号2a−2c,2xの出力の可否を弁別するものであり、欠陥判定部45から入力された散乱光信号2a−2c,2xを記憶部56に記憶すべく制御装置50に出力するか否かの情報が、散乱光信号2a−2c,2xについて個別に設定されている。
【0031】
(6)制御装置50
図3は制御装置50の概略構成を表す機能ブロック図である。
【0032】
制御装置50は、制御装置本体51と、操作部52と、表示部53とを備えている。
【0033】
(6-1)制御装置本体51
制御装置本体51は、入出力部54と、演算部55と、記憶部56とを備えている。
【0034】
入出力部54は、ステージ装置10、検査光照射装置20、欠陥情報取得装置40、操作部52及び表示部53との間で信号を授受するためのインターフェイスである。
【0035】
演算部55は、操作部52、ステージ装置10及び欠陥情報取得装置40等から入力される信号や予め格納されたプログラムに従って各種演算処理を実行し、表示部53、ステージ装置10、検査光照射装置20及び欠陥情報取得装置40等に対する各種信号を演算するものである。
【0036】
記憶部56は、制御装置本体51に対して入力される各種信号やプログラム等を記憶するものである。欠陥情報取得装置40から入力される欠陥信号は、この記憶部56に座標情報と関連付けられて記憶される。また、上記判定条件の要素となる論理演算の選択肢のデータもこの記憶部56の所定の領域に予め格納されている。論理演算の選択肢としては、論理積(AND)、論理和(OR)、否定(NOT)、否定論理積(NAND)、排他的論理和(XOR)、否定論理和(NOR)等、各種論理演算が使用され得る。
【0037】
(6-2)操作部52
操作部52は、制御装置本体51に対してオペレータが指示入力するためのインターフェイスであり、本実施形態ではこの操作部52を操作することによって欠陥情報取得装置40の欠陥判定部45で欠陥の判定に用いる判定条件を後述する操作画面で構築する。本実施形態において上記ウエハ100上の同一座標から同時に発生した散乱光についての散乱光検出器30a−30cによる一組の散乱光信号2a−2c,2xが欠陥で散乱した欠陥信号か否かを判定する判定条件は論理演算式で適宜構築されるものであり、選択肢として用意された複数の論理演算の中から選択した一又は複数を組み合わせて設定される。操作部52は、この判定条件を設定する条件設定部として機能する。
【0038】
(6-3)表示部53
表示部53は、制御装置本体51からの表示信号に応じた表示内容を表示する液晶モニタ等の表示装置であり、信号フィルタ部42による欠陥判定や欠陥信号の出力等の各種設定を行う設定画面60(図4参照)や、欠陥検査の結果等の各種画面を表示する。
【0039】
(7)設定画面60
図4は信号取得条件の設定画面の一例を表す図である。
【0040】
図4に示した設定画面60は操作部52からの操作信号に応じて制御装置本体51が表示部53に表示させた画面である。この設定画面60には、比較要否設定領域61、しきい値設定領域62、判定条件設定領域63、取得信号設定領域64、及び論理演算選択領域65が表示されている。
【0041】
(7-1)比較要否設定領域61
比較要否設定領域61は、信号フィルタ部42の上記比較要否弁別部43a−43c,43xの設定をする領域であり、散乱光信号2a−2c,2xについて個別にチェックボックス61a−61c,61xを有している。欠陥判定に用いる信号を選択し操作部52を操作して対応するチェックボックスにチェックを入れることで、チェックの入った散乱光信号は欠陥判定に使用される信号、チェックの入っていない散乱光信号は欠陥判定に使用されない信号として設定され、個々のしきい値比較部でしきい値との比較判定を実行するか否かについての設定情報が対応する比較要否設定部に格納される。図4では、しきい値との比較を実行するしきい値比較部としてしきい値比較部44a−44cを選択し、チェックボックス61a−61cにチェックを入れた状態を例示している。
【0042】
(7-2)しきい値設定領域62
しきい値設定領域62は、信号フィルタ部42の上記しきい値比較部44a−44c,44xの設定をする領域であり、散乱光信号2a−2c,2xについて個別にしきい値入力欄62a−62c,62xを有している。欠陥判定に使用する散乱光信号に対し、操作部52を操作して個々のしきい値入力欄にしきい値を入力することで、それぞれ対応するしきい値設定部にしきい値が設定される。図4では、欠陥判定に使用する散乱光信号2a−2cについて、しきい値入力欄62a−62cにしきい値を入力した状態を例示している。なお、同図では、便宜上、入力したしきい値をα、β、γで代替して図示しているが、数値化された散乱光信号2a−2c,2xと比較するしきい値であるので、実際には数値が入力される。
【0043】
(7-3)論理演算選択領域65
論理演算選択領域65は、判定条件を構築する論理演算の選択肢を表示する領域であり、図4では、論理積(AND)を使用するためのアンドアイコン65A、論理和(OR)を使用するためのオアアイコン65B、否定(NOT)を使用するためのノットアイコン65C、否定論理積(NAND)を使用するためのナンドアイコン65Dを選択肢として用意した場合を例示している。図4の例にはないが、排他的論理和(XOR)、否定論理和(NOR)等のその他の論理演算も用意され得る。各論理演算アイコン65A−65Dを判定条件設定領域63にドラッグアンドドロップし、欠陥判定に用いる散乱光信号を当該論理演算で結合することで、欠陥の判定条件が設定される。
【0044】
(7-4)判定条件設定領域63
判定条件設定領域63は、信号フィルタ部42の上記欠陥判定部45の設定をする領域であり、比較要否設定領域61、しきい値設定領域62及び論理演算選択領域65の操作に伴い、この判定条件設定領域63には欠陥判定に使用する散乱光信号と論理演算との結合状態が記号等で表示され、判定条件が模式的に表示される。この判定条件設定領域63で設定された欠陥の判定条件は、欠陥判定部45に格納される。
【0045】
散乱光信号、及び散乱光信号を結合する論理演算は任意に選択できるため、例えばアンドアイコン65A又はオアアイコン65B、及びノットアイコン65C又はナンドアイコン65Dを併用することで、散乱光信号2a−2c,2xから選択した少なくとも一つの散乱光信号が対応するしきい値を超えることと、それ以外の信号から選択した少なくとも一つの散乱光信号が対応するしきい値以下であることを判定条件に含め、両条件を同時に満足する散乱光信号の組を欠陥信号と判定するといったことも可能である。図4は判定条件が、(散乱光信号2a)AND((散乱光信号2b)NAND(散乱光信号2c))と設定された場合を例示している。すなわち、
(A)散乱光信号2aが対応するしきい値αを超え、かつ、
(B)散乱光信号2b,2cがいずれも対応するしきい値β、γ以下である
場合に、その散乱光信号2a−2c,2xの組は欠陥信号であると判定される例である。
【0046】
なお、判定条件は、基本的には同一又は異なる複数の論理演算を組み合わせて構築されることが想定されるが、例えば欠陥判定に用いる散乱光信号が2つである場合にはいずれかの論理演算が単独で用いられる場合もあるし、欠陥判定に用いる散乱光信号が一つである場合にはいずれの論理演算も用いず、単に当該欠陥信号がしきい値を超えるか否かで判定処理を実行することもあり得る。
【0047】
また、設定画面60の判定条件の設定は、完全なマニュアル設定で一から構築することも勿論できるが、例えば欠陥種毎に名前を付けてファイルとして保存しておくことができ、欠陥検出の実行の度に判定条件に微調整を加えてファイルを上書き保存、又は名前を変えて保存することにより、判定条件の精度を徐々に高めていくことができる。
【0048】
(7-5)取得信号設定領域64
取得信号設定領域64は、取得信号弁別部46a−46c,46xの設定をする領域であり、散乱光信号2a−2c,2xについて個別にチェックボックス64a−64c,64xを有している。同一座標で同時に発生した散乱光信号2a−2c,2xのある組の信号が欠陥信号であると判定された場合に、そのうちのどの信号を制御装置50に出力して記憶部52に記憶させるかを選択し、操作部52を操作して対応するチェックボックスにチェックを入れることで、チェックの入った散乱光信号は制御装置50に出力される信号、チェックの入っていない散乱光信号はたとえ欠陥信号であっても制御装置50に出力しない信号として設定され、それぞれ対応する取得信号選択部に設定情報が格納される。図4では、散乱光信号2a−2cを選択し、チェックボックス64a−64cにチェックを入れた状態を例示している。すなわち、ある組の散乱光信号2a−2c,2xが欠陥信号であると判定された場合、その欠陥信号のうちの散乱光信号2a−2cのみを取得し、散乱光信号2xについては取得しない例である。
【0049】
(8)判定条件データ
図5は欠陥の判定条件のデータの一例を模式的に表した図である。
【0050】
図5に示したテーブル80は、図4の判定条件設定領域63に例示した判定条件のデータを例示しており、当該判定条件が2つの論理演算(AND及びNAND)を要素としているため行84,85の二行で構成されている。列81a−81c,81xは、それぞれ散乱光信号2a−2c,2xを欠陥判定に使用するか否かの情報を表しており、使用する(対応するしきい値との大小関係を判断する)散乱光信号は「○」、使用しない(しきい値との大小関係は判断しない)散乱光信号は「−」で表してある。「○」「−」は比較要否設定領域61の設定により定まる。列82,83には論理演算選択領域65で選択した論理演算が表されている。列82には同一行の条件に適用される論理演算が、列83は次行の条件との間で適用される論理演算が表されている。
【0051】
前述したように、図4の判定条件設定領域63に例示した論理演算式は、(散乱光信号2a)AND((散乱光信号2b)NAND(散乱光信号2c))であり、(A)散乱光信号2aが対応するしきい値αを超え、かつ、(B)散乱光信号2b,2cがいずれも対応するしきい値β、γ以下である場合に、その散乱光信号2a−2c,2xの組は欠陥信号であると判定する判定条件である。図5の例において、行84,85はそれぞれ条件(A)及び(B)を表しており、行84では単に“散乱光信号2aがしきい値αを超えるか否か”という条件を表している一方で、行85では列82の論理演算がNANDに設定され“散乱光信号2b,2cの双方がそれぞれ対応するしきい値β、γ以下であるか否か”という条件を表している。そして、行84の列83に論理演算としてANDが設定されているため、これら行84,85の条件(A)及び(B)がANDで結合され、上記判定条件を構成している。
【0052】
2.欠陥検査手順
続いて本実施形態における欠陥検査手順を説明する。
【0053】
(1)条件設定
まず、検出対象とする欠陥の特徴を基に上記設定画面60で欠陥の判定条件を設定する、又は検出対象とする欠陥種に対応する判定条件のファイルを開き、必要に応じて設定画面60で判定条件に調整を加える。ここでは、先の図4に例示した設定画面60の判定条件に合わせて、検出対象とする欠陥の散乱光パターンが、
(a)散乱光検出器30aに入射する散乱光1aが強く、かつ
(b)散乱光検出器30b,30cに入射する散乱光1b,1cが弱い
という特徴を持つ欠陥を対象として、一から判定条件を設定する場合を例示する。
【0054】
この場合、散乱光信号2xは欠陥判定に用いないため、設定画面60ではチェックボックス61xのチェックを外してチェックボックス61a−61cにチェックを入れる。そして、しきい値入力欄62aに欠陥からの散乱光信号2aが超えるべき散乱光強度αをしきい値として入力するとともに、しきい値入力欄62b,62cには、欠陥からの散乱光信号2aであれば超えてはならない(超えた場合には他種の欠陥である可能性が高い、又は欠陥ではない可能性が高い)散乱光強度β、γをしきい値として入力する。しきい値入力欄62xは空欄で良い。
【0055】
次に、散乱光パターンの上記の特徴(b)を基に、散乱光信号2b,2cを指定してナンドアイコン65Dを判定条件設定領域63にドラッグアンドドロップし、上記特徴(a)を基に、散乱光信号2a及びNAND記号を指定してアンドアイコン65Aを判定条件設定領域63にドラッグアンドドロップする。これにより、(散乱光信号2a)AND((散乱光信号2b)NAND(散乱光信号2c))という判定条件が設定され、
(A)散乱光信号2aが対応するしきい値αを超え、かつ、
(B)散乱光信号2b,2cがいずれも対応するしきい値β、γ以下である
場合に、その散乱光信号2a−2c,2xの組は欠陥信号であると判定されるようになる。
【0056】
最後に、欠陥信号の成分として散乱光信号2xが不要である場合には、取得信号設定領域64でチェックボックス64xのチェックを外してチェックボックス64a−64cにチェックを入れる。
【0057】
(2)検査実行
(2-1)スキャニング
操作部52を操作して検査開始を指示すると、制御装置50は、予め格納されたプログラムに従ってウエハ100のスキャンを開始する。まず、制御装置50からの指令信号によりθテーブル13が回転し、検査光照射装置20によりウエハ100上に検査光21が低角度で照射される。その後、制御装置50からの指令信号によりXYテーブル14がXY方向に移動し、ウエハ100上に検査光21が走査される。ウエハ100上に検査光21が照射されると、ウエハ100の表面の欠陥や回路パターン(パターン形成後の場合)から暗視野下の散乱光1a−1cが発生する。この散乱光1a−1cはそれぞれ散乱光検出器30a−30cに入射する。
【0058】
散乱光検出器30a−30cからの散乱光信号2a−2cは、それぞれA/D変換機31a−31cで散乱光強度を表す数値に変換(デジタル信号化)され、欠陥情報取得装置40に入力される。欠陥情報取得装置40に入力された散乱光信号2a−2cは演算処理部41及び信号フィルタ部42の比較要否弁別部43a−43cにそれぞれ入力される。演算処理部41に入力された散乱光信号2a−2cは、所定の演算処理を施されてノイズの少ない一つの散乱光信号2xにまとめられ、信号フィルタ部42の比較要否弁別部43xに入力される。散乱光検出器30a−30cに同時(或いは予め設定された微小な時間範囲内)に入射した散乱光1a−1cについての散乱光信号2a−2c,2xは、ウエハ100上の同一座標で発生した一組の散乱光信号として扱われ、制御装置50から送られてくる座標情報と関連付けられる。
【0059】
(2-2)欠陥情報取得
図6は信号フィルタ部42による欠陥信号の出力手順を表したフローチャートである。
【0060】
図6のフローチャートは、ウエハ100上の同一座標から同時発生した散乱光1a−1cについての一組の散乱光信号2a−2c,2xに対する処理を表しており、随時入力される散乱光信号2a−2c,2xの各組について図6の処理がそれぞれ実行される。
【0061】
<ステップ101>
ステップ101では、比較要否弁別部43a−43c,43xの有効フラグをチェックし、しきい値比較部44a−44c,44xについて散乱光信号2a−2c,2xをしきい値と比較するか否かをそれぞれ弁別する。図4の設定画面60に例示した設定下では、比較要否弁別部43a−43cにのみ有効フラグが立っているので、比較要否弁別部43a−43cに対応するしきい値比較部44a−44cにおいてそれぞれ散乱光信号2a−2cがしきい値と比較され、しきい値比較部44xに入力される散乱光信号2xはしきい値と比較されないこととなる。
【0062】
<ステップ102>
ステップ102では、対応する比較要否弁別部で有効フラグを付されたしきい値比較部において、それぞれ入力される散乱光信号をしきい値と比較してしきい値に対する大小関係を判定する。図4の設定画面60に例示した設定下では、比較要否弁別部43a−43cにのみ有効フラグが立っているので、しきい値比較部44a−44cにおいてそれぞれ散乱光信号2a−2cがしきい値α、β、γと比較され、具体的には、しきい値比較部44aでは散乱光信号2aがしきい値αを超えるか否か、しきい値比較部44b,44cでは散乱光信号2b,2cがそれぞれしきい値β、γ以下であるか否かが判定される。この場合、散乱光信号2aは、しきい値αよりも大きな値であればその旨の情報とともに欠陥判定部45に入力され、しきい値α以下の値であれば情報を付されずに欠陥判定部45に入力される。他方、散乱光信号2b,2cは、それぞれしきい値β、γ以下の値であればその旨の情報とともに欠陥判定部45に入力され、しきい値β、γより大きな値であれば情報を付されずに欠陥判定部45に入力される。しきい値比較部44xでは、散乱光信号2xをしきい値と比較せず、散乱光信号2xはしきい値比較部44xを経由して何ら情報を付されずに欠陥判定部45に入力される。
【0063】
<ステップ103>
ステップ103では、しきい値比較部44a−44c,44xにより散乱光信号2a−2c,2xに付された情報を基に欠陥判定部45で欠陥判定処理が実行される。図4の設定画面60に例示した設定下では、
(A)散乱光信号2aが対応するしきい値αを超え、かつ、
(B)散乱光信号2b,2cがいずれも対応するしきい値β、γ以下である
という判定条件が満たされた散乱光信号2a−2c,2xの組が欠陥信号であると判定される。この判定条件を満足しない組の散乱光信号2a−2c,2xは欠陥信号ではないと判定され、欠陥判定部45は当該散乱光信号2a−2c,2xを取得信号弁別部46a−46c,46xに出力せずに遮断して図6の手順を終了する。他方、判定条件を満たした組の散乱光信号2a−2c,2xは欠陥信号であると判定され、欠陥判定部45は当該散乱光信号2a−2c,2xを取得信号弁別部46a−46c,46xに出力する。
【0064】
<ステップ104>
ステップ104では、取得信号弁別部46a−46c,46xの有効フラグをチェックし、取得信号弁別部46a−46c,46xに入力された散乱光信号2a−2c,2xを記憶部56に出力するか、出力せずに遮断するかを散乱光2a−2c−2xについてそれぞれ弁別する。図4の設定画面60に例示した設定下では、取得信号弁別部46a−46cにのみ有効フラグが立っているので、取得信号弁別部46a−46cに入力された散乱光信号2a−2cは記憶部56に出力され、取得信号弁別部46xに入力される散乱光信号2xは記憶部56に出力されることなく遮断されることとなる。
【0065】
<ステップ105>
ステップ105では、取得信号弁別部46a−46c,46xに散乱光信号2a−2c,2xが入力された場合に、有効フラグを付された取得信号弁別部のみから記憶部56に散乱光信号が出力される。図4の設定画面60に例示した設定下では、取得信号弁別部46a−46cにのみ有効フラグが立っているので、取得信号弁別部46a−46cに入力された散乱光信号2a−2cが制御装置50に出力されて座標情報とともに記憶部56に記憶され、取得信号弁別部46xに入力される散乱光信号2xは記憶部56に記憶されることなく取得信号弁別部46xで遮断される。
【0066】
信号フィルタ部42は、以上のステップ101−105の手順を随時入力される散乱光信号2a−2c,2xの組にそれぞれ実行し、ウエハ100上の欠陥に起因する欠陥信号と判定し、かつ予め取得するように指示されていた信号のみを選別して記憶部56に記憶させる。
【0067】
3.作用効果
(1)従来の技術的課題
図7及び図8は欠陥形状による散乱光の散乱パターンの違いを比較するための模式図で、図7は球形に近い欠陥で散乱した散乱光の散乱パターンを、図8は球形とは異なる形状の欠陥で散乱した散乱光の散乱パターンを、それぞれウエハ100の上方から見た平面図で表している。
【0068】
図7及び図8において、ウエハ100の表面上にはそれぞれ欠陥X1,X2が存在し、欠陥X1,X2に対して検査光照射装置20により検査光21が照射されると欠陥X1,X2から発生した散乱光1a−1cがそれぞれ散乱光検出器30a−30cで検出される。散乱光1a−1cは必ずしも全方位に一様に散乱する訳ではなく欠陥X1,X2の形状によって散乱光1a−1cの強度のばらつき方が異なってくる。具体的には、図7のように欠陥X1が球形に近く散乱光1a−1cの強度がほぼ等しくなる場合があるのに対し、図8のように欠陥X2の形状が球形とは程遠く(例えば三角形状)、例えば散乱光1aの強度に比べて散乱光1b,1cの強度が著しく弱くなるといったように、欠陥X2の形状に起因して散乱光1a−1cの強度にばらつきが生じる場合もある。
【0069】
図9に示したように、一般的な欠陥検査装置と同様、散乱光検出器30a−30cの個々の散乱光信号2a−2cを欠陥判定に用いず、散乱光信号2a−2cを演算処理してまとめたノイズの少ない一つの散乱光信号2xをしきい値σと比較し、単純にしきい値σを超えた散乱光信号2xを欠陥信号と判定するとした場合、取得される欠陥信号は散乱光信号2x及びその座標情報のみであって散乱光信号2a−2cが取得されないため、欠陥の形状を分析するための情報量が必ずしも十分でない。
【0070】
しかしながら、個々の散乱光信号2a−2cを併せて取得しようとすると、散乱光信号の取得量の肥大化を抑えるためにも、散乱光信号2a−2cのそれぞれに適切なしきい値を設定しなければならない。散乱光信号2a−2cのしきい値を個別に最適化することは容易ではなく、しきい値の設定の微差で散乱光信号の取得量の過不足量が著しく増大し得る。
【0071】
そこで、例えば散乱光信号2a−2c,2xの中から欠陥判定に用いる一又は複数の信号を欠陥の特徴に応じて任意に選択し、欠陥判定用の信号として選択した信号がいずれも対応するしきい値を超えた場合、当該散乱光信号2a−2c,2xの組を欠陥信号と判定して取得することが考えられた(便宜上、これを「従来設定し得た判定条件」と適宜記載する)。この場合、ノイズを低減した散乱光信号2xのみならず、その成分である散乱光信号2a−2cが併せて取得されるので、欠陥の座標や大きさだけでなく形状の分類、分析等にも有益である。また、散乱光信号2a−2c,2xのうち欠陥判定に用いられるのは選択した散乱光信号のみであるため、全ての散乱光信号をしきい値と比較する場合に比べてしきい値の設定や調整が容易になる。
【0072】
しかしながら、「従来設定し得た判定条件」の下では、例えば、散乱光パターンがある程度似ていて、しきい値を超える散乱光を検出すべき散乱光検出器が共通するものの、種類としては区別したい異種の欠陥が存在する場合、選択信号が全てしきい値を超えさえすれば種類の異なるこれら欠陥に関して区別なく散乱光信号が取得されてしまい、不要な散乱光信号の取得量を抑える点では改善の余地があった。
【0073】
(2)本実施形態の優位性
(2-1)判定条件の柔軟性
以下、上記の従来設定し得た判定条件と具体的に比較しながら本実施形態で設定し得る判定条件の優位性について説明する。
【0074】
ここで、図10は本実施形態の優位性を説明するための説明図である。
【0075】
図10のように、例えば、散乱光信号2a−2c,2xに対してそれぞれしきい値を20,30,25,27と設定した場合において、時刻t1−t6の間の散乱光信号2a−2cの値が図10のように推移したとする。また、時刻t3の散乱光信号2a−2c,2xのみが検出対象とする真の欠陥信号であるが、判定条件を満たした時刻の散乱光信号2a−2c,2xはいずれも取得されることとする。
【0076】
まず、「従来設定し得た判定条件」の下で取得される信号を特定する。ここでは、散乱光信号2a,2bを判定条件に用いる信号とし、散乱光信号2a,2bがいずれも対応するしきい値(30,25)を超えた場合に、当該散乱光信号2a,2bと同時刻に発生した散乱光信号2a−2c,2xが欠陥信号であると判定することとする。この場合、信号フィルタ部42では、図11に白黒反転させて図示したように、真の欠陥信号である時刻t3の散乱光信号2a−2c,2xは取得されるものの、同様に散乱光信号2a,2bがいずれも対応するしきい値30,25を超える時刻t1,t5,t6の散乱光信号2a−2c,2xも取得されてしまう。つまり、真の欠陥信号の他に、現実には検出対象の欠陥によるものではない時刻t1,t5,t6の合計12の不要な散乱光信号が取得されてしまう。
【0077】
次に本実施形態で設定し得る判定条件下で取得される散乱光信号を特定する。ここでは、ANDとNOTとを組み合わせて論理演算式を構築し、散乱光信号2a,2bがしきい値(30,25)を超えることに加え、散乱光信号2cがしきい値(27)以下であることを同時に満たすことを判定条件とする。この場合、図12に示したように、真の欠陥信号である時刻t3の散乱光信号2a−2c,2xの他に取得される不要な信号は、時刻t1の散乱光信号2a−2c,2xのみとなる。つまり、図11の例で取得されていた不要な散乱光信号のうち時刻t5,t6の合計6つの信号の取得が抑制される。
【0078】
以上のように、本実施形態によれば、複数用意された論理演算の選択肢を任意に組み合わせて欠陥の判定条件として論理演算式を構築することができるので、欠陥の判定条件を柔軟に設定することができ、検出対象とする欠陥の検出精度を向上させるとともに、当該欠陥に関する散乱光信号の取得量をより適正化することができ、不要な散乱光信号の取得量を抑えて取得データの肥大化を抑えることができる。
【0079】
(2-2)不要な信号の取得量の更なる抑制
本実施形態の場合、取得信号弁別部46a−46c,46xを設けたことで、欠陥判定部45で欠陥信号と判定された散乱光信号2a−2c,2xの中から指定された散乱光信号のみを弁別して記憶部56に出力することができる。欠陥信号と判定された場合でも、例えば分析に利用する信号が限られていて散乱光信号2a−2c,2xの全てを取得する必要がないときには、取得する必要のない信号を取得信号弁別部で遮断することができ、不要な信号の取得量を更に抑制することができる。例えば図12に示した例で散乱光信号2xを取得する必要がないときは、図13に示したように、時刻t1,t3の散乱光信号2xが除去され、不要な散乱光信号の取得量がさらに二つ削減される。
【0080】
4.その他
上記実施形態では、不要な信号の取得量の更なる抑制を狙って取得信号弁別部46a−46c,46xを設けた場合を例に挙げて説明したが、判定条件の設定自由度を向上させるという本質的効果を得る上では、取得信号弁別部46a−46c,46xは必ずしも必要なく、不要であれば省略することができる。また、散乱光信号2a−2c,2xについてしきい値との比較を実行する必要があるか否かを比較要否弁別部43a−43c,43xで弁別できるようにしたが、欠陥判定に使用しない信号がしきい値と比較されても特に問題はないため、判定条件の設定自由度を向上させるという本質的効果を得る上では、比較要否弁別部43a−43c,43xも必ずしも必要なく、不要であれば省略することができる。
【0081】
また、個々の散乱光信号2a−2cを演算処理して一つにまとめた散乱光信号2xを欠陥判定用の信号に含めることとしたが、散乱光信号2xが不要な場合には、演算処理部41、比較要否弁別部43x、しきい値比較部44x及び取得信号弁別部46xは省略可能である。
【符号の説明】
【0082】
1a−c 散乱光
2a−c,x 散乱光信号
11 試料台
12 試料台移動機構
20 検査光照射装置
21 検査光(レーザ光)
30a−c 散乱光検出器
41 演算処理部
42 信号フィルタ部
43a−c,x 比較要否弁別部
44a−c,x しきい値比較部
45 欠陥判定部
46a−c,x 取得信号弁別部
52 操作部(条件設定部)
56 記憶部
100 ウエハ(試料)
α、β、γ、σ しきい値

【特許請求の範囲】
【請求項1】
試料を載置する試料台と、
前記試料台を移動させる試料台移動機構と、
移動する前記試料台上の試料に検査光を斜方照射する検査光照射装置と、
試料からの散乱光を検出する複数の散乱光検出器と、
前記試料上の同一座標から同時に発生した散乱光についての前記複数の散乱光検出器による散乱光信号を論理演算して当該散乱光信号が欠陥で散乱した欠陥信号か否かを判定し、欠陥信号と判定された散乱光信号のみを出力する欠陥判定部と、
前記欠陥判定部から出力された散乱光信号を記憶する記憶部と、
複数の論理演算から選択した一又は複数を組み合わせて前記欠陥判定部で欠陥の判定条件として用いる論理演算式を設定する条件設定部と
を備えたことを特徴とする欠陥検査装置。
【請求項2】
試料を載置する試料台と、
前記試料台を移動させる試料台移動機構と、
移動する前記試料台上の試料に検査光を斜方照射する検査光照射装置と、
試料からの散乱光を検出する複数の散乱光検出器と、
前記複数の散乱光検出器の個々の散乱光信号を対応する欠陥判定用のしきい値と比較して夫々しきい値に対する大小関係を判定する複数のしきい値比較部と、
前記試料上の同一座標から同時に発生した散乱光についての前記複数の散乱光検出器による散乱光信号の前記しきい値比較部の比較結果を論理演算して当該散乱光信号が欠陥で散乱した欠陥信号か否かを判定し、欠陥信号と判定された散乱光信号のみを出力する欠陥判定部と、
前記欠陥判定部から出力された散乱光信号を記憶する記憶部と、
選択肢として用意された複数の論理演算から選択した一又は複数の論理演算によって前記しきい値比較部の比較結果を結合して前記欠陥判定部で欠陥の判定条件として用いる論理演算式を設定する条件設定部と
を備えたことを特徴とする欠陥検査装置。
【請求項3】
試料を載置する試料台と、
前記試料台を移動させる試料台移動機構と、
移動する前記試料台上の試料に検査光を斜方照射する検査光照射装置と、
試料からの散乱光を検出する複数の散乱光検出器と、
前記試料上の同一座標から同時に発生した散乱光についての前記複数の散乱光検出器による散乱光信号が欠陥で散乱した欠陥信号か否かを判定し、欠陥信号と判定された散乱光信号のみを出力する欠陥判定部と、
前記欠陥判定部から出力された散乱光信号を記憶する記憶部と、
少なくとも一つの散乱光信号が対応するしきい値を超えること、及び他の少なくとも一つの散乱光信号が対応するしきい値以下であることを同時に満たす論理演算式を、前記欠陥判定部で用いる欠陥の判定条件として設定する欠陥判定部と
を備えたことを特徴とする欠陥検査装置。
【請求項4】
請求項1の欠陥検査装置において、
前記欠陥判定部で欠陥信号と判定された散乱光信号の中から指定された散乱光信号のみを弁別して前記記憶部に出力する取得信号弁別部を備えたことを特徴とする欠陥検査装置。
【請求項5】
請求項2の欠陥検査装置において、
前記複数のしきい値比較部の散乱光信号としきい値との比較を実行するか否かを弁別する比較要否弁別部を備えたことを特徴とする欠陥検査装置。
【請求項6】
請求項1の欠陥検査装置において、
欠陥判定に供され前記記憶部に記憶され得る散乱光信号として、前記複数の散乱光検出器の個々の散乱光信号を数学演算処理して一つにした散乱光信号を含むことを特徴とする欠陥検査装置。
【請求項7】
複数の論理演算から選択した一又は複数を組み合わせて構築した論理演算式を欠陥の判定条件として用い、試料上の同一座標から同時に発生した散乱光についての複数の散乱光検出器による散乱光信号を論理演算して当該散乱光信号が欠陥で散乱した欠陥信号か否かを判定し、欠陥信号と判定された散乱光信号のみを記憶部に出力することを特徴とする欠陥情報取得装置。
【請求項8】
複数の散乱光検出器の個々の散乱光信号を対応する欠陥判定用のしきい値と比較して夫々しきい値に対する大小関係を判定する複数のしきい値比較部と、
選択肢として用意された複数の論理演算から選択した一又は複数の論理演算によって前記しきい値比較部の比較結果を結合して構築した論理演算式を欠陥の判定条件として用い、試料上の同一座標から同時に発生した散乱光についての前記複数の散乱光検出器による散乱光信号の前記しきい値比較部の比較結果を論理演算して当該散乱光信号が欠陥で散乱した欠陥信号か否かを判定し、欠陥信号と判定された散乱光信号のみを記憶部に出力する欠陥判定部と
を備えたことを特徴とする欠陥情報取得装置。
【請求項9】
少なくとも一つの散乱光信号が対応するしきい値を超えること、及び他の少なくとも一つの散乱光信号が対応するしきい値以下であることを同時に満たす論理演算式を欠陥の判定条件として用い、試料上の同一座標から同時に発生した散乱光についての複数の散乱光検出器による散乱光信号が欠陥で散乱した欠陥信号か否かを判定し、欠陥信号と判定された散乱光信号のみを記憶部に出力することを特徴とする欠陥情報取得装置。
【請求項10】
複数の論理演算から選択した一又は複数を組み合わせて構築した論理演算式を欠陥の判定条件として設定し、
移動する試料台上の試料に検査光を斜方照射して試料からの散乱光を複数の散乱光検出器で検出し、
前記試料上の同一座標から同時に発生した散乱光についての前記複数の散乱光検出器による散乱光信号を論理演算して当該散乱光信号が欠陥で散乱した欠陥信号か否かを判定し、
欠陥信号と判定された散乱光信号のみを記憶部に記憶する
ことを特徴とする欠陥検査方法。
【請求項11】
選択肢として用意された複数の論理演算から選択した一又は複数の論理演算によって散乱光信号と対応するしきい値との比較結果を結合して構築した論理演算式を欠陥の判定条件として設定し、
移動する試料台上の試料に検査光を斜方照射して試料からの散乱光を複数の散乱光検出器で検出し、
前記複数の散乱光検出器の個々の散乱光信号を対応する欠陥判定用のしきい値と比較して夫々しきい値に対する大小関係を判定し、
前記試料上の同一座標から同時に発生した散乱光についての前記複数の散乱光検出器による散乱光信号のしきい値との比較結果を論理演算して当該散乱光信号が欠陥で散乱した欠陥信号か否かを判定し、
欠陥信号と判定された散乱光信号のみを記憶部に記憶する
ことを特徴とする欠陥検査方法。
【請求項12】
少なくとも一つの散乱光信号が対応するしきい値を超えること、及び他の少なくとも一つの散乱光信号が対応するしきい値以下であることを同時に満たす論理演算式を、前記欠陥判定部で用いる欠陥の判定条件として設定し、
移動する試料台上の試料に検査光を斜方照射して試料からの散乱光を複数の散乱光検出器で検出し、
前記試料上の同一座標から同時に発生した散乱光についての前記複数の散乱光検出器による散乱光信号が欠陥で散乱した欠陥信号か否かを判定し、
欠陥信号と判定された散乱光信号のみを記憶部に記憶する
ことを特徴とする欠陥検査方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate


【公開番号】特開2012−117898(P2012−117898A)
【公開日】平成24年6月21日(2012.6.21)
【国際特許分類】
【出願番号】特願2010−267367(P2010−267367)
【出願日】平成22年11月30日(2010.11.30)
【出願人】(501387839)株式会社日立ハイテクノロジーズ (4,325)
【Fターム(参考)】