説明

気体及び他の流体のための薄層多孔光センサ

【課題】流体の分光又は干渉測定を行うための薄層電極及び方法を提供する。
【解決手段】気体センサは、多孔性の薄いフィルムセル内で光学干渉を用いて孔隙媒質の屈折率を測定する。孔隙内の媒質が変化すると、スペクトル的変動を検出することができる。例えば、孔隙が溶液で満たされると、固有ピークは1つの方向にスペクトルシフトを示す。逆に、微量の気体が生成されると、ピークは反対方向にシフトする。これは、気体の発生や湿度の測定、及び他の干渉計ベースのセンサ装置に対する用途に使用することができる。

【発明の詳細な説明】
【技術分野】
【0001】
関連出願の相互参照
本出願は、2003年12月31日出願の「気体及び他の流体のための薄層多孔光学干渉センサ」という名称の米国特許仮出願出願番号第60/533、570号の優先権の利益を主張するものである。
【0002】
連邦政府委託研究又は開発の申告
本出願に説明する研究は、承認番号F33615−00−2−6059の下で米国空軍、空軍資材司令部、空軍研究所、人間有効性本部により委託されたものである。
【0003】
本発明は、流体の分光又は干渉測定を行うための薄層電極及び方法論に関する。特に、本発明で開示する技術は、例えば光反射薄層電極(ORTLE)内のフィルムの流路又は孔隙内の溶液相の分光学的インテロゲーションのためのORTLEに関する。
【背景技術】
【0004】
光透過薄層電極(OTTLE)は、1967年に初めて報告されて以来、薄層の研究に使用されている。例えば、分光電気化学は、光学測定値が作用電極の電位によるものであるとする電気化学及び分光技術の組合せである。薄層分光電気化学は、恐らく最も単純な種類の分光電気化学であり、急速かつ完全な電気分解及び小容積の特徴のような利点を有する。OTTLEの典型的な用途は、「酸化還元」過程、すなわち、材料による電子の受容(還元)を電子の供与(酸化)に一致させる反応の分光的研究である。ルミネセンス分光、フーリエ変換赤外線(FTIR)示差分光、及び紫外線/可視/近赤外線(UV/vis/NIR)のような様々な分光技術は、OTTLEを通じて電気化学技術と結合されている。多くの目的のための様々なOTTLE設計形状が開発されており、全てが一般的に透過率原理に基づいて作動するものである。
【0005】
【特許文献1】米国特許仮出願出願番号第60/533、570号
【発明の開示】
【0006】
本発明は、薄層フィルムの孔隙に捕捉された材料の分光電気化学、分光、及び/又は、干渉分析に関する。より具体的には、本発明は、反射率原理で作動する光反射薄層電極(ORTLE)に関し、すなわち、ORTLEは、流体中の透過を容易にするのではなく反射を集めるものである。本明細書で使用される時、流体という用語は、流れてその容器の外形に従う傾向があり、薄層フィルムを破壊しない連続アモルファス媒体、材料、又は物質、例えば、溶液を含む液体、又は気体を意味するのに使用される。
【0007】
ORTLEは、例えば、フロートガラス顕微鏡スライドのようなガラス基板上にスパッタリングしたアルミニウムの薄層を陽極酸化して250nmから1000nm厚の多孔酸化アルミニウム(アルミナ)フィルムを作成することによって組み立てられる。得られるアルミナフィルムは透明であり、深さが約250nmから1000nmで直径が約80から100nmまで異なる流路又は孔隙を含む。アルミナフィルムの厚み、及び従って孔隙の深さは、元のアルミニウムフィルムの厚みを制御することによって変えることができる。アルミナは実施例によって与えられるが、分光、干渉、又は分光電気化学測定のために流体を捕捉する流路又は孔隙を有するあらゆる多孔質膜を使用して本発明を実施することができる。
【0008】
本発明の1つの態様では、金の薄いフィルムをアルミナフィルムの上にスパッタリングする。金の層は、金の層がアルミナフィルムの孔隙に溶液が入るのを許すために多孔性のままであり、同時に光学的に厚くて反射性のままであるように、アルミナフィルムの表面の各点に付着する。金の層は、各々が可視光の波長よりも実質的に短い直径を有する穴で充填される。以下で説明するように、金の層は、電極の役目をすることができるが、このような使用に限定されない。更に、反射特性を有する他の金属及び材料で金を置き換え、従って、本発明を実施するのに使用することができる。
【0009】
本明細書で詳細に説明するように、ORTLEは、多孔質アルミナに基づく非常に薄いフィルムサンプルをインテロゲートする。正反射分光法及び時間電流測定の組合せの使用を通して、分光電気化学的研究は、ORTLEの孔隙内に含まれた溶液に限定される。具体的には、分光法は、電極面とその背後の窓の間のアルミナフィルムの孔隙内の溶液相をインテロゲートする。従って、ガラススライドを通じて反射率の測定を行うが、周囲の大半の溶液はインテロゲートされない。
【0010】
本明細書で説明する例示的な実験によれば、反射率の測定は、アルミナフィルムの孔隙を満たす材料の光学特性によって移動するスペクトル的特徴を示すものである。印加された電位が単純な溶液中で観察されるスペクトルに影響を与える方法を示すために、ORTLEスペクトルの安定性及びその起源を以下の例によって説明する。例えば、硫酸ナトリウム水溶液中でORTLEの電位を様々な値に負側に段階的に変える一連の実験は、気体発生が裸眼で認められる電位の正側数百ミリボルトの電位でORTLEスペクトル内の干渉縞が測定可能に移動することを示している。
【0011】
本発明の特定的な態様によれば、干渉、分光、及び/又は、電気化学及び光学分光(分光電気化学)技術などによって物質を分析する方法が提供される。本方法は、(a)液体又は気体物質を光反射薄層電極内に導入する段階を含み、電極は、アルミナフィルムが配置された透明ベース基板を含み、アルミナフィルムは、そこに複数の孔隙を形成し、多量の液体又は気体物質が孔隙の少なくとも1つに入ることができるように、金フィルムがアルミナフィルム上に配置され、(b)孔隙内の多量の液体又は気体物質が電極周りに配置された液体又は気体物質の残りの大部分から隔離されるように金フィルムに電位を印加する段階と、(c)光源から電極に入る光をベース基板の近傍から金フィルムの方向に向ける段階とを更に含み、電位下の金フィルムは、反射光の分析のために光を孔隙内の多量の液体又は気体物質内に反射するように構成されている。
【0012】
本方法によれば、液体又は気体物質は、フェリシアン化カリウム、硫酸ナトリウム、水、及びその溶液から成る群から選択される。液体又は気体物質は、0.01Mフェリシアン化物、0.05M硫酸ナトリウム、及び脱イオン水の溶液とすることができる。透明ベース基板は、ガラス製である。印加された電位は、+0.4Vから−1.5Vの間であり、約200秒から約400秒の間にわたって保持することができる。
【0013】
本方法によれば、光は、ベース基板において約45°の角度に向けることができ、孔隙内に隔離された多量の液体又は気体物質内の反射光を反射分光法によってモニタする段階を更に含むことができる。
【0014】
本発明の別の態様によれば、光反射薄層は、透明ベース基板と、複数の孔隙を形成する、ベース基板上に配置されたフィルムと、孔隙が大気に露出されるようにフィルム上に配置された反射材料とを含み、反射材料は、大気からそこに隔離された流体の測定を行うために孔隙内に光を反射するための鏡面を有する。
【0015】
この例においては、孔隙は、直径が80から約100nm、深さが250nmから約1000nm、より具体的には、約750nmであり、光反射薄層が流体に浸漬された時に多量の流体を保持する。流体は、フェリシアン化物、硫酸ナトリウム、水、気体、又はこれらの組合せから選択することができる。より具体的には、流体は、0.01Mフェリシアン化物、0.05M硫酸ナトリウム、及び脱イオン水の溶液とすることができる。
【0016】
また、この態様においては、金フィルムは、電位が印加された時にベース基板の方向から伝達された光を孔隙内の多量の流体の中に反射することになる。多量の流体は、反射光を用いた正反射分光法により、又は分光電気化学分析又は干渉分析又はこれらの方法の組合せによりモニタ可能である。反射光に対して約90°に配置された検出器が、モニタリング及び測定を行うために設けられる。
【0017】
本発明の更に別の実施形態では、薄層電極は、多孔性の薄いフィルムが基板上に配置された透明ベース基板と、孔隙が流体を含む大気に露出されるように薄いフィルム上に配置された材料とを含む。
【0018】
好ましい実施形態の態様では、材料は、電位が印加された時に大気中の流体の残りから孔隙内の流体の一部分を隔離することになる金フィルムである。金フィルムはまた、光ビームが透明ベース基板を通過して孔隙内に入る時に孔隙に入る入射光ビームを金フィルムの方向に向け直すために、電位が印加された時には光反射性である。更に、金フィルムは、流体中に懸濁する散乱を引き起こす粒子を濾過する、薄いフィルムから離して配置されたナノ構造面を有する。
【0019】
本発明の上述の態様と同様に、透明ベース基板は、ガラスとすることができ、薄いフィルムは、アルミナとすることができる。一例として、薄いフィルムのアルミナは、深さ250nmから約1000nmを有し、直径約80nmから約100nm及び深さ250nmから約1000nmの孔隙を示している。また、この態様における流体は、フェリシアン化物、硫酸ナトリウム、及び水、より具体的には脱イオン水、又は気体、又はこれらの成分の組合せの溶液である。
【0020】
本発明の別の態様では、流体分析のための薄層装置には、透明ベース基板及びベース基板上にスパッタリングされた薄いフィルムが設けられる。薄いフィルムは、複数の孔隙を有し、その各々は、80nmから約100nmの直径及び250nmから約1000nmの深さを有する。上述の実施形態と同様に、孔隙は、薄層装置が浸漬された大半の流体の残りから流体の一部分を隔離するものである。
【0021】
この態様では、孔隙が流体と連通して開いたままであるように、材料は、薄いフィルム上に層状にすることができる。材料は、孔隙内の隔離された流体を反射光を用いた正反射分光法により又は分光電気化学分析又は干渉分析又はこれらの方法の組合せにより分析することができるように、透明ベース基板を通じて孔隙に入る入射ビームを材料の方向に孔隙内に反射するための鏡面を有する。
【0022】
本発明の上記及び他の態様及び利点は、図面と組み合わせて以下の詳細な説明から明らかである。
【発明を実施するための最良の形態】
【0023】
これより以降、本発明を具現化する実施例を示す図面を詳細に参照する。詳細説明では、図面の特徴を示すのに数字及び文字による記号表示を用いる。本発明の同じか又は類似の部分を参照するために、図面及び説明の同じか又は類似の記号表示を用いる。
【0024】
図面及び詳細説明は、当業者が本発明を作って用いることを可能にするような本発明及び本発明を作って用いる方法及び処理、並びに本発明を実施する最良の態様の完全かつ詳細な記述を提供するものである。しかし、図面及び詳細説明で説明する実施例は、本発明の説明の一例として提供するものであり、本発明の制限を意味するものではない。従って、本発明は、特許請求の範囲及びその均等物の範囲に該当する以下の実施例のあらゆる修正及び変形を含むものである。
【0025】
ORTLE設計及び概念
全体として参照番号10で指定する光反射薄層電極(ORTLE)を図1Aに大まかに示している。この例においては、500nmアルミナフィルムを実質的に透明フロートガラススライド12のようなベース基板上にスパッタリングし、陽極酸化した後に多孔質アルミナ14に変換した。具体的には、アルミニウム金属からアルミナ(酸化アルミニウム)への変換により、750nm厚透明アルミナフィルム14が生じた。次に、バージニア州ロートン所在の「Plasma Sciences Inc.」から販売されている「CRC−100」スパッタリングシステムのようなスパッタリングシステム(図示せず)を用いて、アルミナフィルム14を210秒にわたって金で被覆した。このスパッタリングシステムでは、約100nm厚の金フィルム16を生成した。
【0026】
フィルム16は、図1Aでは、光学的に厚みのある金フィルムに見えるが、走査電子顕微鏡(SEM)による実験的研究の結果、それは、多孔質アルミナ膜の相対的に大きな孔隙を密封するには不十分であることが分っている。具体的には、図1BのSEM画像によれば、上述の変換法で作り出されたアルミナフィルム14の流路又は孔隙は、先の方法で金で被覆した時でも塞がれていないままである。
【0027】
金フィルム16は、その面16a、すなわち、多孔質アルミナ14の反対側にある露出側で鏡面仕上げを有する。金フィルム16の上記及び見掛けの連続性にも関わらず、非常に孔隙が多く、その結果、その下にあるアルミナ14内の流路18は、大気に露出された状態である。しかし、金フィルム16の反対側では、非常に反射性のある仕上げにはなっていないが、それは、ほぼ鏡面を呈している。簡単に説明したようにが、反射性品質を示す他の金属又は材料を例示的な金フィルム16の代わりに使用することができる。
【0028】
多量の溶液Sに露出された時(図2を参照されたい)、流路18は、溶液Sの大部分又は一部分で満たされる。光は、支持体として使用する光学透明ガラススライド12及び流体充填アルミナ14を通過することができるが、多孔金属上層16によって反射される。電位を金フィルム16に印加した場合、孔隙18内に発生する溶液Sのあらゆる変化は、正反射分光法によってモニタすることができる。ORTLE設計には、有利な態様では、特別な補助又は基準電極も特別な電極構成も不要である。
【0029】
当業者は、孔隙が深いほど、例えば、約750nmよりも大きくなれば、孔隙18内で材料のスペクトルが強くなるが、スペクトル強度は長さによって線形的に大きくなることから、孔隙18の外側にある材料と平衡化する時間が長くなることを直ちに認識して認めるであろう。逆に、孔隙が浅くなるほど、例えば、約750nmよりも小さくなれば、平衡化が速く進んで迅速に測定を行うことができるが、平衡化時間は長さの自乗で大きくなることからスペクトルが弱くなる。
【0030】
セル設計及び設定
アルミナ孔隙18内の溶液Sのみをインテロゲートするので、本発明のセル設計を多量の溶液Sに至る窓として使用する。図2に示すように、ORTLE10を例示的なセル20内に取り付ける。セル20は、「テフロン(登録商標)」銘柄の材料で作製したものであり、薄層電極10を取り付ける矩形窓22(例えば、75×75×0.5mm)内に収容される。ORTLE10は、図示のように内側に面した金スパッタリング処理表面又は側面16で位置決めされ、例えば、溶液Sの漏れを回避するために締め付けることができる8つのネジ24aから24hで所定の位置に保持される。
【0031】
以下の例示的な作動で説明するように、分光電気化学分析のために先の配置でセル20内の作用電極としてORTLE10を使用することができる。しかし、当業者は、ORTLE10を電極として使用する必要もなければ、また、この配置は分光電気化学分析に限定されないことを認識するであろう。例えば、アルミナ14の孔隙18に捕捉された材料の分光及び干渉分析にORTLE10を使用することができる。以下に示すように、干渉パターンが移動して孔隙18を満たす材料の屈折率の変化を示す可能性があるが、当業者は、孔隙流体を特定するために赤外線又はUV可視分光測定を行うことができる。従って、測定は、本質的に純粋な干渉的でない場合があり、流体の吸収特性を含むこともある。
【0032】
図2及び図3を参照すると、セル20は、分光計26の内側に入れられたアルミニウム基部27上に取り付けられている。光源LSから出る入射光ビームLIの経路内にORTLE10を設置するようにこのアルミニウム基部27の高さを選択する。ORTLE10がそのように取り付けられた状態で、セル20を望ましい溶液Sで満たし、その中に補助電極28及び基準電極30を挿入する。この例においては、補助電極28は、プラチナ(Pt)ガーゼであり、基準電極30は、インディアナ州ウェストラフィエット所在の「BAS」ら販売されている「g/AgCl/sat:NaCl」である。また、一例として、フロリダ州オーランド所在の「Optronic Laboratories,Inc.」から販売されている「OL 750−75MA自動ゴニオスペクトロリフレクタンスアタッチメント」は、分光計26としての使用に適している。
【0033】
図3に示すように、セル20は、タングステン水晶ハロゲンランプ(150W)及び「750 M−Sモノクロメータ」の組合せのような光源LSによって照らされる。この光源の組合せLSは、選択可能な波長が280〜1100nmの範囲にある。この例のモノクロメータは、「Optronic Laboratories,Inc.」から販売されているが、他の適切な装置を代わりに使用してもよい。
【0034】
図3のシリコン検出器32を使用して反射光LRの強度を記録する。例示的な検出器は、「DH−300EC,OL750−HSD−301EC」という名称で「Optronic Laboratories,Inc.」から販売されている。「Optronic Laboratories,Inc.」から販売されているもののような適切なソフトウエアによってスペクトル(例えば、図6を参照されたい)を取得する。例えば、オレゴン州レイクオスウィーゴ所在の「Wavemetrics,Inc.」から販売されている「IGOR Pro、バージョン4.01」を用いてスペクトルを分析する。
【0035】
ジョージア州アトランタ所在の「National Instruments」から販売されている汎用インタフェースバス(GPIB)で接続した「EG&G PARCモデル263」ポテンショスタットを使用して、以下で詳説する例における全ての電気化学実験を行う。「EG&Gモデル270研究用電気化学パワースートソフトウエア」でGPIBを「ゲートウェイ2000モデルP5−60」コンピュータに接続する。金ワイヤ電極は、テキサス州オースチン所在の「CH Instruments」から販売されている。フェリシアン化カリウムは、ミズーリ州ヘーゼルウッド所在の「Mallinckrodt」から販売されており、硫酸ナトリウムは、ジョージア州スワニー所在の「Fisher Scientific」から販売されている。フェリシアン化カリウム及び硫酸ナトリウムは、全てが試薬等級であり、更に別の純化なしに使用する。脱イオン水で全ての溶液を準備する。オレゴン州ヒルズバロ所在の「FEI Company」から販売されている「Quanta 200」走査電子顕微鏡を使用してSEM画像を収集した。
【0036】
当業者は、上述の機器及び材料は、単に例示的に与えたものであり、多くの適切な代用物を作って以下で説明するように本発明を実施することができることを認識するであろう。
【0037】
以下の実施例に関して本発明をより良く理解することができる。
【0038】
実施例
図を参照して例示的な目的に限定して、ORTLE10内のフィルムの孔隙内での溶液相のインテロゲーションのために以下の方法及び実施形態を使用する。
【実施例1】
【0039】
実施例1−ORTLEの特徴付け
図4は、作用電極として使用するORTLE10の結果を示している。図示のように、従来の金ワイヤ電極(A)で取得したサイクリック・ボルタンモグラム(CV)と作用電極(B)としてORTLE10を使用して取得したものとを比較している。20mVs-1で、0.01Mフェリシアン化物/0.05M硫酸ナトリウム溶液中で両方の実験が行われた。図4によれば、ORTLE10は、ワイヤ電極(A)と同様に挙動する。電極10を多量の溶液中に浸漬するので、ORTLE電極の純粋に電気化学的特性は、多量の溶液の状態の電気化学的特性を反映している。この実験によれば、電極10の設計が、上述のように、多孔質アルミナフィルム14上にスパッタリング処理した非常に薄い金の層16では孔隙18が密封されないようなものであることを条件として、ORTLE10は、フェリシアン化物溶液で予想されるような標準的特性を示すことができる。
【0040】
より具体的には、図4は、孔隙18内に発生する限定的な拡散からの寄与に対して予想されるようなORTLE10のピークの分離の減少を示している。この点を試験するために、ピーク電流に及ぼす掃引速度(v)の影響を測定する実験を実施した。薄層セルの場合、ピーク電流は、vに正比例するはずである。この実験では、ピーク電流とvの間の関係は悪く、ピーク電流とv1/2(R2=0.999)の間の関係は優れたものであった。この結果によれば、このCVの場合、薄層電気化学法の寄与は、多量の溶液と比較すると取るに足らないものであった。
【0041】
図5を参照すると、プロットは、全て入射ビームに対して角度θ、例えば約45°で採取した多孔質アルミナ(B)の層及びORTLE(C)の層を有する類似のガラススライドの無地のフロートガラス顕微鏡スライド(A)の透過スペクトルを示している(例えば、図3のLIを参照されたい)。スペクトル(B)における干渉の影響は、ガラスと上に重なるフィルムの間の屈折率減少の結果であり、一方、ORTLEの全体的な透過率の減少は、反射性金フィルムが存在するために図5のスケールでは取るに足りないものであり、フィルムにわたって起こる可能性がある多量の溶液のインテロゲーションはほとんどない。従って、金フィルム裏側の正反射に基づく分光的変化は、孔隙内の媒質の変化又は電極自体の変化に起因しているはずである。
【0042】
図6は、セル内の溶液なしにORTLE10に対して取得した典型的な正反射スペクトル(黒の実線)を示す(例えば、図2のセル20を参照されたい)。入射ビームLIに対して角度θ、例えば、約25°から75°、より具体的には45°でセルを位置決めし、正反射ビーム(図3を参照されたい)に対して、約80°から95°、より具体的には90°で検出器を位置決めすることによって正反射率測定が行われた。セル20及び検出器32の位置決め角度を相対的に急角度にすることにより、反射ビームの経路長及び感度を上げた。更に、急角度になるほど構成要素の内部較正に使用することができる偏光効果がもたらされる。
【0043】
引き続き図6を参照すると、入射ビームの100%を各実験前に検出器に向けることにより、単一ビーム反射率測定結果は、光源の全強度に対して関連付けられた。波長が短くなるといくつかの小さな干渉ピークを観察することができ、約700〜1000nmの範囲では相対的に大きなピークが通常観察される(波長及びピークの出現は、元のアルミニウムフィルムの厚みの僅かな違いのためにORTLE毎に変化した)。硫酸ナトリウム溶液が導入されると、ピークは、より長い波長に向けてシフトし、それに伴って強度が大きくなり、このサンプルの場合、大きなピークは、0分後に収集したスペクトルで示されるように850mから900nmにシフトした(すなわち、スペクトルは、硫酸ナトリウム溶液導入直後に収集されたものである)。60分及び120分後に収集したスペクトルによれば、このORTLEの場合には、観察された更に別のレッドシフト又は強度の増加はなかった。この特定のORTLEは迅速に反応するが、溶液導入後に経時的に緩やかなレッドシフトを示すORTLEもあった。全ての場合において、この変化が完了するのに必要な時間は、1時間足らずであった。この変化の少なくとも一部は、このシフトがこの場合に予想される干渉縞の位置の変化と2倍以内で一致しているので、恐らくは、孔隙が溶液に満たされて多孔フィルムの有効屈折率を変えた結果である。
【0044】
ここで図7を参照すると、ORTLE10の反射スペクトルにおける強い干渉に基づく振動の出現の1つの条件は、ガラス/アルミナ界面15とアルミナ/金界面17の反射率が、比較できるマグニチュードあるということである。これは、多孔質アルミナフィルム14の電気化学合成が、偏光解析法で示されるように平均で約1.2nm厚の少量のアルミニウム金属をガラス/アルミナ界面15の後に残すという理由だけによって達成される。アルミニウムは、可視領域で最も不透明な金属である。この電極の光学モデリングによれば、界面15及び17でアルミニウムが多すぎると(例えば、50nm)、ORTLE10のスペクトルをアルミニウムミラーのスペクトルにするであろう。界面15及び17でアルミニウムが少なすぎると、青色及び紫外線で小さな(例えば、5%)干渉振動を有する金ミラーと同様のスペクトルが生成され、赤色光及び近赤外線で約1%振動まで落ちると考えられる。
【0045】
この第1の条件が満たされた状態で、光学的経路長a及びbの差が入射光の波長の整数倍である時に反射の建設的干渉が発生する。吸収のない等方性材料を仮定すると、光学的経路長は、物理的経路長に媒質の(実数)屈折率を乗じたものである。スネルの法則を利用すると、
Sin(θ0)=n1Sin(θ1)=n2Sin(θ2
ただし、θ0は、空気からガラス基板12までの入射光LIの角度であり、θ1は、ビームがガラス基板12から多孔質アルミナ層14に入る角度であり、θ2は、金の層16と相互作用するビームの角度であり、n1及びn2は、それぞれ、ガラス1及び多孔質アルミナ層14の屈折率である。
【0046】
光学的経路差(OPD)は、次式で示すことが可能である。
【0047】

【0048】
ただし、mは非負の整数、dはフィルム厚であり、λmaxは、最大波長である。フィルム構造が光の波長よりも小さいスケールで不均一であり、規則的な繰返しパターンがないと仮定すると、フィルムの見掛けの屈折率n2は、フィルムの容積組成にほぼ関係がある。
【0049】
乾燥フィルムの場合、以下のようになる。
2≒nAl2O3(1−fp)+fp
ただし、nAl2O3はアルミナの屈折率、fpは、多孔質アルミナの空隙率であり、空気の屈折率は1としている。アルミナフィルムの孔隙が溶液で満たされると、式3は、以下のようになる。
2≒nAl2O3(1−fp)+1.33fp
ただし、充填溶液の屈折率は、水の屈折率であると仮定している。mのあらゆる値に対して以下のようになる。
【0050】

【0051】
溶液で満たされたフィルムの屈折率は、常に乾燥フィルムよりも大きいので、孔隙が充填されると常にレッドシフトがもたらされる。
【実施例2】
【0052】
実施例2−水の低減
本発明の更に別の態様では、0.05MのNa2SO4の単純な溶液内での電位の関数としてのORTLEに対する正反射分光法による実験は、以下の結果を与えている。以下で説明する例示的な実施形態は、先の実施形態と類似のものであり、従って、当業者は、ORTLEの類似の構成要素、製作、及び作動を実施可能にする説明に関して先の実施形態を参照されたい。
【0053】
これらの実験に対しては、図30に示すような補助電極及び基準電極28及び30をセル20に挿入し、3つの電極10、28、30をポテンショスタット(図示せず)に接続した。図8は、(Ag/AgCl)に対する電位が+0.4Vから−1.5Vまで掃引されたNa2SO4溶液のCVを示している。ORTLE10に対して観察された陽電位限界は、明らかに金酸化物の形成によるものであった。陽電位が大きくなると、フィルム/基板界面34での応力の一般的な指示である多孔質アルミナ基板14からの脆弱な金フィルム16の剥離がもたらされる。ORTLE10の負電位限界は、剥離によるものではなく、明らかに水素発生中に生じた水酸化物イオンによる多孔質アルミナ14の解離によるものであった。水素発生に付随するカソード電流が、図8においてほぼ−1.1V(Af/AfClに対して)で始まるのを見ることができる。
【0054】
結果を図9Aに示すORTLE10は、観察されたピークの1つが725nmに中心がある「乾燥」反射スペクトルを示している。セル20に硫酸ナトリウム溶液を添加すると、このピークが755nmまでシフトした。反射スペクトルは、+0.1Vと−1.2V(Ag/AgClに対して)の間の電位までの各段階に対して電位をある一定の値に保持した400sの間に取得されたものである。図9Aは、−0.4Vと−1.1V(Ag/AgClに対して)の間でのこれらの電位の部分集合でのORTLE10の反射スペクトルの詳細を基準の「乾燥」スペクトルと共に示している。
【0055】
−0.5V(Ag/AgClに対して)よりも正側の電位では、ORTLE反射スペクトルの大きな変化は観察されなかった。しかし、電位を−0.5V(Ag/AgClに対して)まで段階的に変化させた時、ピークのブルーシフトが観察された。図9Aが示すように、755nmでの干渉ピークは、負電位が−1.0Vまで増加すると、非常に緩やかに青色の方向にシフトを続けた。この電位範囲にわたって強度の減少は観察されず、実際には、強度の僅かな増加が観察された。しかし、電位を−1.1Vまで段階的に変化させた時、強度の実質的な減少を伴う755nmでの大きなピークのより顕著なブルーシフトが観察された。これは、気体がアルミナの孔隙に浸潤した結果であると解釈される。より負の電位で得られたスペクトルは、干渉ピークが弱くて幅広く、これは、電極をより正の電位に戻しても回復しなかった。これは、水素発生中の水酸化物の同時発生の結果であると解釈される。pHは、緩衝溶液を用いて制御することができることも可能である。
【0056】
ORTLEを分光計の外側において実施した電気化学的実験においては、電位が−1.5Vに近づくまでは、裸眼で水素発生を見ることは不可能であった。しかし、−1.1V近くで図8に観察される電流の増加は、水の低減の始まりに帰するものである。−1.1Vで発生するこの低レベルの水素生成は、裸眼で観察されるほどの大きな気泡を形成するには不十分であったが、ORTLEの正反射を強く乱すには十分なものであった。孔隙が最初に水で満たされ、この水が電極に発生した気体の水素によって置き換えられると仮定すると、フィルムの見掛けの屈折率は、以下のように書くことができる。
【0057】

【0058】
ただし、nH2は、生成されたH2のモル数、Aは電極の面積、Rは理想気体定数、Tは絶対温度である。
【0059】
この定義を式2に挿入し、波長に関して解き、水又は水状電解質のみで満たされた孔隙の初期条件の下で生成されたH2のモル数に関して導関数を取ると、以下が得られる。
【0060】

【0061】
0.32の空隙率(偏光解析法から推定)、680nmのフィルム厚(図6のフィルムのモデリングから推定)、及び45°の入射角を挿入すると、最大値は、以下で生じるはずである。
【0062】

【0063】
式5から、図6の長い波長のピークに対してはm=2、及び次第に短くなくなる波長でのピークに対してはmは3、4、及び5であることは明らかである。式4に戻ると、水素に対するm=2ピークのピーク位置の感受性は、以下のようになる。
【0064】

【0065】
式6は、電極表面の平方センチメートル面積当たりに生成されたH2の0.1ナノモルが、m=2ピークの9ナノメートル浅色移動をもたらす可能性があることを示している。1nmの移動を検出することができると仮定し、かつ10-4cmの面積を有する光ファイバ端部上のセンサを仮定して、気体がアルミナの孔隙に捕捉された場合には、約1fMのH2発生を検出することができると考えられる。
【0066】
図9Aでの干渉ピーク最大値の波長の微妙なシフトは、−0.5V(Ag/AgClに対して)までもの陽の電位で観察された。このシフトの原因は、現時点では未知であるが、多孔フィルム又は孔隙容積内の溶液の組成の変化に関わっているはずである。ブルーシフトは、これらの条件の下でのフィルムの光学的厚みの全体的な減少、すなわち、ナノスケールの気泡による孔隙溶液の置き換えと矛盾しない影響を示している。図9Bでは、780nmでの反射率のマグニチュードの変動を電位に対してプロットしている。図示のように、強度は、溶液添加時に強度の大きな増大が観察され、負電位の増加と共に緩やかな減少が観察されるという点で、電位の変動に伴って類似の傾向に従っている。結局、−1.1Vにおいて、図9Bは、強度が乾燥状態の電極のものと類似であることを示している。
【0067】
結論
薄層フィルム、例えば、金被覆多孔質アルミナフィルムに基づくものを示して説明した。薄層フィルムがセルに入れられ、サイクリック・ボルタンメトリー及び分光技術が用いられ、正反射分光と時間電流測定の組合せを使用する分光電気化学法が行われた。典型的なスペクトルは、ガラス/多孔質アルミナ界面での少量の非陽極酸化アルミニウムの存在から生じたいくつかの強い干渉ピークを示している。ORTLEが取り付けられた分光電気化学セルに硫酸ナトリウム溶液を導入すると、正反射スペクトルにおけるピークのレッドシフト及び強度の増加が観察された。これは、恐らく、溶液による孔隙の充填から生じる屈折率変化によるものである。ピークのブルーシフトは、電位を溶液の背景限界に向かって−0.5V(Ag/AgClに対して)の負側に増大する値に段階的に変化させることにより誘導することができるであろう。−1.1Vまで段階的に変化させると、強度の減少を伴って顕著なブルーシフトが観察された。これは、恐らく、ORTLEの孔隙内の水素の生成によるものである。
【0068】
ORTLEは、いくつかの点で典型的な薄層電極と異なっている。第1に、ナノ構造電極面が、有意な散乱を引き起こすのに十分なほど大きな粒子を濾過して取り除くので、透明な電極が不要であり、溶液は、透明又は更に均質でなくてもよい。従って、全内部反射技術と同様に、多量の溶液に入る光を許さない窓として電極を多量の溶液中に使用することができるが、重大な角度の制約はない。更に、電極は、潜在的に、非常に小さな変更で屈折率測定を表面プラズモン共振及び紫外線−可視光吸収測定と組み合わせるように設計することができる。更に、ORTLEの上部層は、金属とすることができるが、この上部層は、分光電気化学分析に対する電極としての使用に限定されない。更に、上述の干渉パターンのシフトは、孔隙を満たす材料の屈折率の変化を示すが、測定は、干渉分光法に限定されず、流体の吸収特性を含むことができる。すなわち、ORTLEを使用して孔隙内の流体に対して赤外線又は紫外線−可視光分光測定を行い、これらの流体を識別することもできる。
【0069】
本発明の好ましい実施形態を示して説明したが、当業者は、本発明の範囲及び精神から逸脱することなく以上の実施例に対して他の変更及び修正を行うことができることを認識するであろう。特許請求の範囲及びその均等物の範囲に該当する時に全てのこのような変更及び修正を請求することを意図するものである。更に、「上部」、「下部」、「上方への」、「上部の」、「より高い」、「より低い」、「下方への」、「下がっている」、「上がっている」、「側面」、「第1の」、及び「第2の」構造、要素、記号表示、及び幾何学形状などへの本明細書における言及は、単に実施可能な開示を提供することを目的としており、いかなる意味でも例示的実施形態又はそのあらゆる構成要素の作動的配向又は順序に関する制限を示唆するものではない。
【図面の簡単な説明】
【0070】
【図1A】本発明の態様によるORTLEの概略立面図である。
【図1B】特に多孔質アルミナ内の非密封孔隙を示す、図1Aのような金の層で覆われた多孔質アルミナのSEM画像を示す図である。
【図2】図1のようなORTLEが取り付けられたセルの概略図である。
【図3】図2のようなセルの概略平面図である。
【図4】電位が印加された状態で電解液に浸漬された標準的な金電極及び図2のようなORTLEに対して得られたサイクリック・ボルタンモグラム(CV)を示すグラフである。
【図5】ガラススライド、アルミナ層で被覆されたガラススライド、及び図1のようなORTLEに対する透過スペクトルを示すグラフである。
【図6】0.05M硫酸ナトリウム溶液の導入後に観察されたレッドシフトを含む正反射スペクトル及び経時的なスペクトルの変化を示すグラフである。
【図7】非陽極酸化アルミニウム及び金コーティングから生じる2つの反射界面を有するガラス基板及びアルミナ層を通る空気からの入射光の光学的経路長の概略平面図である。
【図8】本発明の別の態様によりORTLEに対して得られたCVを示すグラフである。
【図9A】約755nmにおけるピークに集中する正反射スペクトルに及ぼす電位の影響を示すグラフである。
【図9B】本発明の別の態様により特に780nmでのORTLEの乾燥状態を点線で示す、負電位の増加による780nmでの反射率のマグニチュードの減少を示す図である。
【符号の説明】
【0071】
10 光反射薄層電極(ORTLE)
12 透明フロートガラススライド
14 多孔質アルミナフィルム
16 金フィルム
18 流路、孔隙
【図1】


【特許請求の範囲】
【請求項1】
物質を分析する方法であって、
(a)液体又は気体物質を光反射薄層電極内に導入する段階、
を含み、
前記電極は、アルミナフィルムが配置された透明ベース基板を含み、該アルミナフィルムは、そこに複数の孔隙を形成し、金フィルムが、多量の前記液体又は気体物質が前記孔隙の少なくとも1つに入ることができるように前記アルミナフィルム上に配置されており、
(b)前記孔隙の前記多量の液体又は気体物質が、前記電極周りに配置された該液体又は気体物質の残りの大部分から隔離されるように、前記金フィルムに電位を印加する段階と、
(c)光源から前記電極に入る光を前記ベース基板の近傍から前記金フィルムの方向に向ける段階と、
を更に含み、
前記電位下の前記金フィルムは、反射光を分析するために前記光を前記孔隙の前記多量の液体又は気体物質内に反射するように構成されている、
ことを特徴とする方法。
【請求項2】
前記液体又は気体物質は、フェリシアン化カリウム、硫酸ナトリウム、水、及びそれらの溶液から成る群から選択されることを特徴とする請求項1に記載の方法。
【請求項3】
前記液体又は気体物質は、0.01Mフェリシアン化物と、0.05M硫酸ナトリウムと、脱イオン水との溶液であることを特徴とする請求項2に記載の方法。
【請求項4】
前記透明ベース基板は、ガラスで作られていることを特徴とする請求項1に記載の方法。
【請求項5】
前記印加された電位は、+0.4Vから−1.5Vの間であることを特徴とする請求項1に記載の方法。
【請求項6】
前記電位を200秒から400秒にわたって保持する段階を更に含むことを特徴とする請求項1に記載の方法。
【請求項7】
前記光源からの前記光を前記ベース基板において約45°の角度に向ける段階を更に含むことを特徴とする請求項1に記載の方法。
【請求項8】
前記孔隙に隔離された前記多量の液体又は気体物質内の前記反射光を反射分光法によってモニタする段階を更に含むことを特徴とする請求項1に記載の方法。
【請求項9】
前記反射光に対して約90°に配置された検出器によって正反射率測定を行う段階を更に含むことを特徴とする請求項1に記載の方法。
【請求項10】
透明ベース基板と、
前記ベース基板上に配置されて複数の孔隙をそこに形成するフィルムと、
前記孔隙が大気に露出されるように前記フィルム上に配置された反射材料と、
を含み、
前記反射材料は、光を前記孔隙内に反射する鏡面を有し、前記大気からそこに隔離された流体の測定を行う、
ことを特徴とする光反射薄層。
【請求項11】
前記透明ベース基板は、ガラスであることを特徴とする請求項10に記載の光反射薄層。
【請求項12】
前記孔隙は、直径が80nmから約100nmであり、250nmから約1000nmの深さを形成し、多量の流体をそこに光反射薄層が浸漬された時に保持するように構成されていることを特徴とする請求項10に記載の光反射薄層。
【請求項13】
前記流体は、フェリシアン化物、硫酸ナトリウム、水、気体、及びその組合せから成る群から選択されることを特徴とする請求項12に記載の光反射薄層。
【請求項14】
前記反射材料は、前記ベース基板の方向から前記孔隙に配置された前記多量の流体内に伝達された光ビームを反射するように構成された鏡面金フィルムであることを特徴とする請求項10に記載の光反射薄層。
【請求項15】
前記孔隙の前記多量の流体は、正反射分光法、分光電気化学分析、干渉分析、又はその組合せによってモニタ可能であることを特徴とする請求項14に記載の光反射薄層。
【請求項16】
大気中の流体に配置された薄層電極であって、
透明ベース基板と、
前記ベース基板上に配置されてそこに複数の孔隙を形成する薄いフィルムと、
前記孔隙が大気に露出されるように前記薄いフィルム上に配置された材料と、
を含み、
前記材料は、電位が印加された時に前記大気から前記孔隙内の流体の一部分を隔離するように構成され、更に、該電位が印加された時の反射に関して、前記透明ベース基板を通過して該材料の方向に該孔隙に入る入射ビームを該孔隙の中に向け直すように構成されている、
ことを特徴とする薄層電極。
【請求項17】
前記透明ベース基板は、ガラスであることを特徴とする請求項16に記載の薄層電極。
【請求項18】
前記薄いフィルムは、250nmから1000nmの深さを示すアルミナであることを特徴とする請求項17に記載の薄層電極。
【請求項19】
前記材料は、前記薄いフィルムから離れて配置されて前記液体又は気体物質に懸濁した散乱誘発粒子を濾過するように構成されたナノ構造面を有する金の層であることを特徴とする請求項16に記載の薄層電極。
【請求項20】
前記流体は、フェリシアン化物、硫酸ナトリウム、水、気体、及びその組合せから成る群から選択されることを特徴とする請求項16に記載の薄層電極。
【請求項21】
流体分析のための薄層装置であって、
透明ベース基板と、
前記ベース基板上にスパッタリングされてそこに複数の孔隙を形成する薄いフィルムと、
を含み、
前記孔隙の各々は、80nmから約100nmの直径と250nmから約1000nmの深さとを有し、該孔隙は、流体に浸漬された時に該流体の一部分を該流体の残りからに隔離するように構成されている、
ことを特徴とする装置。
【請求項22】
前記孔隙が前記流体と連通するように、前記薄いフィルム上に配置された材料を更に含み、
前記材料は、前記透明ベース基板を通って該材料の方向に前記孔隙に入る入射ビームを該孔隙の中に反射するための鏡面を有する、
ことを特徴とする請求項21に記載の薄層装置。

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9A】
image rotate

【図9B】
image rotate


【公表番号】特表2007−523321(P2007−523321A)
【公表日】平成19年8月16日(2007.8.16)
【国際特許分類】
【出願番号】特願2006−547509(P2006−547509)
【出願日】平成16年12月23日(2004.12.23)
【国際出願番号】PCT/US2004/043742
【国際公開番号】WO2005/062986
【国際公開日】平成17年7月14日(2005.7.14)
【出願人】(507080927)ユニヴァーシティー オブ サウスカロライナ (3)
【Fターム(参考)】