説明

水素生成装置及び燃料電池システム

【課題】 熱の利用効率に優れた水素生成装置、及び、これを用いた燃料電池システムを提供する。
【解決手段】 触媒を担持したセラミックスハニカム構造からなる触媒担持部162及び前記触媒担持部162の両端部に設けられ触媒担持部162よりも熱伝導率が低い触媒非担持部164及び166を備え、ガソリン及びカソードオフガスが供給されたときには加熱された触媒上でガソリン等の改質反応によって水素含有ガスを生成し、アノードオフガス及び燃焼エアが供給されたときにはアノードオフガス等の燃焼反応によって触媒担持部162を加熱し、改質反応と燃焼反応とが切り替え可能な一対の反応器112及び114と、反応器112及び114の改質反応と燃焼反応とが交互に行われるように、各反応器に供給される原料を改質用原料及び改質用原料のいずれかに切り替える制御部170と、を備えた水素生成装置110及びこれを備えた燃料電池システム100。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、触媒を用いた燃料改質反応と触媒を加熱再生する再生反応とを切替えて行なう水素生成装置及びこれを備えた燃料電池システムに関する。
【背景技術】
【0002】
従来の電気自動車は、車両駆動用の電源として燃料電池を搭載すると共に、燃料電池を発電運転させるための燃料である水素又は水素生成用の原燃料を搭載している。
【0003】
水素自体を搭載する場合、水素ガスを圧縮して高圧ボンベに若しくは液化してタンクに充填し、又は水素吸蔵合金や水素吸着材料を用いて搭載する。しかし、高圧充填による場合は、容器壁厚が厚く大きいわりに内容積に制限があり水素充填量が少ない。また、液体水素とする液化充填による場合には、気化ロスが避けられないほか液化に多大なエネルギーを要する。更に、水素吸蔵合金や水素吸着材料では電気自動車等に必要とされる水素貯蔵密度が不充分であり、水素の吸蔵/吸着等の制御も困難である。
【0004】
また、原燃料を搭載する場合、燃料を水蒸気改質して水素を得る方法などがある。しかし、改質反応は吸熱的であるために別途熱源が必要であるため、熱源に電気ヒータ等を用いたシステムでは全体のエネルギー効率の向上は図れない。更に、あらゆる環境条件下で安定的に水素量を確保できる点も不可避である。
【0005】
水素の供給方法については、未だ技術的に確立されていないのが実状であるが、将来的に各種装置における水素利用の増加が予測されることを踏まえると、水素の供給方法の確立が急務とされている。
【0006】
前記に関連する技術として、触媒を用いて、吸熱反応である燃料の改質反応と、改質反応で低下した触媒温度を再生する発熱反応(再生反応)と、を切替えて繰り返し行なう改質装置を有する燃料電池システムが提案されている(例えば、特許文献1参照。)。
【0007】
また、高温域で発電運転を行なう燃料電池システムの例として、水素透過性材料を用いた燃料電池が開示されている(例えば、特許文献2参照。)。前記以外にも、これに関連する技術か種々開示されている(例えば、特許文献3〜5参照。)。
【0008】
このような燃料電池システムにおいては、改質反応時において低下した温度を発熱反応によって再生させるため、改質反応時における温度低下に対していかに対処するかが重要となる。このため、改質反応器に備えられた触媒の温度を十分に維持することのできる技術が求められていた。
【特許文献1】米国特許2004−175326号明細書
【特許文献2】特開2004−146337号公報
【特許文献3】米国特許2004−170558号明細書
【特許文献4】米国特許2004−170559号明細書
【特許文献5】米国特許2003−235529号明細書
【発明の開示】
【発明が解決しようとする課題】
【0009】
以上のように、改質反応と再生反応(発熱反応)とを切替えて水素を改質生成する改質装置を用いた燃料電池システムについて提案されているものの、改質反応時における温度低下に対する対策が十分でないことが現状である。
【0010】
本発明は、熱の利用効率に優れた水素生成装置、及び、これを用いた燃料電池システムを提供することを目的とする。
【課題を解決するための手段】
【0011】
本発明は、吸熱反応である改質用原料の水蒸気改質反応と、水蒸気改質反応により低下した触媒温度を回復させ触媒上での改質反応性を再生するための発熱用原料の発熱反応(以下、「再生反応」ともいう。)と、を切替えて繰り返す水素生成装置及びこれを用いた燃料電池に関するものである。尚、発熱反応には燃焼反応等が含まれる。
【0012】
前記目的を達成するために、第1の発明である水素生成装置は、触媒を担持した触媒担持部、及び、前記触媒担持部のガス流れ方向における両端部に設けられ前記触媒担持部よりも熱伝導率が低い部材からなる触媒非担持部を備え、改質用原料が供給されたときには加熱された前記触媒上で前記改質用原料の改質反応によって水素含有ガスを生成し、発熱用原料が供給されたときには前記発熱用原料の発熱反応によって前記触媒を加熱し、前記改質反応と前記発熱反応とが切り替え可能な一対の改質反応器と、前記改質反応器の前記改質反応と前記発熱反応とが交互に行われるように、前記改質反応器に供給される原料を前記改質用原料及び前記発熱用原料のいずれかに切り替える制御手段と、を備えたものである。
【0013】
ここで、本発明における「改質反応」には、下記の吸熱反応である「水蒸気改質反応」の他に発熱反応である「部分酸化反応」が含まれる場合がある。
n2n+2+nH2O → (2n+1)H2+nCO …(1)
n2n+2+(n/2)O2 → (n+1)H2+nCO …(2)
CO+H2O ⇔ CO2+H2 …(3)
CO+3H2 ⇔ CH4+H2O …(4)
【0014】
本発明における改質反応においては、主に前記(1)の水蒸気改質反応が主としておこなわれる。
【0015】
第1の本発明によれば、触媒担持部のガス流れ方向における両端部に、前記触媒担持部よりも熱伝導率が低い触媒非担持部を備えた改質反応器を用いることで、触媒担持部に蓄えられた熱が放出するのを熱伝導率の低い触媒非担持部で抑制することができる。これにより、改質反応器の蓄熱性が向上し、水素生成装置の熱の利用効率を向上させることができる。
【0016】
本発明において、前記改質用原料としては、水蒸気改質などの改質反応により水素及び一酸化炭素の合成ガス(特に水素)を得るための燃料として一般に用いられる炭化水素燃料(例えばメタンガス、ガソリンなど)の中から適宜選択したものと、水蒸気(水分)との混合物を用いることができる。また、改質用原料中の水分は、例えば、燃料電池のカソード(空気極;以下同様)から排出され、水分を含有するガス(以下、「カソードオフガス」ということがある。)を利用したり、前記改質用の燃料を加湿したり、加湿した空気を用いることで供給することができる。
【0017】
前記発熱用原料としては、燃焼用の燃料と空気との混合物が挙げられ、前記燃焼用燃料としては一般に用いられる炭化水素燃料(例えばメタンガス、ガソリンなど)などの中から適宜選択できる。更に、前記燃焼用原料として、アノード(水素極;以下同様)から排出される水素を含むガス(以下、「アノードオフガス」ということがある。)を用いてもよい。
【0018】
また、第1の本発明によれば、触媒担持部の熱容量が前記触媒非担持部の熱容量よりも高くなるように構成することができる。第1の本発明の水素生成装置は、触媒非担持部よりも熱容量の高い触媒担持部を用いることで、触媒担持部に蓄くわえられる熱量を大きくすることができる。これにより、改質反応器の蓄熱性を更に向上させることができる。
【0019】
第1の本発明によれば、触媒担持部に担持される触媒の担持量を、部位に応じて異なるように構成することができる。水蒸気改質反応は吸熱反応であることから、触媒活性は温度が高い部位ほど高くなる。しかし、温度が高い部位では触媒の凝集(シンタリング)が生じやすく、かえって改質反応を阻害する場合がある。これに対し、第1の本発明のように、触媒担持部の触媒担持量を部位によって異なるように構成すると、改質反応器内の温度分布に合わせて触媒量を変化させることができることから、触媒担持部全体としての改質能力を高めつつ、触媒の凝集を抑制することができる。
【0020】
このように、第1の本発明の水素生成装置においては、前記触媒担持部に担持される前記触媒の担持量を、改質反応時における前記改質反応器内の温度分布に従って異なるように構成することができ、好ましくは、前記触媒担持部に担持される前記触媒の担持量を、前記改質反応時における前記改質反応器内の温度分布に従って、前記触媒担持部の温度が高い部位ほど少なくすることで、高温部における触媒の凝集を防止しながら、改質能力を高めることができる。
【0021】
また、第1の本発明の水素生成装置は、前記触媒担持部の前記改質用原料が供給される側に担持される前記触媒の担持量を、前記水素含有ガスを排出する側の担持量よりも少なくした構成とすることもできる。水蒸気改質反応は、熱の供給がない状態で触媒に蓄えられている熱によって水蒸気改質反応を行うため、触媒担持部の温度分布が重要となる。係る観点からは、改質用ガス導入部位の触媒担持量を少なくすることで、改質用ガス導入部位での過剰な水蒸気改質反応(吸熱反応)を抑制し、触媒担持部内を理想の温度分布を保つことが好ましい。
【0022】
また、第1の本発明の水素生成装置は、前記改質反応器を少なくとも一対備え、前記制御手段が、前記一対の改質反応器の改質反応及び発熱反応をそれぞれ交互に切替えて、一方の前記改質反応器が改質反応を行うと共に他方の前記改質反応器が発熱反応をおこうなうように構成することができる。このように、蓄熱を利用した燃料の改質反応と改質反応で低下した蓄熱量を回復させる発熱反応(再生反応)とを切替えて行なうことができる改質反応器(以下、「PSR(Pressure swing reforming)型改質器」ともいう。)を一対備えることで、少なくとも1基が燃料の改質反応を行なうと共に、他の少なくとも1基において再生反応を行なわせるように構成することができる(以下、この水素生成装置を「PSR改質装置」ということがある。)。
【0023】
例えば改質反応器が2基である場合、一方を器内の蓄熱を利用して吸熱反応である改質反応させると共に、他方では発熱反応である再生反応が行われる。前記一方の蓄熱量が改質反応の進行により低下したときには、2基の改質反応器への各原料の流路を切替え、他方の改質反応器によって再生反応により蓄熱された熱で燃料改質を行なうように再生反応から改質反応へ切替えることができる。これにより、別途の加熱器等が不要になり、熱エネルギーの利用効率の高い連続的な水素生成が可能である。
【0024】
第2の本発明である燃料電池システムは、上述の本発明の水素生成装置と、前記改質反応器で改質生成された水素含有ガスの供給により発電する燃料電池と、を備えて構成することができる。
【0025】
第2の本発明によれば、熱の利用効率の高い水素生成装置を用いることで、システム全体の熱の利用効率を高めることができる。
【0026】
また、第2の本発明の燃料電池システムは、前記燃料電池として、水素透過性金属層と、前記水素透過性金属層の少なくとも片側に配置された電解質層と、を備えたものを用いることができる。
【0027】
前記水素透過性金属層と電解質層とを備えた燃料電池は、作動温度域が300〜600℃である。この温度域は水蒸気改質反応が進行する反応温度域とほぼ同じであるため、水蒸気改質生成された水素含有ガスが燃料電池の運転温度域で供給されるという利点を有すると共に、アノードオフガスをそのままPSR型改質器に戻して再生反応に利用することができる。これにより、システム構成上及び熱エネルギーの有効利用の点で特に適している。
【発明の効果】
【0028】
本発明によれば、熱の利用効率に優れた水素生成装置、及び、これを用いた燃料電池システムを提供することができる。
【発明を実施するための最良の形態】
【0029】
(第1の実施の形態)
以下、図を用いて、本発明の燃料電池システムの実施形態について詳細に説明すると共に、該説明を通じて本発明の水素生成装置の詳細についても具体的に説明する。
【0030】
本実施の形態においては、水素透過性の金属膜の表面にプロトン伝導性のセラミックスが積層されたものを電池膜として用いた水素分離膜型燃料電池(HMFC)が搭載された電気自動車に本発明の水素生成装置を搭載し、この水素生成装置で改質生成された水素で水素分離膜型燃料電池を発電運転させるように構成した燃料電池システムに関するものである。
【0031】
本実施の形態においては、水蒸気改質反応により改質する改質用原料としてガソリンと水分を含むカソードオフガスとが用いられる。また、本実施の形態においては、発熱反応(再生反応)として燃焼反応が利用され、再生反応時に燃焼させる発熱用原料としては、燃焼用燃料と燃焼用ガスとの混合燃料が用いられる。本実施の形態においては、燃焼用燃料としては、燃料電池の水素極側から排出されたアノードオフガスを用い、燃焼用ガスとしては燃焼エアが用いられる。但し、本発明は係る態様に限定されるものではない。
【0032】
まず、図1を用いて本発明の燃料電池システムの基本的構成について説明する。図1は、第1の実施の形態の燃料電池システムの構成を示す概略図である。図1において、本発明の燃料電池システム100は、反応器112(PSR1)及び反応器114(PSR2)を備えた水素生成装置110と、水素分離膜型の燃料電池120(HMFC)と、を備え、水素生成装置110で改質生成された水素を燃料電池120に供給することで発電運転を行なうように構成される。
【0033】
図1に示す反応器112及び反応器114は、各々セラミックス製の触媒担持体に触媒が担持され、更に触媒担持体の両端に低熱伝導セラミックス製ハニカムが備えられた円筒状の構成を有している。前記反応器112及び反応器114には、更に、噴射装置が備えられており、改質反応と再生反応とを切替えて行うことが可能なように構成されている。改質反応と再生反応との切替は、ガソリン及びカソードオフガスの供給流路、アノードオフガス及び燃焼エアの供給流路、及び、改質生成された水素含有ガスの排出流路、並びに、再生反応させた反応器から排出される再生オフガスの流路を複数のバルブ(バルブV1〜V8及び三方バルブSV1〜SV7)を制御することで行なえるように構成されている。ここで、バルブV1〜V8は、その開閉によりガスの通過及び遮断が切替えられるバルブである。また、三方バルブSV1〜SV7には3つの管が連結されており、バルブの駆動により、3つの管のうち任意の2つの管を連通させるバルブである。
【0034】
本発明の燃料電池システム100は、一方の反応器において水蒸気改質反応を行うとともに、他方の反応器において再生反応を行うように構成されている。また、水蒸気改質反応は吸熱反応であることから、水蒸気改質反応を行っている反応器の温度をモニタリングし、反応器内の温度が一定温度よりも低下した場合には、2つの反応器に供給される燃料を切替えて、それぞれの改質・再生反応を反転させる。即ち、改質反応を行っていた反応器においては、改質用原料及び改質用ガスに替えて燃焼用原料を供給して、改質反応を再生反応に切替え、また、再生反応を行っていた反応器においては燃焼用原料に替えて改質用原料及び改質用ガスを供給することで、再生反応から改質反応にシフトさせる。この際、改質用原料及び改質用ガスの供給と燃焼用原料との供給は、反応器内の温度勾配を考慮し、それぞれ対向する側から行われるように構成されている。
【0035】
尚、本発明の燃料電池システム100の運転時においては、各反応器の改質・再生反応の切り替えが繰り返しおこなわれるが、本実施の形態においては便宜上、反応器112において改質反応を行い、また、反応器114において再生反応を行う場合について説明する。
【0036】
本発明の燃料電池システムの基本構造について説明する。図1に示すように反応器112及び反応器114の一方の側には、燃料供給管130Aと三方バルブSV1を介して連結される燃料供給管130B及び燃料供給管130Cがそれぞれ連結されており、これらを通して改質用原料が供給されるように構成されている。以下、改質用原料が供給される側、即ち、改質用原料の流れ方向に対して上流側を「改質側」という場合がある。燃料供給管130AにはポンプP1が備えられており、ポンプP1の駆動により、改質用原料であるガソリンが反応器112に供給される。また、燃料供給管130B及び130CにはそれぞれバルブV1及びV5が備えられている。更に、反応器112及び反応器114には、それぞれに各反応器内の温度を検出するための温度センサ116と温度センサ118とが備えられている。
【0037】
一方、反応器112及び反応器114の他方の側には、それぞれ水素含有ガス排出管134Aの一端と水素含有ガス排出管134Bの一端とが連結されている。以下、改質反応時に水素含有ガスが排出される側、即ち、改質用原料の流れ方向に対して下流側を「再生側」という場合がある。尚、燃焼反応(再生反応)時においては、各反応器の再生側から燃焼用原料が供給される。
【0038】
これら水素含有ガス排出管134A及び水素含有ガス排出管134Bの他端はそれぞれ三方バルブSV2に連結されている。また、三方バルブSV2には、更にアノード供給管136の一端が接続されており、三方バルブSV2の切り替えによってアノード供給管136と水素含有ガス排出管134A及び134Bのどちらかとを連通できるように構成されている。
【0039】
アノード供給管136の他端は燃料電池120のアノードと連結されており、係る管を介して水素含有ガスがアノードに供給される。燃料電池120のアノードには、その入口側にアノード供給管136の他端が連結されると共に、出口側にはアノード排管138Aの一端が連結されている。燃料電池120のアノードに供給されたガスは、すべてこのアノード排管138Aを介して排出される。アノード排管138Aの他端には三方バルブSV3が連結されており、三方バルブSV3の切替えによってアノード排管138B及びアノード排管138Cのいずれかと連通されるように構成されている。
【0040】
アノード排管138Cは他端で反応器114の再生側に連結されており、燃料電池120から排出されるアノードオフガスを供給できるように構成されている。また、アノード排管138Cには、燃焼エア供給管140Bと連結した混合器139が備えられている。燃焼エア供給管140Bは、三方バルブSV7を介して燃焼エア供給管140Aと連通されており、燃焼エア供給管140Bに備えられたバルブV2の開閉及びポンプP2の駆動によって混合器139に燃焼エアを供給できるように構成されている。燃料電池120から排出されたアノードオフガスは、混合器139において、燃焼エア供給管140Bから供給される燃焼エアと混合されて、反応器114へと供給されるように構成されている。また、アノード排管138CにはバルブV3が備えられている。更に、三方バルブSV7には、燃焼エア供給管140Cの一端が備えられている。
【0041】
反応器114の改質側には、排出管142Aが接続されており、三方バルブSV4及び排出管142Bを介して酸化反応後のガスをシステム外に排出することができる。また、反応器114の改質側に連結される排出管142A、燃料供給管130Cには、それぞれバルブV4及びV5が備えられている。
【0042】
排出管142Aは、三方バルブSV4を介して、排出管142B又は142Cと連通できるように構成されている。また、排出管142Cの他端は三方バルブSV5に連結されている。
【0043】
アノード排管138BにはバルブV6が備えられており、更にその他端において反応器112の再生側と連結されている。また、アノード配管138Bには、燃焼エア供給管140Cの他端が接続された混合器154が備えられている。更に、燃焼エア供給管140Cには、バルブV8が備えられている。
【0044】
燃料電池120のカソード(酸素極;以下同様)の入口側には、ポンプP3を備えたカソード供給管144の一端が連結されており、カソード供給管144から供給される空気等をカソードに供給可能なように構成されている。また、燃料電池120のカソードの出口側には、ガス供給管146Aの一端が連結されており、カソードオフガスを排出できるようになっている。
【0045】
ガス供給管146Aの他端には三方バルブSV5が備えられており、三方バルブSV5を介して、ガス供給管146Bと連通されている。また、三方バルブSV5には、排出管142Cの他端が連結されており、排出管142C及びガス供給管146Bのいずれかと連通可能なように構成されている。
【0046】
ガス供給管146Bの他端には三方バルブSV6が連結されており、三方バルブSV6には更にバルブV7を備えたガス供給管146C及び排出管148の一端が連結されている。ガス供給管146Cの他端は、反応器112の改質側に連結されており、H2Oを含むカソードオフガスを反応器112に挿通できるように構成されている。また、排出管148は、三方バルブSV6の切替えによりガス供給管146Bから供給されるガスをシステム外に排出するために用いられる。
【0047】
また、燃料電池120の内部には、大気中から吸気した冷却用エア(Cooling Air)を挿通させるための冷却管150が設けられており、熱交換により電池内部を冷却できるように構成されている。
【0048】
次に反応器112及び反応器114について、反応器112を例にその構成を説明する。図2は、反応器の構成を説明するための概略断面図である。図2に示すように、反応器112は、両端が閉塞された断面円形の筒状体160と、筒状体160の内壁面に担持された触媒担持部162と、触媒非担持部164及び166と、で構成されており、筒状体160は反応を行なうための空間を形成すると共に、触媒担持体として機能を担っている。
【0049】
筒状体160は、セラミックスハニカムからなる触媒担持部162と、その両端に備えられるセラミックスハニカムよりも熱伝導率の低いセラミックスハニカムからなる触媒非担持部164及び166とを直径10cmの断面円形の筒型に成形し、筒の長さ方向の両端を閉塞した中空体である。断面形状やサイズは、目的等に応じて、円形以外の矩形、楕円形などの任意の形状、サイズを選択することができる。反応器112は、中心に高熱伝導率を有する触媒担持部162と、ガスの出入り口付近に低熱伝導率を有する触媒非担持部164及び166を配置することで、反応器112の中央部に位置する触媒担持部162から熱が逃げるのを抑制でき、触媒担持部162の蓄熱性を向上させることができる。また、反応器112の軸方向(ガス流れ方向)に対して凸状の温度分布を構成しやすい。
【0050】
尚、本実施の形態において、触媒担持部162全体の熱伝導率は、5〜10W/m・K程度あり、触媒非担持部164及び166の熱伝導率は1〜2W/m・K程度である。触媒担持部162と触媒非担持部164及び166との熱伝導率の比はおおよそ5〜10程度が好ましく、10程度が更に好ましい。
【0051】
反応器112は、筒状体内壁の曲面のうち、筒状体の長さ方向両端から筒内方向に向かう筒の中央付近、すなわち長さ方向の両端からそれぞれ所定距離Aの領域を、触媒を担持しない触媒非担持部164及び166とし、これを除く全面を、触媒を担持する触媒担持部162としている。触媒担持部162に担持される触媒としては、Pd、Ni、Pt、Rh、Ag、Ce、Cu、La、Mo、Mg、Sn、Ti、Y、Zn等の金属を用いることができる。
【0052】
また、触媒担持部162は、セラミックスハニカム構造167a〜167i(以下、単に「セラミックスハニカム構造167」という場合がある。)が、金属ハニカム構造を有する板状部材169a〜169h(以下、単に「板状部材169」という場合がある。)で区切られた構成になっている。前記セラミックスハニカム構造167は板状部材169よりも触媒の担持能力が高いが、板状部材169は、セラミックスハニカム構造167よりも伝熱性が優れている。このように、触媒担持部162を複数のセラミックスハニカム構造167からなる触媒層と、複数の金属ハニカム構造を有する板状部材169からなる金属層と、を交互に積層した構造にすることで、触媒担持部162全体の触媒担持能を維持したまま、反応器112内の面内温度分布(図2においては矢印C方向の温度分布)を均一にすることができる。
【0053】
尚、本実施の形態において、セラミックスハニカム構造167の熱伝導率は、2〜3W/m・K程度あり、板状部材169の熱伝導率は15〜30W/m・K程度である。また、セラミックスハニカム構造167と板状部材169との伝熱性の比はおおよそ5〜15程度が好ましく、15程度が更に好ましい。
【0054】
更に、触媒担持部162は、触媒非担持部164及び166よりも高い熱容量を有する。このように触媒担持部162の熱容量を触媒非担持部164及び166の熱容量よりも高くすることで、触媒担持部162に蓄えることのできる熱量が多くなり、より多くの改質反応を行えるようになる。このため、反応器の改質/再生反応の切替え回数を少なくすることができる。尚、本実施の形態において、触媒担持部162は、熱容量を大きくするためにセル構造4〜6mil、400〜600cpsi程度であり、触媒非担持部164及び166は熱容量を小さくするために、セル構造2〜mil、900〜600cpsi程度である。
【0055】
但し、本実施の形態においては、触媒担持部162の一部である触媒担持部162A(ハニカム構造167h〜167i)の熱容量が、触媒担持部162の他の部分に比して小さくなるように構成されている。このように、触媒担持部162の再生用燃料導入部側に低い熱容量の部位を設けることで、触媒担持部162の一部を改質可能温度にまで早くに上昇させることができる。これにより、システム起動時における改質反応の始動性を向上させることができ、速やかな水素生成を確保することができる。
【0056】
触媒担持部162により改質反応を行った場合、改質生成された水素含有ガスは該ガスの排出方向下流側の触媒非担持部166で冷却され、水素含有ガスを燃料電池120の運転温度に近づけて供給できる。また、逆に改質反応から再生反応に切替えられた場合には、触媒非担持部166は水素含有ガスとの熱交換により昇温した状態にあり、水素含有ガスの排出方向とは逆向きに供給された燃焼用燃料であるアノードオフガスおよび燃焼エアは触媒非担持部166で予熱された後触媒担持部162に供給されるようになっている。これにより、触媒担持部162が備えられた筒状体160の中央付近ほど、蓄熱量が高くなる温度分布が形成され、係る温度分布は反応性の点で有利であるばかりでなく、作動ガスが比較的低温で供給され、また、高温の反応帯を通過後再び比較的低温の状態で排出されるため、排ガスが顕熱として持ち去る熱が小さく抑えられるので、エネルギー効率的にも有利である。なお、筒状体160には、触媒の温度を計測するための温度センサ116が取付けられている。
【0057】
また、筒状体160の改質側の壁面には、燃料供給管130Bとガス供給管146Cとが接続されており、燃料供給管130Bの先端部には噴射装置168が備えられている。更に、筒状体160の再生側の壁面には、水素含有ガス排出管134Aとアノード排管138Bとが接続されている。
【0058】
噴射装置168は、通常運転時に反応器112にて水蒸気改質反応を行う場合にはガソリン(改質用原料)を広角に噴射しカソードオフガス中に含まれる水分と共に筒状体160に内装された触媒担持部162上への供給、反応を行なうことができるようになっている。この場合、水蒸気改質反応によって生成した水素含有ガスは、水素含有ガス排出管134Aから排気され、燃料電池120に供給される。
【0059】
改質反応から切替えて反応器112にて再生反応を行う場合には、アノードオフガス(及び必要によりガソリンや水素含有ガス等)を供給することにより、筒状体160に内装された触媒担持部162上へのアノードオフガスを供給し、酸化反応を行なうことができる。
【0060】
また、触媒担持部162に担持される触媒の担持量は、改質反応時における理想的な温度分布に基づいてそれぞれの部位によって異なる。即ち、セラミックスハニカム構造167a〜167iの各々に担持される触媒の担持量は、改質反応時における反応器112内の理想的な温度分布に対応して決定されている。
【0061】
前記改質反応時における理想的な温度分布及び触媒担持部162に担持される触媒の担持量との関係について図3を用いて説明する。図3は、改質反応時における改質反応器内の理想的な温度分布と触媒の担持量との関係を説明するための説明図である。
【0062】
本実施の形態では図3に示すように、触媒担持部162の中心に温度ピークが位置するような温度分布を改質反応時における理想的な温度分布とする。また、触媒担持部162の触媒担持量は、図3に示すように、触媒担持部162の両端(ハニカム構造167a及び167i)の触媒担持量が一番多く、また、触媒担持部162の中心部(ハニカム構造167e)の触媒担持量が一番少なくなる凹状の分布を有している。
【0063】
これは、図3に示す理想の温度分布であると、触媒担持部162の両端(ハニカム構造167a及び167i)の温度が低くなる。このため触媒担持部162の両端の触媒担持量を多くすることで改質反応を促進させる。これに対し、中心部(ハニカム構造167e)は高温になることから触媒の担持量が少なくても改質反応が促進される。このため、触媒担持量を少なくしても水素含有ガスの生成量を低下させないで、触媒が過度に凝集するのを防止することができる。
【0064】
尚、本実施の形態では段階的に触媒担持部162の触媒担持量が異なる態様としたが、本発明はこれに限定されず、目的とする温度分布に従って徐々に触媒担持量が異なるように構成することもできる。
【0065】
次に、燃料電池120について図4を用いて説明する。図4は、本実施の形態における燃料電池を説明するための断面図である。水素分離膜型燃料電池(HMFC)120は、図4に示すように、水素透過性金属を用いた緻密な水素透過膜を有する電池膜174と、電池膜174を狭持する酸素極(O2極)176及び水素極(H2極)178とで構成されており、水素生成装置110で改質生成された水素含有ガスが供給されると水素を選択的に透過させて発電運転が行なえるようになっている。
【0066】
酸素極176と電池膜174との間には、酸化剤ガスとして空気(Air)を通過、すなわち給排するためのエア流路180が形成されており、水素極178と電池膜174との間には、水素リッチな燃料ガス(ここでは、改質生成された水素含有ガス)を通過、すなわち給排するための燃料流路182が形成されている。酸素極176及び水素極178は、カーボン(例えば、白金又は白金と他の金属とからなる合金を担持したカーボン粉)や電解質溶液(例えば、Aldrich Chemical社製のNafion Solution)など種々の材料を用いて形成可能である。
【0067】
電池膜174は、バナジウム(V)で形成された緻密な基材(水素透過性金属からなる緻密な水素透過膜)184を含む4層構造となっている。パラジウム(Pd)層(水素透過性材料からなる緻密な水素透過膜)186,188は、基材184を両側から挟むようにして配置されており、一方のPd層186の基材184と接する側と逆側の面には、更にBaCeO3(固体酸化物)からなる電解質層190が薄膜状に設けられている。
【0068】
基材184は、バナジウム(V)以外に、ニオブ、タンタル、及びこれらの少なくとも一種を含む合金を用いて好適に形成することができる。これらは、高い水素透過性を有すると共に、比較的安価であるためコスト面で有利である。
【0069】
電解質層(BaCeO3膜)190は、BaCeO3以外にSrCeO3系のセラミックスプロトン伝導体などを用いて構成することができる。
【0070】
前記水素透過性金属には、パラジウム以外に、例えば、バナジウム、ニオブ、タンタル及びこれらの少なくとも一種を含む合金、並びにパラジウム合金などが挙げられる。これらを用いた緻密膜を設けることで電解質層を保護できる。
【0071】
前記水素透過性金属からなる緻密膜(被膜)については、酸素極176側では、一般に水素透過性が高く比較的安価である点で、例えば、バナジウム(バナジウム単体及び、バナジウム−ニッケル等の合金を含む。)、ニオブ、タンタル及びこれらの少なくとも一種を含む合金のいずれかを用いるのが好ましい。これらは水素極側での適用も可能であるが、水素脆化を回避する点で酸素極176側に用いることが望ましい。また、水素極178側では、水素透過性が比較的高く水素脆化しにくい点で、例えば、パラジウム又はパラジウム合金を用いるのが好ましい。
【0072】
図4に示すように、Pd層186/基材184/Pd層188の3層からなるサンドウィッチ構造膜、すなわち異種金属(水素透過性材料からなる緻密膜)からなる2層以上の積層構造を有してなる場合、異種金属の接触界面の少なくとも一部に該異種金属同士の拡散を抑制する金属拡散抑制層を設けるようにしてもよい(例えば、後述の図7及び図8参照)。また、金属拡散抑制層については、特開2004−146337号公報の段落番号[0015]〜[0016]に記載されている。
【0073】
上述のサンドウィッチ構造膜の層構成としては、パラジウム(Pd)/バナジウム(V)/Pdで構成する以外に、Pd/タンタル(Ta)/V/Ta/Pd等の5層構造などにすることも可能である。既述のように、VはPdよりプロトン又は水素原子の透過速度が速く安価であるが、水素分子をプロトン等に解離する能力が低い。このため、水素分子をプロトン化する能力の高いPd膜をV膜の片側又は両側の面に設けることで、水素透過性能を向上させることができる。この場合に、金属膜間に金属拡散抑制層を設けることで、異種金属同士の相互拡散を抑え、水素透過性能の低下、ひいては燃料電池の起電力の低下を抑制することができる。
【0074】
また、電解質層190は固体酸化物からなり、Pd層186との界面の一部に、電解質層190中の酸素原子とPdとの反応を抑制する反応抑制層を設けてもよい(例えば後述の図7の反応抑制層210)。この反応抑制層については、特開2004−146337号公報の段落[0024]〜[0025]に記載されている。
【0075】
電池膜174は、緻密な水素透過性材料であるバナジウム基材と燃料電池120のカソード側に成膜された無機質の電解質層とで構成することで電池膜の薄膜化が可能となり、これを一般に用いられる高温型の固体酸化物型燃料電池(SOFC)に適用すると、作動温度を300〜600℃の温度域に低温化することができる。これにより、燃料電池から排出されたカソードオフガスを直接、改質反応させるPSR型改質器に供給する本発明の燃料電池システムを好適に構成することが可能である。
【0076】
水素分離膜型の燃料電池120は、燃料流路182に水素(H2)密度の高い水素含有ガスが供給され、エア流路180に酸素(O2)を含む空気が供給されると、下記式(1)〜(3)で表される電気化学反応(電池反応)を起こして外部に電力を供給する。なお、式(1) 、式(2)は各々アノード側、カソード側での反応を示し、式(3)は燃料電池での全反応である。
2 → 2H++2e- …(1)
(1/2)O2+2H++2e- → H2O …(2)
2+(1/2)O2 → H2O …(3)
【0077】
図5を用いて、各バルブの切替えについて説明する。図5は、バルブ制御を説明するための構成図である。図5に示すように、バルブV1〜V8、三方バルブSV1〜SV7は、及びポンプP1〜P3は制御部(CPU)170に接続されており、その開閉及び切替えが制御部170によって制御されている。また、制御部170は温度センサ116及び温度センサ118に接続されており、反応器112及び反応器114内の温度をモニタリングすることができる。制御部170は、反応器112及び反応器114内の温度に従ってバルブ及びポンプを制御し、各反応器の改質反応から再生反応(燃焼反応)へとシフトすることができる。更に、制御部170は、各ポンプを制御することにより、ガソリン(改質用原料)、カソードガス等の供給量を制御することができる。
【0078】
次に本実施の形態における燃料電池システム100における通常時のガスの流れ及びその制御について図1を用いて説明する。図1において、太線で示された排管は、反応器112において改質反応を行い、反応器114において再生反応(燃焼反応)を行う場合において使用される管を示し、白抜きで示された排管は、かかる場合に使用されていない管を示す。また、図1に示されるバルブV1〜V8のうち、白抜きで示されたバルブは開状態であることを意味し、黒塗りで示されたバルブは閉状態であることを意味する。
【0079】
図1においては、まずポンプP1の駆動によりガソリンが燃料供給管130Aから供給されると、三方バルブSV1によって燃料供給管130Aと連通された130Bを通じて、反応器112へと供給される。ここで、本実施の形態においては、改質反応に用いられる水分を燃料電池120からのカソードオフガスにより供給する循環型の形態としたが、必要に応じてシステム外からガソリンと共に又はガソリンと別に水分をシステム内に供給できるように構成することができる。
【0080】
ガソリンとカソードオフガスに含まれる水分とが供給された反応器112内では、触媒上で水蒸気改質反応により水素が発生し、水素含有ガスが水素含有ガス排出管134Aに排出される。この際、三方バルブSV2は水素含有ガス排出管134Aとアノード供給管136とが連通するように調整されている。反応器112から排出された水素含有ガスは、水素含有ガス排出管134A及びアノード供給管136を介して燃料電池120のアノードに供給され、燃料電池120の発電に使用される。
【0081】
燃料電池120のアノードにおいてプロトン化しなかった余剰水素を含むアノードオフガスは、アノード排管138Aから排出される。この際、三方バルブSV3は、アノード排管138Aとアノード排管138Cとが連通するように調整されており、アノード排管138Aに排出されたアノードオフガスが、アノード排管138Cに送られるように構成されている。アノード排管138Cに送られたアノードオフガスは、これを通じてまず混合器139に供給される。
【0082】
この際、三方バルブSV7は、燃焼エア供給管140A及び140Bが連通するように調整されており、混合器139に燃焼エアを供給することができる。また、バルブV2は開状態に制御されている。
【0083】
混合器139に供給されたアノードオフガスは、燃焼エア供給管140A及びBを通じて供給される燃焼エアと混合された後、反応器114に供給される。この際、バルブV3は開状態となるように制御されている。尚、本発明においては、別途補助燃料用の配管を設け、アノードオフガスと共に再生反応を補助するガソリン等の補助燃焼を供給可能なように構成してもよい。
【0084】
この際、反応器114にも反応器112と同様に、高い熱伝導率を有する触媒担持部と、前記触媒担持部の両端(改質側及び再生側)に熱伝導率の低い触媒非担持部が備えられている。まず、反応器114に燃焼エアと混合されたアノードオフガスが供給されると、アノードオフガスは触媒上で燃焼反応を起こし、反応器114の触媒担持部に熱が蓄積される。
【0085】
燃焼反応のオフガスは、排出管142A及び142Bを介して反応器114から排出され、図示を省略する脱硫器等を介してシステム外に排出される。この際、排出管142Aに設けられたバルブV4が開状態になるように制御されると共に、燃料供給管130Cに備えられたバルブV5は閉状態になるように制御されている。
【0086】
燃料電池120のカソード側では、ポンプP3の駆動によりカソード供給管144を通じて、酸化剤となる空気が燃料電池120のカソードに供給される。カソードに供給された空気中の酸素は、電解質膜を通じてきたプロトンと、図を省略する外部回路を通じてきた電子と反応し、水を生成する。この水を含んだカソードオフガスは、ガス供給管146Aに排出される。
【0087】
三方バルブSV5及びSV6は、ガス供給管146Aとガス供給管146Bとガス供給管146Cとが連通するように制御されており、燃料電池120のカソードから送られてきたカソードオフガスは、ガス供給管146A〜146Cを通じて反応器112に供給される。このように、燃料電池120からのカソードオフガスを、改質反応を行う反応器112に送ることで、カソードオフガスに含まれる水分を反応器112における水蒸気改質反応に利用することができる。これにより、例えば、システム外から供給する水分の量を低減することができ、効率的なシステムを構成することができる。
【0088】
また、通常運転時においては、冷却管150に冷却用エアが供給されており、冷却管150を通じて熱交換により燃料電池120内部を冷却するように構成されている。
【0089】
次に、反応器112内の反応を改質反応から再生反応(燃焼反応)に切替える際の各バルブ及びポンプの制御について、図6を用いて説明する。図6は、第1の実施の形態における反応器112の改質反応から再生反応への移行制御を示す流れ図である。図6において制御部170は、まず反応器112(PSR1)内で改質反応を行うために、反応器112にガソリンとカソードオフガスとを供給する(ステップS111)。この際、反応器114(PSR2)には、アノードオフガスと燃焼エアとの混合ガスが供給されている。
【0090】
制御部170は、ガソリンとカソードオフガスとを反応器112に供給しながら、改質反応が行われている反応器112内の温度を温度センサ116によってモニタリングし、反応器112内の温度T1を検出する(ステップS112)。
【0091】
次いで制御部170は、温度センサ116によって検出した温度T1と閾値T0(例えば、約600℃)とを比較し、温度T1が閾値T0未満であるか否かを判断する(ステップS113)。制御部170が、温度T1が閾値T0以上であると判断した場合は(ステップS113否定)、引き続きステップS111に戻り、反応器112にガソリンとカソードオフガスとを供給する。
【0092】
一方、制御部170が、温度T1が閾値未満であると判断した場合は(ステップS113肯定)、反応器112へのガソリン及びカソードオフガスの供給を停止する(ステップS114)。この際、制御部170は、反応器114へのアノードオフガスの供給も停止する。
【0093】
次いで、制御部170は、各反応器の改質/再生反応を切替え、反応器112にアノードオフガス及び燃焼エアを供給して、反応器112内の反応を再生反応に切替え、低下した反応器内の温度を再生反応(燃焼反応)により再生させると共に、反応器114にガソリン及びカソードオフガスを供給し、改質反応を行い切替え処理を終了する(ステップS115)。
【0094】
尚、前記説明においては、反応器112における改質反応から再生反応への切替え制御のみについて説明したが、反応器114における改質反応から再生反応への切替え時にも同様の制御が行われる。
【0095】
尚、以上においては、改質用原料としてガソリンを使用した場合を説明したが、ガソリン以外の他の炭化水素燃料を使用した場合も同様の構成とすることができる。
【0096】
次に、上述の第1の実施の形態における燃料電池システムにおける燃料電池120に転用可能な水素分離膜型燃料電池の他の具体例について、図7〜図8を用いて説明する。なお、他の具体例についての詳細については特開2004−146337号公報の記載を参照することができる。
【0097】
図7は、バナジウム(V)で形成された緻密な基材212を含む5層構造の電池膜202と、電池膜202を狭持する酸素極(O2極)204及び水素極(H2極)206とで構成され、金属拡散抑制層及び反応抑制層を備えた水素分離膜型燃料電池200を示したものである。電池膜202は、基材212の水素極(アノード)206側の面に該面側から順に緻密体の金属拡散抑制層214とパラジウム(Pd)層216とを備える。また、基材212の酸素極(カソード)204側の面に該面側から順に緻密体の反応抑制層(例えばプロトン伝導体や混合伝導体、絶縁体の層)210と、固体酸化物からなる薄膜の電解質層(例えばペロブスカイトの1つである金属酸化物SrCeO3膜など)208とを備えている。反応抑制層210は、電解質層208中の酸素原子と基材(V)212との反応を抑制する機能を担うものである。なお、酸素極204又は水素極206と電池膜202との間には前記同様に、各々エア流路180、燃料流路182が形成されている。金属拡散抑制層及び反応抑制層の詳細については既述の通りである。
【0098】
図8は、水素透過性金属を用いた緻密な水素透過膜を有する電池膜302と、電池膜302を狭持する酸素極(O2極)304及び水素極(H2極)306とで構成された固体高分子型の水素分離膜型燃料電池300を示したものである。電池膜302は、例えば、ナフィオン(登録商標)膜などの固体高分子膜からなる電解質層312の両側の面を、水素透過性の緻密な金属膜で挟んだ多層構造となっており、電解質層312の水素極(アノード)306側の面にパラジウム(Pd)層(緻密膜)314を備え、電解質層312の酸素極(カソード)304側の面に該面側から順に、基材となるバナジウム−ニッケル合金(V−Ni)層(緻密膜)310とPd層(緻密膜)308とを備えている。なお、酸素極304又は水素極306と電池膜302との間には前記同様に、各々エア流路180、燃料流路182が形成されている。燃料電池120においてもまた、V−Ni層310とPd層308との間には金属拡散抑制層を設けることができ、V−Ni層310又はPd層314と電解質層312との間には反応抑制層を設けることができる。
【0099】
図8に示す固体高分子型の燃料電池では、含水電解質層を挟むようにして水素透過性金属を用いた水素透過膜が形成された構成とすることにより、高温での電解質層の水分蒸発及び膜抵抗増大の抑制が可能で、一般に低温型の固体高分子型燃料電池(PEFC)の作動温度を300〜600℃の温度域に向上させることができる。これにより、燃料電池から排出されたカソードオフガスを直接、改質反応させるPSR型改質器に供給する本発明の燃料電池システムの構成に好適である。
【0100】
以上のように第1の実施の形態においては、改質反応器の中心に高熱伝導率を有する触媒担持部を、また、ガスの出入り口付近に低熱伝導率を有する触媒非担持部を配置することで、熱が改質反応器の中央部に位置する触媒担持部から逃げにくくすることができ、触媒担持部の蓄熱性を向上させることができる。また、改質反応器の軸方向(ガス流れ方向)に対して凸状の温度分布を構成しやすい。これにより、水素生成装置並びに燃料電池システム全体の熱利用効率を高めることができる。
【0101】
また、第1の実施の形態においては、改質反応器の触媒担持部の熱容量を触媒非担持部の熱容量よりも高くすることで、触媒担持部に蓄えることのできる熱量を多くすることでき、より多くの改質反応を行えるようになる。このため、反応器の改質/再生反応の切替え回数を少なくすることができる。
【0102】
更に、第1の実施の形態においては、改質反応器の触媒担持部の構造を、触媒担持能に優れる触媒層と前記触媒層よりも伝熱性に優れる金属層との積層構造とすることで、触媒担持部全体の触媒担持能を維持したまま改質反応器内の面内温度分布を均一にすることができる。
【0103】
また、第1の実施の形態においては、触媒担持部の触媒担持量が部位によって異なり、改質反応時における理想温度分布に従って、温度が高い部位の触媒担持量を少なくし、温度の低い部位の触媒担持量を多くすることで、水素含有ガスの生成効率を維持したまま、高熱により触媒が凝集するのを防止することができる。
【0104】
(第2の実施の形態)
次に本発明の第2の実施の形態について説明する。本実施の形態において説明する改質反応器は、第1の実施の形態の燃料電池システム100における反応器112及び114に転用可能な改質反応器である。
【0105】
以下に図9を用いて第2の実施の形態における改質反応器について説明する。図9は、第2の実施の形態における反応器の構成を説明するための概略断面図である。図9に示すように、反応器412は、両端が閉塞された断面円形の筒状体460と、筒状体460の内壁面に担持された触媒担持部462と、触媒非担持部464及び466と、で構成されており、筒状体460は反応を行なうための空間を形成すると共に、触媒担持体として機能を担っている。
【0106】
筒状体460は、セラミックスハニカムで一体化された触媒担持部462と、その両端に備えられるセラミックスハニカムを分割化した触媒非担持部464及び466とを直径10cmの断面円形の筒型に成形し、筒の長さ方向の両端を閉塞した中空体である。断面形状やサイズは、目的等に応じて、円形以外の矩形、楕円形などの任意の形状、サイズを選択することができる。
【0107】
反応器412の中心に配置される触媒担持部462は、一体化されたセラミックスハニカムから構成されているため熱伝導率にロスがなく高い熱伝導率を有する。これに対し、反応器412のガスの出入り口付近に配置された触媒非担持部464及び466は、分割化されたセラミックスハニカムで構成されていることから、分割界面において熱伝導率にロスがあり、触媒担持部462と比較すると全体として熱伝導率が低くなっている。このため、第1の実施の形態における反応器112と同様に、反応器412の中央部に位置する触媒担持部462から熱が逃げにくくなり触媒担持部462の蓄熱性を向上させることができる。また、反応器412の軸方向(ガス流れ方向)に対して凸状の温度分布を構成しやすい。
【0108】
反応器112は、筒状体内壁の曲面のうち、筒状体の長さ方向両端から筒内方向に向かう筒の中央付近、すなわち長さ方向の両端からそれぞれ所定距離Dの領域を、触媒を担持しない触媒非担持部464及び466とし、これを除く全面を、触媒を担持する触媒担持部462としている。触媒担持部462に担持される触媒としては、上述と同様にPd、Ni、Pt、Rh、Ag、Ce、Cu、La、Mo、Mg、Sn、Ti、Y、Zn等の金属を用いることができる。
【0109】
触媒担持部462により改質反応を行った場合、改質生成された水素含有ガスは該ガスの排出方向下流側の触媒非担持部466で冷却され、水素含有ガスを燃料電池120の運転温度に近づけて供給できる。また、逆に改質反応から再生反応に切替えられた場合には、触媒非担持部466は水素含有ガスとの熱交換により昇温した状態にあり、水素含有ガスの排出方向とは逆向きに供給された燃焼用燃料であるアノードオフガスは触媒非担持部466で予熱された後触媒担持部462に供給されるようになっている。これにより、触媒担持部462が備えられた筒状体460の中央付近ほど、蓄熱量が高くなる温度分布が形成され、係る温度分布は反応性の点で有利である。なお、筒状体460には、触媒の温度を計測するための温度センサ116が取付けられている。
【0110】
また、筒状体460の改質側の壁面には、図1における燃料供給管130Bとガス供給管146Cとが接続されており、同様に燃料供給管130Bの先端部には噴射装置468が備えられている。更に、筒状体460の再生側の壁面には、水素含有ガス排出管134Aとアノード排管138Bとが接続されている。
【0111】
噴射装置468は、通常運転時に反応器412にて水蒸気改質反応を行う場合にはガソリン(改質用原料)を広角に噴射しカソードオフガス中に含まれる水分と共に筒状体460に内装された触媒担持部462上への供給、反応を行なうことができるようになっている。この場合、水蒸気改質反応によって生成した水素含有ガスは、水素含有ガス排出管134Aから排気され、図1における燃料電池120に供給される。
【0112】
改質反応から切替えて反応器412にて再生反応を行う場合には、アノードオフガス(及び必要によりガソリンや水素含有ガス等)を供給することにより、筒状体460に内装された触媒担持部462上へのアノードオフガスを供給し、酸化反応を行なうことができる。
【0113】
また、本実施の形態において触媒担持部462に改質側に担持される触媒の担持量は、再生側(水素含有ガスの排出(出口)側)に担持される触媒担持量よりも少なくなるように構成されている。第2の実施の形態における理想的な温度分布と触媒担持部462に担持される触媒の担持量との関係について図10を用いて説明する。図10は、第2の実施の形態における理想的な温度分布と触媒の担持量との関係を説明するための説明図である。
【0114】
本実施の形態では図10に示すように、反応器412内の温度分布のピークが触媒担持部462の再生側にくるように設定される。これは以下のような観点に基づくものである。まず、改質用ガス導入部位で触媒量が多いと改質側で改質用原料がやや過剰に反応してしまうため、触媒担持部内を理想の温度分布に保つことがむずかしくなってしまう場合がある。次に、水蒸気改質反応は吸熱反応であることから高温であるほど水蒸気改質反応が促進される。このため、触媒担持部462の水素含有ガスの出口側(再生側)の温度が低いと、水素含有ガスが元の原料に戻ってしまうことがある。更に、メタンの改質反応は、「CH4+H2O⇔3H2+CO」のように、可逆反応である。可逆反応は、温度が高いと再生側にピークが移動し、温度が低いと改質側にピークが移動する。このため、触媒担持部462の出口側(再生側)の温度が低いと、生成される水素ガスの量が減るため好ましくない場合がある。以上のような観点からは、反応器412内の温度ピークを触媒担持部462の再生側に合わせることが好ましく、触媒担持部462の再生側(出口側)に発熱反応に寄与する触媒の担持量を多くすることが好ましい。
【0115】
このため、本実施の形態においては図10に示すように触媒担持部462の再生側に温度ピークが位置するような温度分布を理想的な温度分布とする。従って、触媒担持部462の触媒担持量は、図10に示すように、触媒担持部462の再生側(図10における462C)の触媒担持量が一番多い。
【0116】
但し、触媒担持部462の再生側(出口側)の温度が高ければよいとのことではなく、温度は平衡的な限界を示していることから、反応速度を稼ぐ観点からは、反応器412内全体である程度の熱量が必要となる。これらを総合的に勘案し、本実施の形態の反応器412における触媒担持部462の触媒担持量は、図10に示すように、触媒担持部462の改質側及び中心部(図10における462A及び462B)の触媒担持量を適量とし、触媒担持部462の再生側(図10における462C)の触媒担持量を一番多くしている。
【0117】
以上のように第2の実施の形態においては、改質反応器の中心に高熱伝導率を有する一体化された触媒担持部を、また、ガスの出入り口付近に低熱伝導率を有する分割化された触媒非担持部を配置することで、熱が改質反応器の中央部に位置する触媒担持部から逃げにくくすることができ、触媒担持部の蓄熱性を向上させることができる。また、改質反応器の軸方向(ガス流れ方向)に対して凸状の温度分布を構成しやすい。これにより、水素生成装置並びに燃料電池システム全体の熱利用効率を高めることができる。
【0118】
また、第2の実施の形態においては、触媒担持部の触媒担持量が部位によって異なり、改質側の触媒担持量を再生側の触媒担持量よりも少なくすることで、改質用原料導入部位での過剰な水蒸気改質反応(吸熱反応)を抑制しながら、触媒担持部の再生側に温度ピークが位置するような温度分布とすることができる。これにより、さらに水素生成装置並びにシステム全体の熱の利用効率を高めることができる。
【0119】
また、本発明における改質反応器は上述のような構成に限定されるものではなく、例えば、触媒担持部の伝熱面積を大きくして伝熱効率を上げ、前記触媒担持部の両端に位置する触媒非担持部の伝熱面積を小さくして伝熱効率を下げることで、本発明の効果を奏することもできる。
【0120】
また、本発明における反応器は図11に示すように熱伝導率の低い部材で外部を覆うように構成してもよい。図11は、本発明の改質反応器の他の例を示す概略図である。図11に示すように本発明においては例えば図1における反応器112を熱伝導率の低い外覆部材500で覆うことにより、更に反応器112の蓄熱性を向上させることができる。外覆部材500としては、例えば、シリカ、アルミナ等の無機繊維質、セラミックスファイバー等を用いることができる。
【図面の簡単な説明】
【0121】
【図1】第1の実施の形態の燃料電池システムの構成を示す概略図である。
【図2】反応器の構成を説明するための概略断面図である。
【図3】改質反応時における改質反応器内の理想的な温度分布と触媒の担持量との関係を説明するための説明図である。
【図4】第1の実施の形態における燃料電池を説明するための断面図である。
【図5】バルブ制御を説明するための構成図である。
【図6】第1の実施の形態における反応器412の改質反応から再生反応への移行制御を示す流れ図である。
【図7】本発明における燃料電池の他の例を説明するための断面図である。
【図8】本発明における燃料電池の他の例を説明するための断面図である。
【図9】第2の実施の形態における反応器の構成を説明するための概略断面図である。
【図10】第2の実施の形態における理想的な温度分布と触媒の担持量との関係を説明するための説明図である。
【図11】本発明の改質反応器の他の例を示す概略図である。
【符号の説明】
【0122】
100 燃料電池システム
110 水素生成装置
112,114,412 反応器
120,200,300 燃料電池
162,462 触媒担持部
164,166,464,466 触媒非担持部
170 制御部
184,212 基材
186,188,216,308,314 パラジウム(Pd)層
190,208,312 電解質層
310 バナジウム−ニッケル合金(V−Ni)層

【特許請求の範囲】
【請求項1】
触媒を担持した触媒担持部、及び、前記触媒担持部のガス流れ方向における両端部に設けられ且つ前記触媒担持部よりも熱伝導率が低い触媒非担持部を備え、改質用原料が供給されたときには加熱された前記触媒上で前記改質用原料の改質反応によって水素含有ガスを生成し、発熱用原料が供給されたときには前記発熱用原料の発熱反応によって前記触媒を加熱し、前記改質反応と前記発熱反応とが切り替え可能な一対の改質反応器と、
前記改質反応器の前記改質反応と前記発熱反応とが交互に行われるように、前記改質反応器に供給される原料を前記改質用原料及び前記発熱用原料のいずれかに切り替える制御手段と、
を備えた水素生成装置。
【請求項2】
前記触媒担持部の熱容量が前記触媒非担持部の熱容量よりも高い請求項1に記載の水素生成装置。
【請求項3】
前記触媒担持部に担持される前記触媒の担持量を、部位に応じて異なるようにした請求項1又は2に記載の水素生成装置。
【請求項4】
前記触媒担持部に担持される前記触媒の担持量を、改質反応時における前記改質反応器内の温度分布に従って異なるようにした請求項3に記載の水素生成装置。
【請求項5】
前記触媒担持部に担持される前記触媒の担持量を、前記改質反応時における前記改質反応器内の温度分布に従って、前記触媒担持部の温度が高い部位ほど少なくした請求項4に記載の水素生成装置。
【請求項6】
前記触媒担持部の前記改質用原料が供給される側に担持される前記触媒の担持量を、前記水素含有ガスを排出する側の担持量よりも少なくした請求項1又は2に記載の水素生成装置。
【請求項7】
前記制御手段は、前記一対の改質反応器の前記改質反応及び前記発熱反応をそれぞれ交互に切替えて、一方の前記改質反応器が改質反応を行うと共に他方の前記改質反応器が発熱反応をおこなうようにした請求項1〜6のいずれか1項に記載の水素生成装置。
【請求項8】
請求項1〜7のいずれか1項に記載の水素生成装置と、
前記改質反応器で改質生成された水素含有ガスの供給により発電する燃料電池と、
を備えた燃料電池システム。
【請求項9】
前記燃料電池は、水素透過性金属層と、前記水素透過性金属層の少なくとも片側に配置された電解質層と、を備えた請求項8に記載の燃料電池システム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate


【公開番号】特開2007−63038(P2007−63038A)
【公開日】平成19年3月15日(2007.3.15)
【国際特許分類】
【出願番号】特願2005−248424(P2005−248424)
【出願日】平成17年8月29日(2005.8.29)
【出願人】(000003207)トヨタ自動車株式会社 (59,920)
【出願人】(000003609)株式会社豊田中央研究所 (4,200)
【Fターム(参考)】