説明

測位装置

【課題】時計誤差の補正用の送信局を用いず自機内の独自の処理によりセンサ間の時計誤差の補正を可能にする測位装置を得ることを目的とする。
【解決手段】複数のセンサで複数回受信した、目標が放射または反射した電波、音波または光波の到来時間とドップラ周波数に基づいて、それぞれセンサ間の受信波の到来時間差とドップラ周波数差を算出する差分算出手段と、上記算出された到来時間差に基づいた、かつセンサ間の時計誤差の補正を加えた目標の位置を算出する方程式と、上記算出されたドップラ周波数差に基づいた目標の位置と速度を算出する方程式を連立させて目標の位置と速度およびセンサ間の時計誤差を算出する測位手段を備えたものである。

【発明の詳細な説明】
【技術分野】
【0001】
この発明は、目標から放射もしくは反射された電波を受信して目標の位置と速度を算出する測位装置に関するものである。
【背景技術】
【0002】
測位装置では、目標から放射もしくは反射された電波を複数のセンサで受信し、受信した電波の到来時間差などに基づいて目標の位置を算出しているが、その場合、目標からの電波を各センサで正確なタイミングで受信する必要がある。そのためには、各センサは高精度な時刻同期が確立されている必要があり、センサ間をケーブルで結び、同一のクロックで互いのセンサの同期を取って動作させている。しかし、複数のセンサ同士が極めて近接設置される場合には配線基板などを用いて一体的に接続できるが、センサ同士が離れた位置に設置されている場合には、センサ間を個々のケーブルで接続しなければならず、そのための多数のケーブルの準備や接続作業が要求され、コストの面で不利である。また、センサ自体が移動するような場合には、センサ同士をケーブルで結ぶことは構造上に困難である。この問題を解決する方法として、各センサで時計誤差を含んだ状態で電波の到来時間を観測し、その後の処理で時計誤差を補正する方法がある(例えば特許文献1)。この方法は、既知の位置に送信局を置き、その送信局からの電波を各センサで受信し、その電波の到来時間差を求めることで、センサ間の時計誤差を算出するものである。目標の位置を算出する場合には、目標からの電波の到来時間差を、先に求めた時計誤差で補正して、補正値を基に目標の位置を算出する。
【0003】
【特許文献1】特開2001−272448公報
【発明の開示】
【発明が解決しようとする課題】
【0004】
以上のように従来の測位装置では、目標からの電波の到来時間差を、予め求めた時計誤差を用いて補正して、補正値を基に目標の位置を算出するようにしているが、センサ間の時計誤差を得るために送信局を別途設ける必要がり、その分装置が大掛かりとなるという問題があった。
【0005】
この発明は、上記問題点を解決するためになされたもので、時計誤差の補正用の送信局を用いず自機内の独自の処理によりセンサ間の時計誤差の補正を可能にする測位装置を得ることを目的とする。
【課題を解決するための手段】
【0006】
この発明に係る測位装置は、複数のセンサで複数回受信した、目標が放射または反射した電波、音波または光波の到来時間とドップラ周波数に基づいて、それぞれセンサ間の受信波の到来時間差とドップラ周波数差を算出する差分算出手段と、上記算出された到来時間差に基づいた、かつセンサ間の時計誤差の補正を加えた目標の位置を算出する方程式(例えば後述の(3)式)と、上記算出されたドップラ周波数差に基づいた目標の位置と速度を算出する方程式(例えば後述の(4)式)を連立させて目標の位置と速度およびセンサ間の時計誤差を算出する測位手段を備えたものである。
【発明の効果】
【0007】
この発明によれば、各センサ間で時計誤差を含んだ状態で電波の到来時間を観測し、その後の自機内の測位処理により独自で時計誤差を補正するようにしているので、センサの配置やセンサ自体の移動などに対応してセンサ間の同期をとるためのケーブル接続を考慮する必要が無い。また、時計誤差を補正するために送信局を別途設置する必要がない。
【発明を実施するための最良の形態】
【0008】
実施の形態1.
図1はこの発明の実施の形態1による測位装置の機能構成を示すブロック図である。
図において、複数のセンサ11 〜1N は、目標から放射された、もしくは目標で反射した電波をそれぞれ複数回受信し、受信波の到来時間とドップラ周波数を観測するする手段である。ここで、Nはセンサの総数とする。差分算出部2は、各センサで複数回受信した電波の到来時間差とドップラ周波数差を算出する手段である。測位部3は、各センサ間の電波の到来時間差とドップラ周波数差を基づいて、センサ間の時計誤差を補正して電波を受信した各時刻における目標の位置と速度を算出する手段である。そのため、測位部3は一括測位部31を備え、時計誤差を補正して目標の位置を算出する方程式と、ドップラ効果を利用して目標の位置と速度を算出する方程式を電波の受信時刻毎に作成し、これらを連立させることで、センサ間の時計誤差と電波を受信した各時刻における目標の位置と速度を算出する手段である。
【0009】
次にこの発明の原理について説明する。
以下では、目標数が1の場合を例にとり説明する。センサ11 〜1N で、目標から放射された、もしくは目標で反射された電波を受信すると、各センサは電波を受信した到来時間とドップラ周波数を観測する。この方法について、センサ1n (1≦n≦N)を例に説明する。
センサ1n では、まず受信信号を低い周波数にダウンコンバートし、A/D変換器でデジタル信号に変換する。以下では、目標からの電波の信号波形が既知であるとして説明を続ける。なお以下では、その既知の信号波形を基準信号と呼び、基準信号はセンサで受信した信号と同一の周波数に変換されているものとする。
【0010】
到来時間とドップラ周波数の測定方法としては、いくつかの方法が考えられるが、ここでは、Seymour Stein,“Algorithms for Ambiguity Function Processing,”IEEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL. ASSP-29, NO.3, JUNE 1981(参考文献1とする)に記載された方法などにより、センサ1n で受信した信号の到来時間がτn で、ドップラ周波数がfn であったとする。
なお以下では、複数の時刻で観測した到来時間を扱う。そのため、目標からの電波を観測した時刻(観測時刻)をtk (1≦k≦K、kは自然数で観測した順番を表し、Kは観測の総数を表す)とすると、観測時刻tk においてセンサ1n で観測した到来時間をτn(k)、ドップラ周波数をfn(k)と表す。
【0011】
各センサでは、上記の様にして複数の異なった観測時刻tk で電波の到来時間τn(k)を観測し、差分算出部2に伝送する。差分算出部2では、センサ11 〜1N から出力された到来時間とドップラ周波数のそれぞれの差分を算出する。いま、観測時刻tk において、センサ1n で受信した電波の到来時間がτn(k)で、センサ1m (1≦m≦N、n≠m)で受信した電波の到来時間がτm(k)であるとする。この場合、差分算出部2では、(1)式により観測時刻tk における電波の到来時間差Δτn,m(k)を算出する。
Δτn,m(k)=τn(k)−τm(k) (1)
【0012】
また、観測時刻tk において、センサ1n で受信した電波のドップラ周波数がfn(k)で、センサ1m で受信した電波のドップラ周波数がfm(k)であるとする。この場合、差分算出部2では、(2)式により観測時刻tk における電波のドップラ数波数差Δfn,m(k)を算出する。
Δfn,m(k)=fn(k)−fm(k) (2)
【0013】
上記は目標からの電波が既知の場合について説明したが、未知の場合についても到来時間を求めることが可能である。具体的には、センサ1m で受信したデジタル信号を基準号してセンサ1n に伝送し、センサ1n で受信したデジタル信号と比較すれば、到来時間差Δτn,m(k)とドップラ周波数差Δfn,m(k)を推定することができる。
これまでの説明では、参考文献1に記載の方法を用いて到来時間差とドップラ周波数差を求める方法について説明したが、これに限らず、他の方式により到来時間差とドップラ数波数差を求めてもよい。
【0014】
測位部3は一括測位部31を備え、差分算出部2から出力された電波の到来時間差Δτn,m(k)と、ドップラ周波数差Δfn,m(k)を基に、複数の方程式を生成し、それらを解くことで目標位置と速度を算出する。具体的処理方法を以下に説明する。
センサ1n とセンサ1m の観測時刻tk における電波の到来時間差Δτn,m(k)には、時計誤差が含まれる。この時計誤差をεn,m (未知数)とすれば、(Δτn,m(k)−εn,m )は時計誤差を含まない到来時間差となる。このため(Δτn,m(k)−εn,m )に電波の速度cを乗じた距離は、「センサ1n から目標までの距離」と「センサ1m から目標までの距離」の差に等しくなる。ゆえに、(3)式が成立する。
【数1】

ここで、pt(k)は観測時刻tk における目標の位置(未知のベクトル)、pn(k)は観測時刻tk におけるセンサ1n の位置(既知のベクトル)、pm(k)は観測時刻tk におけるセンサ1m の位置(既知のベクトル)とする。また‖*‖は、ベクトル*の長さを表すものとする。
【0015】
また、観測時刻tk におけるセンサ1n とセンサ1m の電波のドップラ周波数差がΔfn,m(k)の場合には、ドップラ効果により(4)式が成り立つ。
【数2】

ここで、f0 は目標で放射または反射した電波の周波数(基本的に既知の値であるが、未知の場合はフーリエ変換などで推定しても良い。)、vt(k)は観測時刻tk における目標の速度(未知のベクトル)、vn(k)は観測時刻tk におけるセンサ1n の速度(既知のベクトル)、vm(k)は観測時刻tk におけるセンサ1m の速度(既知のベクトル)とする。
【0016】
観測時刻tk における(3)式の方程式はセンサ数マイナス1成立し、(4)式の方程式もセンサ数マイナス1成立する。ゆえに、方程式の本数は2(N−1)個成立する。また、目標からの電波を受信した回数がK回(観測時刻はtk(1≦k≦K))であり、各観測時刻tk で(3)式、(4)式のような方程式は2(N−1)個成り立つため、合計で方程式は2(N−1)×K個成り立つ。
【0017】
一方、(3)式、(4)式における未知数は、目標の位置に関するp(k) と速度に関するv(k) 、さらに時計誤差に関するεn,m がある。このうち目標の位置と速度の未知数は、観測時刻tk 毎に異なるので、目標位置と速度を3次元で算出する場合には、6×K個となる。一方、センサ間の時計誤差は急激に変動しないと考えられるため、電波の観測時間(tK −t1 )の間に時計誤差が変動しない(変動してもその影響が無視できる場合を含む)とすると、εn,m は観測時刻tk によらず一定になり、(N−1)個になる。ゆえに2(N−1)×K個の方程式に含まれる未知数の総数は、((N−1)+6K)個となる。したがって、(5)式の条件を満たす場合、未知数の個数と方程式の本数が等しくなり、未知数を決定することができる。ただし、到来時間差やドップラ周波数差には観測誤差が含まれる場合があるため、(3)式と(4)式の方程式が一点で交わるとは限らない。この場合、最小二乗解を求めるようにして未知数を算出する。また、未知数の個数以上に方程式の本数が有る場合にも、最小二乗解を解くようにして、未知数を算出する。
2(N−1)×K=(N−1)+6K (5)
一括測位部31では、以上のようにして未知数(目標位置と速度、および時計誤差)を算出する。
【0018】
なお、測位部3は、一括測位部31の代わりに別の一括測位部32を備えてもよい。この一括測位部32では、(3)式と(4)式に加えて、(6)式を連立させて目標の位置と速度、さらにセンサ間の時計誤差を推定する。
t(k)+vt(k)・Δt(k) =pt(k+1) (6)
Δt(k) =t(k+1) −tk (7)
この場合、未知数の個数は変わらないが、方程式の本数が3(K−1)本増えるため、一括測位部31よりも更に観測回数が少ない条件で、未知数を推定することが可能になる。なお、到来時間差やドップラ周波数差には観測誤差が含まれる場合があるため、(3)、(4)、(6)式の方程式が一点で交わるとは限らない。この場合、最小二乗解を解くようにして未知数を推定する。また、未知数の個数以上に方程式の本数が有る場合も、最小二乗解を解くようにして、未知数を算出する。
一括測位部32では、以上のようにして未知数(目標位置と速度、および時計誤差)を算出する。
【0019】
以上のように、この実施の形態1によれば、差分算出部2により算出した各センサ間の電波の到来時間差とドップラ周波数差に基づいて、センサ間の時計誤差と電波を受信した各時刻における目標位置と速度を算出する測位部3を備えている。特に測位部3では、一括測位部31において、到来時間差に基づいた、かつセンサ間の時計誤差の補正を加えた目標の位置を算出する方程式と、ドップラ効果を利用した目標の位置と速度を算出する方程式を電波の受信時刻毎に作成し、これらを連立させることでセンサ間の時計誤差、電波を受信した各時刻における目標の位置と速度を算出するようにしている。また、一括測位部32を適用した場合には、一括測位部31で用いた2種類の方程式に加え、目標の位置と速度の関係を用いた方程式も連立させることで、時計誤差と電波を受信した各時刻における目標の位置と速度を算出するようにしている。したがって、測位装置内でセンサ間の時計誤差の補正を可能にする。そのため、センサ間の同期をとる必要がなく、センサの配置やセンサ自体の移動などに対応してセンサ間の同期をとるためのケーブル接続を考慮する必要が無い。また、時計誤差を補正するための送信局を別途設置する必要もない。
【0020】
実施の形態2.
上記実施の形態1では、センサ1n の受信信号を低い周波数にダウンコンバートする際のローカル発信器の周波数が全て等しいこと(異なってもその影響を無視できる場合を含む)を仮定していた。ところが、ローカル発信器の発振周波数もセンサ毎に少ないながらも相違が存在するケースも考えられる。この実施の形態2では、上記のような各センサのローカル発信器の周波数ズレを補正する方式について説明する。
図2は、この発明の実施の形態2による測位装置の機能構成を示すブロック図である。図において、センサ11 〜1N 、および差分算出部2は、実施の形態1の図1の場合と同じである。
測位部3は、一括測位部33を備えている。この一括測位部33は、時計誤差を補正して目標の位置を算出する方程式と、ドップラ効果を利用して目標の位置と速度を算出する方程式で、特にローカル発信器の周波数ズレを補正した方程式を電波の受信時刻毎に作成し、これらを連立させることで、センサ間の時計誤差ローカル発信器の周波数ズレ、さらに電波を受信した各時刻における目標の位置と速度を算出する手段である。
【0021】
いま、センサ1n とセンサ1m のローカル発信器の発振周波数のずれ(未知数)をξn,m とする。この場合、(Δfn,m(k)−ξn,m )がローカル発信器の発振周波数のズレを取り除いたドップラ周波数差となる。その結果ドップラ効果により(8)式が成り立つ。(ハードウエアの構成によっては、ξn,m の整数倍が周波数ズレなる場合もあるが、ここでは1倍の場合について説明する。)
【数3】

【0022】
そこで、(3)式と(8)式を連立させれば、ローカル発信器の周波数ズレを補正して未知数を算出することができる。(3)式と(8)式における未知数は、目標の位置に関するpt(k)と速度に関するvt(k)が合計で6K個、時計誤差に関するεn,m が(N−1)個、ローカル発信器の周波数ずれに関するξn,m が(N−1)個となる。このため、(9)式を満たせば、未知数の個数と方程式の本数が等しくなり、未知数を算出することができる。
2(N−1)×K=2(N−1)+6K (9)
ただし、到来時間差やドップラ周波数差には観測誤差が含まれる場合があるため、(3)式と(8)式の方程式が一点で交わるとは限らない。この場合、最小二乗解を求めるようにして未知数を算出する。また、未知数の個数以上に方程式の本数が有る場合にも、最小二乗解を解くようにして未知数を算出する。
一括測位部33では、以上のようにして未知数(目標位置と速度、および時計誤差とローカル発信器の周波数ズレ)を算出する。
【0023】
なお、測位部3は、一括測位部33の代わりに別の一括測位部34を備えてもよい。一括測位部34は、(3)式と(6)式と(8)式を連立させて未知数を算出する。(8)式が加わることで、一括測位部33よりも方程式の本数が3(K−1)本増えることから、より少ない観測回数で未知数を推定することが可能となる。
一括測位部34では、以上のようにして未知数(目標位置と速度、および時計誤差とローカル発信器の周波数ズレ)を算出する。
【0024】
以上のように、この実施の形態2によれば、差分算出部2により算出した各センサ間の電波の到来時間差とドップラ周波数差に基づいて、センサ間の時計誤差とローカル発信器の周波数ズレ、電波を受信した各時刻における目標の位置と速度を算出する測位部3を備えており、特に測位部3では、一括測位部33において、センサ間の時計誤差を補正して目標の位置を算出する方程式と、ドップラ効果を利用し、かつローカル発信器の周波数ズレの補正を加えた目標の位置と速度を算出する方程式を電波の受信時刻毎に作成し、これらを連立させることで、センサ間の時計誤差ローカル発信器の周波数ズレ、さらに電波を受信した各時刻における目標の位置と速度を算出するようにしている。また、一括測位部34を適用した場合には、一括測位部33で用いた2種類の方程式に加え、位置と速度の関係を用いた方程式も連立させることで、時計誤差とローカル発信器の周波数ズレ、更には電波を受信した各時刻における目標の位置と速度を算出するようにしている。したがって、測位装置内でセンサ間の時計誤差の補正を可能にする。そのため、センサ間の同期をとる必要がなく、センサの配置やセンサ自体の移動などに対応してセンサ間の同期をとるためのケーブル接続を考慮する必要が無く、また、時計誤差を補正するための送信局を別途設置する必要もない。また、ローカル発信器の周波数にズレが有っても、それを補正する処理を行うため、その影響を低減することができる。
【0025】
実施の形態3.
これまで説明した実施の形態1および実施の形態2では、目標から放射、もしくは目標で反射した電波を用いて、目標の位置や速度を算出する方式である。しかし、電波の方向を逆にし、各センサから放射した電波を目標で受信し、受信した電波の到来時間差やドップラ周波数差を利用して、目標の位置を推定するものであってもよい。この場合、例えば各センサの別々の信号で変調された電波を目標で受信すれば、電波の到来時間差とドップラ周波数差を算出することができるので、上記で説明した方式と同様に、目標の位置や速度などを算出することができる。
【0026】
実施の形態4.
上記各実施の形態では、目標の個数が1の場合について説明してきたが、当然ながら目標が複数個であっても本方式は成立する。
目標を複数とした場合、(3)式、(4)式、(6)式、(8)式を用いて、(3)式と(4)式の組合せ、(3)式と(4)式と(6)式の組合せ、(3)式と(8)式の組合せ、(3)式と(8)式と(6)式の組合せを目標毎にたてる。ただしこの場合、時計誤差やローカル発信器の周波数誤差は目標によらず等しい未知数とする。そして方程式を連立させて解けば、複数の目標について、観測時刻毎の各位置と速度、更には時計誤差とローカル発信器の周波数ズレを算出することができる。
【0027】
以上各実施の形態で示した測位方法は、電波を用いた場合を例にとって説明したが、これに限らず、音波や光波などに用いた場合にも適応することは可能である。また、移動端末の位置を3次元で測位する場合について説明してきたが、2次元の場合でも、高度方向は地上の表面に移動端末が存在するなどの条件を用いて計算すれば可能である。さらにまた、以上述べたこの発明の測位部の機能は、ソフトウェアプログラムに基づいてCPUを動作させることにより実行できるものである。
【図面の簡単な説明】
【0028】
【図1】この発明の実施の形態1による測位装置の機能構成を示すブロック図である。
【図2】この発明の実施の形態2による測位装置の機能構成を示すブロック図である。
【符号の説明】
【0029】
1 〜1N センサ、2 差分算出部、3 測位部、31,32,33,34 一括測位部。

【特許請求の範囲】
【請求項1】
複数のセンサで複数回受信した、目標が放射または反射した電波、音波または光波の到来時間とドップラ周波数に基づいて、それぞれセンサ間の受信波の到来時間差とドップラ周波数差を算出する差分算出手段と、
前記算出された到来時間差に基づいた、かつセンサ間の時計誤差の補正を加えた目標の位置を算出する方程式と、前記算出されたドップラ周波数差に基づいた目標の位置と速度を算出する方程式を連立させて目標の位置と速度およびセンサ間の時計誤差を算出する測位手段を備えたことを特徴とする測位装置。
【請求項2】
測位手段は、さらに目標の位置と速度の関係の方程式を加えて連立させて目標の位置と速度、およびセンサ間の時計誤差を算出することを特徴とする請求項1記載の測位装置。
【請求項3】
複数のセンサで複数回受信した、目標が放射または反射した電波、音波または光波の到来時間とドップラ周波数に基づいて、それぞれセンサ間の受信波の到来時間差とドップラ周波数差を算出する差分算出手段と、
前記算出された到来時間差に基づいた、かつ時計誤差の補正を加えた目標の位置を算出する方程式と、前記算出されたドップラ周波数差に基づいた、かつセンサ間のローカル発信器の周波数ズレの補正を加えた目標の位置と速度を算出する方程式を連立させて目標の位置と速度、およびセンサ間の時計誤差とローカル発信器の周波数ズレを算出する測位手段を備えたことを特徴とする請求項1記載の測位装置。
【請求項4】
測位手段は、さらに目標の位置と速度の関係の方程式を加えて連立させて目標の位置と速度、およびセンサ間の時計誤差とローカル発信器の周波数ズレを算出することを特徴とする請求項3記載の測位装置。

【図1】
image rotate

【図2】
image rotate


【公開番号】特開2009−122045(P2009−122045A)
【公開日】平成21年6月4日(2009.6.4)
【国際特許分類】
【出願番号】特願2007−298270(P2007−298270)
【出願日】平成19年11月16日(2007.11.16)
【出願人】(000006013)三菱電機株式会社 (33,312)
【Fターム(参考)】