説明

燐化インジウム基板および燐化インジウム結晶

【課題】 ウェハー面内の特性の均一性や安定性、寿命に優れた化合物半導体デバイスを得るための、ドーパント濃度のウェハー面内および厚さ方向の均一性に優れた、低転位密度の燐化インジウム基板とその製造方法を提供する。
【解決手段】 結晶の成長方向が〈100〉方位になるように、結晶胴部に対する所定の断面積比を有する種結晶を成長容器下端に設置し、さらに燐化インジウム原料とドーパント及び酸化ホウ素を収容した成長容器を結晶成長炉に設置して、燐化インジウムの融点以上の温度に昇温して、酸化ホウ素と燐化インジウム原料及びドーパントを加熱溶融したのち、成長容器の温度を降下させることにより、ドーパント濃度のウェハー面内および厚み方向の均一性が良好な、低転位密度の燐化インジウム単結晶を得る。

【発明の詳細な説明】
【技術分野】
【0001】
光通信用半導体レーザー、フォトディテクタ等の光電子分野や、トランジスタ等の電子分野に利用される、燐化インジウム基板、燐化インジウム結晶、およびその製造方法に関するものである。
【背景技術】
【0002】
燐化インジウム(InP)結晶は、液体封止引上げ法(LEC法)や蒸気圧制御LEC法(VCZ法)で製造されている。また最近では、垂直温度傾斜凝固法(VGF法)による直径3インチ(約75mm)および直径4インチ(約100mm)の単結晶の成長が報告されている。
【0003】
VGF法では、低温度勾配下で結晶を成長できるため、低転位密度のInP結晶が成長できると報告されている。たとえば、13th International Conference on Indium Phosphide and Related Materials, Post Deadline Papers, Tsukuba, Ibaraki, (1998) 15-16には、直径3インチのFeがドープされたInP結晶について報告されている。この論文には、(100)ウェハーのエッチピット密度(EPD)が3,000cm−2であったと報告されている。このエッチピット密度は、結晶の転位密度に相当する。この論文には、結晶の成長方位は示されていない。Technical Digest of GaAs IC Symposium, Monterey, (2002) 147-150には、Feがドープされた直径4インチの市販の(100)InPウェハーは、エッチピット密度やフォトルミネッセンス(PL)強度がウェハー面内で大きく片流れしており、Fe濃度も約2倍変化していることが報告されている。このことから、市販のVGF結晶の成長方位は、〈111〉であると推定している。また、縦型ボート法で〈100〉シードを用いて直径4インチのFeドープInP結晶を成長し、転位密度の平均値が11,000cm−2の(100)ウェハーが得られたと報告している。
【0004】
また、13th International Conference on Indium Phosphide and Related Materials, Post Deadline Papers, Tsukuba, Ibaraki, (1998)1-2, Japanese Journal of Applied Physics, 38 (1999) 977-980には、VGF法で〈100〉方位に成長した、直径100mmのInP結晶について報告されている。さらに、14th International Conference on Indium Phosphide and Related Materials, Davos, Switzerland, (1999) 249-254には、VGF法で〈100〉方位に成長した直径100mmのInP結晶を、燐化鉄(FeP)雰囲気で熱処理することによって、Feがドープされた直径100mmの(100)InPウェハーが得られたと報告されている。
【0005】
また、Journal of Crystal Growth 132 (1993) 348-350及びJournal of Crystal Growth 158 (1996) 43-48には、結晶胴部の直径にほぼ等しい〈100〉方位の種結晶を用いて、S(硫黄)を添加した直径50mmの単結晶を得たことなどが報告されている。
【0006】
InP結晶の成長では、双晶(ツイン)の発生が最も大きな問題である。特に、容器内で結晶を成長するVGF法や垂直ブリッジマン法(VB法)などの垂直ボート法により、低温度勾配下で結晶成長する際には、ツインが高い頻度で発生するため、単結晶を得ることが非常に難しい。
【0007】
そのため、Journal of Crystal Growth 95 (1989) 109-114では、ツインの発生しにくい〈111〉方位に成長する方法が報告されている。しかし、通常(100)ウェハーが用いられるため、Technical Digest of GaAs IC Symposium, Monterey, (2002)147-150に記載されているように、成長方向に対して54.7°傾斜させて(100)ウェハーを採取する必要がある。そのため、ウェハー面内でドーパント濃度に大きな勾配が生じるという問題がある。Feがドープされた直径4インチ(約100mm)の市販の(100)InPウェハーは、ウェハー面内でFe濃度が約2倍変化していると報告されている。Fe濃度がこのように大きく変化すると、基板面内の電気特性も同様に大きく変化する。そのため、光通信用半導体レーザー、フォトディテクタ等の光電子デバイスや、トランジスタ等の電子デバイス用基板として使用した場合、デバイス特性がウェハー面内で一定にならないという問題が考えられる。
【0008】
一方、特開平11−302094では、ツインの発生を防止するため、増径部における結晶成長速度を20mm/hr以上として、るつぼの逆円錐形の増径部の傾斜角度を、底部中央の法線に対して80°以上90°未満にするのが好ましいことが記載されている。通常ドーパントは、原料と共にるつぼに入れて結晶成長が行われるが、成長速度が速すぎると、組成的過冷却が生じて多結晶化することが考えられる。そこで、ドーパントを添加しない無添加の単結晶を成長してウェハー状に加工した後で、14th International Conference on Indium Phosphide and Related Materials, Davos, Switzerland, (1999) 249-254にあるように、燐化鉄(FeP)雰囲気で熱処理して、FeがドープされたInP基板を得る方法が考えられる。しかし、このように雰囲気から拡散させてドーパントをドープする方法では、ドーパントの濃度がウェハー表面に近いほど高くなるような分布を生じ易いと考えられる。そのため、光通信用半導体レーザー、フォトディテクタ等の光電子デバイスや、トランジスタ等の電子デバイス用基板として使用した際、デバイス特性が安定しないという問題が考えられる。
【0009】
また、Journal of Crystal Growth 158 (1996) 43-48には、結晶胴部の直径にほぼ等しい〈100〉方位の種結晶を用いることによって、無添加やS(硫黄)を添加した、直径50mmの単結晶が得られたと報告されている。しかし、転位密度を減らす効果があるSを2×1018cm−3もの高濃度添加しているにもかかわらず、エッチピット密度(EPD)は8,000〜10,000cm−2と高い。光通信用半導体レーザー、フォトディテクタ等の光電子分野に用いられるInP基板では、転位がデバイス特性や寿命を低下させることが知られており、このように転位密度の高い基板は実用上問題があると考えられる。
【先行技術文献】
【特許文献】
【0010】
【特許文献1】特開平11−302094号公報
【非特許文献】
【0011】
【非特許文献1】13th International Conference on Indium Phosphide and Related Materials, Post Deadline Papers, Tsukuba, Ibaraki, (1998) 15-16
【非特許文献2】Technical Digest of GaAs IC Symposium, Monterey, (2002) 147-150
【非特許文献3】13th International Conference on Indium Phosphide and Related Materials, Post Deadline Papers, Tsukuba, Ibaraki, (1998)1-2
【非特許文献4】Japanese Journal of Applied Physics, 38 (1999) 977-980
【非特許文献5】14th International Conference on Indium Phosphide and Related Materials, Davos, Switzerland, (1999) 249-254
【非特許文献6】Journal of Crystal Growth 132 (1993) 348-350及びJournal of Crystal Growth 158 (1996) 43-48
【非特許文献7】Journal of Crystal Growth 95 (1989) 109-114
【非特許文献8】Technical Digest of GaAs IC Symposium, Monterey, (2002)147-150
【非特許文献9】14th International Conference on Indium Phosphide and Related Materials, Davos, Switzerland, (1999) 249-254
【非特許文献10】Journal of Crystal Growth 158 (1996) 43-48
【発明の概要】
【発明が解決しようとする課題】
【0012】
低転位密度で、ドーパントのウェハー面内および厚さ方向の均一性に優れたInP基板を、光通信用半導体レーザー、フォトディテクタ等の光電子デバイスや、トランジスタ等の電子デバイス用基板として用いることにより、ウェハー面内の特性の均一性や安定性、寿命に優れた化合物半導体デバイスを得ることを課題とする。
【課題を解決するための手段】
【0013】
本発明のドーパントを含有する燐化インジウム基板は、ウェハー面内の転位密度の平均値が5000cm−2未満であり、ドーパント濃度のウェハー面内の最大値と最小値の差の平均値に対する比率が30%以下であり、かつウェハーの厚み方向の分布が実質的に均一であることを特徴とする。さらに、ウェハー面内の転位密度の平均値が2000cm−2未満であり、ドーパント濃度のウェハー面内の最大値と最小値の差の平均値に対する比率が30%以下であり、かつウェハーの厚み方向の分布が実質的に均一であることを特徴とする。
【0014】
このように低転位密度で、ドーパントのウェハー面内および厚さ方向の均一性に優れたInP基板を、光通信用半導体レーザー、フォトディテクタ等の光電子デバイスや、トランジスタ等の電子デバイス用基板として用いることにより、ウェハー面内の特性の均一性や安定性、寿命に優れた化合物半導体デバイスが得られる。
【0015】
本発明のドーパントを含有するInP基板は、直径が75mm以上、さらには直径が100mm以上、含有するドーパントがFe(鉄)、S(硫黄)、Sn(錫)、Zn(亜鉛)の場合に顕著な効果が得られる。
【0016】
また、本発明は、成長方向が〈100〉方位であり、成長方向に垂直な(100)面内の転位密度の平均値が5000cm−2未満であるドーパントを含むInP結晶である。また、成長方向が〈100〉方位であり、成長方向に垂直な(100)面内の転位密度の平均値が2000cm−2未満であるドーパントを含むInP結晶である。
【0017】
また、直径が75mm以上、さらには直径が100mm以上であり、含有するドーパントがFe(鉄)、S(硫黄)、Sn(錫)、Zn(亜鉛)である。
【0018】
このようなInP結晶から得られたInP基板を、光通信用半導体レーザー、フォトディテクタ等の光電子デバイスや、トランジスタ等の電子デバイス用基板として用いることにより、ウェハー面内の特性の均一性や安定性、寿命に優れた化合物半導体デバイスが得られる。
【0019】
このような特徴を有するドーパントを含むInP単結晶は、結晶の成長方向が〈100〉方位になるように、結晶胴部の15%以上の断面積を有する種結晶を成長容器下端に設置し、さらに燐化インジウム原料とドーパント及び酸化ホウ素を収容した成長容器を、結晶成長炉に設置して燐化インジウムの融点以上の温度に昇温して、酸化ホウ素と燐化インジウム原料及びドーパントを加熱溶融したのち、成長容器の温度を降下させることによって得られる。種結晶は、結晶胴部の断面積の、50%以上の断面積にするとより好ましく、加えて98%以下の断面積にするのが好ましい。
【0020】
結晶胴部の15%以上、好ましくは50%以上の断面積の種結晶を用いるのは、種結晶の断面積が大きいと、ツインの発生しやすい増径部の表面積を小さくできるため、ツインの発生する頻度が減少するためである。また、98%以下の断面積とするのは、種結晶の断面積を結晶胴部よりも小さくしておかないと、るつぼ底部にうまく収容できないためである。
【0021】
また、結晶中心軸を含む縦断面において、種結晶部から結晶胴部に至る増径部の結晶中心軸に対する傾斜角(第1図参照)が、40°以下であることが好ましく、20°以下であることがより好ましい。
【0022】
このように、結晶中心軸を含む縦断面において、種結晶部から結晶胴部に至る増径部の結晶中心軸に対する傾斜角を、40°以下、好ましくは20°以下と小さくするのは、結晶径の変化が小さい方が、成長が安定して、ツインが発生しにくくなるためである。
【0023】
さらに、種結晶の平均転位密度は5000cm−2未満であることが好ましく、2000cm−2未満であることがより好ましい、また、成長する結晶の目標の平均転位密度よりも低い平均転位密度を有する種結晶を用いることが好ましい。
【0024】
本発明者は、結晶胴部の15%以上、好ましくは50%以上の断面積を有する種結晶を用いる場合、結晶の転位密度が、種結晶の転位密度に大きく依存することを見出した。(100)面内の転位密度の平均値が5000cm−2未満、あるいは転位密度の平均値が2000cm−2未満のドーパントを含むInP結晶を得るためには、平均転位密度が5000cm−2未満、あるいは2000cm−2未満の転位密度の低い種結晶を用いるのが好ましいこと、成長する結晶の目標の平均転位密度よりも低い平均転位密度を有する種結晶を用いることが好ましいことを見出した。
【0025】
本発明では、燐化インジウム原料とドーパント及び種結晶の一部を加熱融解した状態で一定時間、好ましくは1時間以上、より好ましくは3時間以上、さらに好ましくは5時間以上保持したのち、成長容器の温度を降下させて、結晶の成長方向に〈100〉方位を有する単結晶を成長する。結晶胴部の15%以上、好ましくは50%以上の断面積を有する種結晶を用いる場合、従来の断面積比率の小さい(1%程度)種結晶を用いる場合に比べて、原料融液と種結晶の界面位置が安定するのに時間を要するためである。さらに、このように融液を一定時間保持することによって、融液内のドーパント濃度が均一になるという効果が得られる。
【0026】
種結晶から結晶が成長する時の成長速度は、10mm/時以下が好ましく、5mm/時以下であることがより好ましい。これは、種結晶から結晶が成長する時の成長速度が速すぎると、組成的過冷却が起こって、多結晶化してしまうためである。
【0027】
また、種結晶から結晶が成長する時の成長速度は、2.5mm/時以上が好ましい。これは、種結晶から結晶が成長する時の成長速度が遅すぎると、成長開始時にツインやポリなどの欠陥が発生し易いためである。種結晶と融液の界面付近には、融液対流などの影響によって温度揺らぎが生じている。低温度勾配下で成長する際には、この温度揺らぎが結晶成長の安定性に強く影響すると考えられる。本願発明者は、種結晶から結晶が成長し始める時の成長速度を2.5mm/時以上にすると、成長開始時にツインやポリなどの欠陥が発生しにくいことを見出した。
【0028】
また、成長容器は、pBN(熱分解窒化ホウ素)製容器が好ましく、種結晶、燐化インジウム原料、ドーパント及び酸化ホウ素を成長容器に収容するのに先立って、成長容器の内表面の少なくとも融液と接触する部分を、酸化ホウ素の被膜で被覆することが好ましい。
【0029】
結晶胴部の15%以上、好ましくは50%以上の断面積を有する径の大きい種結晶を用いる場合、石英のような変形し易い材質のるつぼでは、径の小さい種結晶を用いる場合に比べて変形量が大きくなる。そのため、成長温度で充分な強度を有するpBN製るつぼが好ましい。また、pBN製るつぼの場合には、るつぼ内表面を酸化ホウ素(B)で被覆しないと、結晶あるいは融液がるつぼと接触して多結晶化してしまう。結晶胴部の15%以上、好ましくは50%以上の断面積を有する径の大きい種結晶を用いる場合、径の小さい種結晶を用いる場合に比べて種結晶の表面積が大きくなるため、結晶や融液がるつぼと接触する可能性が高くなる。種結晶、燐化インジウム原料、ドーパント及び酸化ホウ素を成長容器に収容するに先立って、成長容器の内表面の少なくとも融液と接触する部分を、酸化ホウ素の被膜で被覆することによって、結晶あるいは融液とるつぼが接触して多結晶化するのを防ぐことができる。
【0030】
このようにして、結晶胴部の直径が75mm以上、さらには100mm以上で、Fe(鉄)、S(硫黄)、Sn(錫)、Zn(亜鉛)などのドーパントを含有するInP単結晶を得ることができる。またこの結晶を加工して得られるInP基板を、光通信用半導体レーザー、フォトディテクタ等の光電子デバイスや、トランジスタ等の電子デバイス用基板として用いることにより、ウェハー面内の特性の均一性や安定性、寿命に優れた化合物半導体デバイスが得られる。
【発明の効果】
【0031】
このように低転位密度で、ドーパントのウェハー面内および厚さ方向の均一性に優れたInP基板を、光通信用半導体レーザー、フォトディテクタ等の光電子デバイスや、トランジスタ等の電子デバイス用基板として用いることにより、ウェハー面内の特性の均一性や安定性、寿命に優れた化合物半導体デバイスが得られる。
【図面の簡単な説明】
【0032】
【図1】本発明により製造される燐化インジウム(InP)単結晶の形状の一例を示す図。
【図2】本発明に用いられるInP結晶製造装置の縦断面図の一例。
【図3】エッチピット密度とドーパント濃度を測定するためのサンプル採取位置。
【発明を実施するための形態】
【0033】
(実施例1)
内表面に酸化ホウ素(B)被膜を形成した内径約105mmのpBN製るつぼ1に、直径40mmで長さ40mmの〈100〉InP種結晶を設置する。結晶胴部に対する種結晶部の断面積比は15%である。また、種結晶部から結晶胴部に至る増径部の結晶中心軸に対する傾斜角は40°である。成長する結晶の平均転位密度の目標値を5000cm−2未満とし、平均転位密度4500cm−2の種結晶を用いる。ドーパントとして高純度Feを用い、InP多結晶10kgと酸化ホウ素0.5kgと共に、pBNるつぼに収容する。なお、るつぼに入れる高純度Feの重量は、直胴部先端での濃度が2×1016cm−3となるように調整する。
【0034】
結晶成長の様子を第2図に示す。InP単結晶の成長には、ステンレス製の高圧チャンバー9を用いる。高圧チャンバーの中心に設けられた回転降下可能な下軸6の上端にるつぼ台5を設置し、その周囲にグラファイト製のヒーター7と、グラファイト製の断熱材8を配置する。種結晶4、原料、ドーパント、酸化ホウ素を収容したpBNるつぼをるつぼ台に載置する。高圧チャンバーを密閉して一定時間真空に引き、窒素ガスで加圧したのち、ヒーターに通電して昇温を開始する。
【0035】
温度が上昇するにしたがって、まず酸化ホウ素3が軟化してInP原料全体を覆う。InPの融点温度を超えると、原料が融解を始める。原料を完全に融解させるとともに、高圧チャンバー内の圧力を約4MPaに調整し、種結晶の一部を融解してInP融液2となじませる。融液を1時間保持したのち、るつぼ台を5rpmで回転しながら、10mm/時の速度で降下させ、InP単結晶を成長する。
【0036】
結晶成長が終了したのち、室温に冷却して結晶をpBNるつぼから取り出すと、結晶胴部の直径が105mmで、長さ約220mmのInP結晶10が得られる。後端部40mmはFeの析出による多結晶化部11のため、単結晶部分は約180mmである。この結晶胴部先端と後端でウェハーを採取してHuber(ヒューバー)エッチング液を用いて、エッチピット密度を調べる。先端部で4800cm−2、後端部で4000cm−2であり、目標値である5000cm−2未満を満たしている。
【0037】
また、結晶直胴部先端13で採取したウェハーについて、GDMS法によりFe濃度のウェハー面内の分布を測定すると、ウェハー中心部が最も低く、2×1016cm−3である。一方、ウェハー外周から2.5mm内側のFe濃度を測定すると、2.2×1016cm−3であり、ドーパント濃度のウェハー面内の最大値と最小値の差の平均値に対する比率は、10%である。同様にして、結晶直胴部後端12で採取したウェハーについて、GDMS法によりFe濃度のウェハー面内の分布を測定すると、ウェハー中心部が最も低く、9.5×1016cm−3である。一方、ウェハー外周から2.5mm内側のFe濃度を測定すると、10.5×1016cm−3であり、ドーパント濃度のウェハー面内の最大値と最小値の差の平均値に対する比率は、10%である。
【0038】
このようにして得られたInP単結晶を、直径100mmで厚さ625μmの両面ミラーウエハーに加工して、SIMS法によりFe濃度の深さ方向分布を調べる。研磨とエッチングで表面から10μmずつ削りながら、デバイス作製上充分な深さと考えられる表面から100μmまでのFe濃度を測定する。直胴先端部と後端部で採取したウェハー共、Fe濃度の分布は±5%以内であり、デバイス作製上均一性に問題がないことがわかる。
【0039】
(実施例2)
内表面に酸化ホウ素(B)被膜を形成した内径約105mmのpBN製るつぼ1に、直径75mmで長さ30mmの〈100〉InP種結晶を設置する。結晶胴部に対する種結晶部の断面積比は50%である。また、種結晶部から結晶胴部に至る増径部の結晶中心軸に対する傾斜角は20°である。成長する結晶の平均転位密度の目標値を3000cm−2未満とし、平均転位密度2500cm−2の種結晶を用いる。ドーパントとして高純度Feを用い、InP多結晶10kgと酸化ホウ素0.5kgと共に、pBNるつぼに収容する。なお、るつぼに入れる高純度Feの重量は、直胴部先端での濃度が2×1016cm−3となるように調整する。
【0040】
InP単結晶の成長には、ステンレス製の高圧チャンバー9を用いる。高圧チャンバーの中心に設けられた回転降下可能な下軸6の上端にるつぼ台5を設置し、その周囲にグラファイト製のヒーター7と、グラファイト製の断熱材8を配置する。種結晶4、原料、ドーパント、酸化ホウ素を収容したpBNるつぼをるつぼ台に載置する。高圧チャンバーを密閉して一定時間真空に引き、窒素ガスで加圧したのち、ヒーターに通電して昇温を開始する。
【0041】
温度が上昇するにしたがって、まず酸化ホウ素3が軟化してInP原料全体を覆う。InPの融点温度を超えると、原料が融解を始める。原料を完全に融解させるとともに、高圧チャンバー内の圧力を約4MPaに調整し、種結晶の一部を融解してInP融液2となじませる。融液を3時間保持したのち、るつぼ台を5rpmで回転しながら、5mm/時の速度で降下させ、InP単結晶を成長する。
【0042】
結晶成長が終了したのち、室温に冷却して結晶をpBNるつぼから取り出すと、結晶胴部の直径が105mmで、長さ約220mmのInP結晶10が得られる。後端部25mmはFeの析出による多結晶化部11のため、単結晶部分は約195mmである。この結晶胴部先端と後端でウェハーを採取してHuber(ヒューバー)エッチング液を用いて、エッチピット密度を調べる。先端部で2500cm−2、後端部で2000cm−2であり、目標値である3000cm−2未満を満たしている。
【0043】
また、結晶直胴部先端13で採取したウェハーについて、GDMS法によりFe濃度のウェハー面内の分布を測定すると、ウェハー中心部が最も低く、2×1016cm−3である。一方、ウェハー外周から2.5mm内側のFe濃度を測定すると、2.45×1016cm−3であり、ドーパント濃度のウェハー面内の最大値と最小値の差の平均値に対する比率は、20%である。同様にして、結晶直胴部後端12で採取したウェハーについて、GDMS法によりFe濃度のウェハー面内の分布を測定すると、ウェハー中心部が最も低く、10×1016cm−3である。一方、ウェハー外周から2.5mm内側のFe濃度を測定すると、12.2×1016cm−3であり、ドーパント濃度のウェハー面内の最大値と最小値の差の平均値に対する比率は、20%である。
【0044】
このようにして得られたInP単結晶を、直径100mmで厚さ625μmの両面ミラーウエハーに加工して、SIMS法によりFe濃度の深さ方向分布を調べる。研磨とエッチングで表面から10μmずつ削りながら、デバイス作製上充分な深さと考えられる表面から100μmまでのFe濃度を測定する。直胴先端部と後端部で採取したウェハー共、Fe濃度の分布は±5%以内であり、デバイス作製上均一性に問題がないことがわかる。
【0045】
(実施例3)
内表面に酸化ホウ素(B)被膜を形成した内径約105mmのpBN製るつぼ1に、直径98mmで長さ20mmの〈100〉InP種結晶を設置する。結晶胴部に対する種結晶部の断面積比は87%である。また、種結晶部から結晶胴部に至る増径部の結晶中心軸に対する傾斜角は10°である。成長する結晶の平均転位密度の目標値を2000cm−2未満とし、平均転位密度1500cm−2の種結晶を用いる。ドーパントとして高純度Feを用い、InP多結晶10kgと酸化ホウ素0.5kgと共に、pBNるつぼに収容する。なお、るつぼに入れる高純度Feの重量は、直胴部先端での濃度が2×1016cm−3となるように調整する。
【0046】
InP単結晶の成長には、ステンレス製の高圧チャンバー9を用いる。高圧チャンバーの中心に設けられた回転降下可能な下軸6の上端にるつぼ台5を設置し、その周囲にグラファイト製のヒーター7と、グラファイト製の断熱材8を配置する。種結晶4、原料、ドーパント、酸化ホウ素を収容したpBNるつぼをるつぼ台に載置する。高圧チャンバーを密閉して一定時間真空に引き、窒素ガスで加圧したのち、ヒーターに通電して昇温を開始する。
【0047】
温度が上昇するにしたがって、まず酸化ホウ素3が軟化してInP原料全体を覆う。InPの融点温度を超えると、原料が融解を始める。原料を完全に融解させるとともに、高圧チャンバー内の圧力を約4MPaに調整し、種結晶の一部を融解してInP融液2となじませる。融液を5時間保持したのち、るつぼ台を5rpmで回転しながら、3mm/時の速度で降下させ、InP単結晶を成長する。
【0048】
結晶成長が終了したのち、室温に冷却して結晶をpBNるつぼから取り出すと、結晶胴部の直径が105mmで、長さ約220mmのInP結晶10が得られる。後端部20mmはFeの析出による多結晶化部11のため、単結晶部分は約200mmである。この結晶胴部先端と後端でウェハーを採取してHuber(ヒューバー)エッチング液を用いて、エッチピット密度を調べる。先端部で1800cm−2、後端部で1200cm−2であり、目標値である2000cm−2未満を満たしている。
【0049】
また、結晶直胴部先端13で採取したウェハーについて、GDMS法によりFe濃度のウェハー面内の分布を測定すると、ウェハー中心部が最も低く、2×1016cm−3である。一方、ウェハー外周から2.5mm内側のFe濃度を測定すると、2.7×1016cm−3であり、ドーパント濃度のウェハー面内の最大値と最小値の差の平均値に対する比率は、30%である。同様にして、結晶直胴部後端12で採取したウェハーについて、GDMS法によりFe濃度のウェハー面内の分布を測定すると、ウェハー中心部が最も低く、10×1016cm−3であった。一方、ウェハー外周から2.5mm内側のFe濃度を測定すると、13.5×1016cm−3であり、ドーパント濃度のウェハー面内の最大値と最小値の差の平均値に対する比率は、30%である。
【0050】
このようにして得られたInP単結晶を、直径100mmで厚さ625μmの両面ミラーウエハーに加工して、SIMS法によりFe濃度の深さ方向分布を調べる。研磨とエッチングで表面から10μmずつ削りながら、デバイス作製上充分な深さと考えられる表面から100μmまでのFe濃度を測定する。直胴先端部と後端部で採取したウェハー共、Fe濃度の分布は±5%以内であり、デバイス作製上均一性に問題がないことがわかる。
【0051】
(実施例4)
内表面に酸化ホウ素(B)被膜を形成した内径約105mmのpBN製るつぼ1に、直径98mmで長さ20mmの〈100〉InP種結晶を設置する。結晶胴部に対する種結晶部の断面積比は87%である。また、種結晶部から結晶胴部に至る増径部の結晶中心軸に対する傾斜角は10°である。成長する結晶の平均転位密度の目標値を1000cm−2未満とし、平均転位密度500cm−2の種結晶を用いる。ドーパントとしてInを用い、InP多結晶10kgと酸化ホウ素0.5kgと共に、pBNるつぼ1に収容する。なお、るつぼに入れるInの重量は、直胴部先端でのS濃度が1×1018cm−3となるように調整する。
【0052】
InP単結晶の成長には、ステンレス製の高圧チャンバー9を用いる。高圧チャンバーの中心に設けられた回転降下可能な下軸6の上端にるつぼ台5を設置し、その周囲にグラファイト製のヒーター7と、グラファイト製の断熱材8を配置する。種結晶4、原料、ドーパント、酸化ホウ素を収容したpBNるつぼをるつぼ台に載置する。高圧チャンバーを密閉して一定時間真空に引き、窒素ガスで加圧したのち、ヒーターに通電して昇温を開始する。
【0053】
温度が上昇するにしたがって、まず酸化ホウ素3が軟化してInP原料全体を覆う。InPの融点温度を超えると、原料が融解を始める。原料を完全に融解させるとともに、高圧チャンバー内の圧力を約4MPaに調整し、種結晶の一部を融解してInP融液2となじませる。融液を5時間保持したのち、るつぼ台を5rpmで回転しながら、3mm/時の速度で降下させ、InP単結晶を成長する。
【0054】
結晶成長が終了したのち、室温に冷却して結晶をpBNるつぼから取り出すと、結晶胴部の直径が105mmで、長さ約220mmのInP結晶10が得られる。この結晶胴部先端と後端でウェハーを採取してHuber(ヒューバー)エッチング液を用いて、エッチピット密度を調べる。先端部で500cm−2、後端部で100cm−2であり、目標値である1000cm−2未満を満たしている。
【0055】
また、結晶直胴部先端13で採取したウェハーについて、GDMS法によりS濃度のウェハー面内の分布を測定すると、ウェハー中心部が最も低く、1×1018cm−3である。一方、ウェハー外周から2.5mm内側のS濃度を測定すると、1.1×1018cm−3であり、ドーパント濃度のウェハー面内の最大値と最小値の差の平均値に対する比率は、10%である。同様にして、結晶直胴部後端12で採取したウェハーについて、GDMS法によりS濃度のウェハー面内の分布を測定すると、ウェハー中心部が最も低く、3×1018cm−3である。一方、ウェハー外周から2.5mm内側のS濃度を測定すると、3.3×1018cm−3であり、ドーパント濃度のウェハー面内の最大値と最小値の差の平均値に対する比率は、10%である。
【0056】
このようにして得られたInP単結晶を、直径100mmで厚さ625μmの両面ミラーウエハーに加工して、SIMS法によりS濃度の深さ方向分布を調べる。研磨とエッチングで表面から10μmずつ削りながら、デバイス作製上充分な深さと考えられる表面から100μmまでのS濃度を測定する。直胴先端部と後端部で採取したウェハー共、S濃度の分布は±5%以内であり、デバイス作製上均一性に問題がないことがわかる。
【0057】
(実施例5)
内表面に酸化ホウ素(B)被膜を形成した内径約105mmのpBN製るつぼ1に、直径98mmで長さ20mmの〈100〉InP種結晶を設置する。結晶胴部に対する種結晶部の断面積比は87%である。また、種結晶部から結晶胴部に至る増径部の結晶中心軸に対する傾斜角は10°である。成長する結晶の平均転位密度の目標値を2000cm−2未満とし、平均転位密度1500cm−2の種結晶を用いる。ドーパントとしてSnを用い、InP多結晶10kgと酸化ホウ素0.5kgと共に、pBNるつぼに収容する。なお、るつぼに入れるSnの重量は、直胴部先端でのSn濃度が1×1018cm−3となるように調整する。
【0058】
InP単結晶の成長には、ステンレス製の高圧チャンバー9を用いる。高圧チャンバーの中心に設けられた回転降下可能な下軸6の上端にるつぼ台5を設置し、その周囲にグラファイト製のヒーター7と、グラファイト製の断熱材8を配置する。種結晶4、原料、ドーパント、酸化ホウ素を収容したpBNるつぼをるつぼ台に載置する。高圧チャンバーを密閉して一定時間真空に引き、窒素ガスで加圧したのち、ヒーターに通電して昇温を開始する。
【0059】
温度が上昇するにしたがって、まず酸化ホウ素3が軟化してInP原料全体を覆う。InPの融点温度を超えると、原料が融解を始める。原料を完全に融解させるとともに、高圧チャンバー内の圧力を約4MPaに調整し、種結晶の一部を融解してInP融液2となじませる。融液を5時間保持したのち、るつぼ台を5rpmで回転しながら、3mm/時の速度で降下させ、InP単結晶を成長する。
【0060】
結晶成長が終了したのち、室温に冷却して結晶をpBNるつぼから取り出すと、結晶胴部の直径が105mmで、長さ約220mmのInP結晶10が得られる。後端部20mmはSnの析出による多結晶化部11のため、単結晶部分は約200mmである。この結晶胴部先端と後端でウェハーを採取してHuber(ヒューバー)エッチング液を用いて、エッチピット密度を調べる。先端部で1500cm−2、後端部で1000cm−2であり、目標値である2000cm−2未満を満たしている。
【0061】
また、結晶直胴部先端13で採取したウェハーについて、GDMS法によりSn濃度のウェハー面内の分布を測定すると、ウェハー中心部が最も低く、1×1018cm−3である。一方、ウェハー外周から2.5mm内側のSn濃度を測定すると、1.16×1018cm−3であり、ドーパント濃度のウェハー面内の最大値と最小値の差の平均値に対する比率は、15%である。同様にして、結晶直胴部後端12で採取したウェハーについて、GDMS法によりSn濃度のウェハー面内の分布を測定すると、ウェハー中心部が最も低く、5×1018cm−3である。一方、ウェハー外周から2.5mm内側のSn濃度を測定すると、5.8×1018cm−3であり、ドーパント濃度のウェハー面内の最大値と最小値の差の平均値に対する比率は、15%である。
【0062】
このようにして得られたInP単結晶を、直径100mmで厚さ625μmの両面ミラーウエハーに加工して、SIMS法によりSn濃度の深さ方向分布を調べる。研磨とエッチングで表面から10μmずつ削りながら、デバイス作製上充分な深さと考えられる表面から100μmまでのSn濃度を測定する。直胴先端部と後端部で採取したウェハー共、Sn濃度の分布は±5%以内であり、デバイス作製上均一性に問題がないことがわかる。
【産業上の利用可能性】
【0063】
本発明による結晶を加工して得られるInP基板を、光通信用半導体レーザー、フォトディテクタ等の光電子デバイスや、トランジスタ等の電子デバイス用基板として用いることにより、ウェハー面内の特性の均一性や安定性、寿命に優れた化合物半導体デバイスが得られる。
【符号の説明】
【0064】
1・・・pBN製るつぼ、2・・・融液、3・・・酸化ホウ素、4・・・種結晶、5・・・るつぼ台、6・・・下軸、7・・・ヒーター、8・・・断熱材、9・・・高圧チャンバー、10・・・InP結晶、11・・・多結晶化部、12・・・結晶直胴部後端、13・・・結晶直胴部先端

【特許請求の範囲】
【請求項1】
ウェハー面内の転位密度の平均値が5000cm−2未満であり、ドーパント濃度のウェハー面内の最大値と最小値の差の平均値に対する比率が30%以下であり、かつウェハーの厚み方向の分布が実質的に均一であることを特徴とする、Fe(鉄)、S(硫黄)、Sn(錫)、Zn(亜鉛)の少なくとも何れか1つのドーパントを含む燐化インジウム基板。
【請求項2】
ウェハー面内の転位密度の平均値が2000cm−2未満であり、ドーパント濃度のウェハー面内の最大値と最小値の差の平均値に対する比率が30%以下であり、かつウェハーの厚み方向の分布が実質的に均一であることを特徴とする、Fe(鉄)、S(硫黄)、Sn(錫)、Zn(亜鉛)の少なくとも何れか1つのドーパントを含む燐化インジウム基板。
【請求項3】
直径が75mm以上であることを特徴とする、請求項1または請求項2記載の燐化インジウム基板。
【請求項4】
直径が100mm以上であることを特徴とする、請求項1〜3のいずれかに記載の燐化インジウム基板。
【請求項5】
成長方向が〈100〉方位であり、成長方向に垂直な(100)面内の転位密度の平均値が5000cm−2未満であることを特徴とする、ドーパントを含む燐化インジウム結晶。
【請求項6】
成長方向が〈100〉方位であり、成長方向に垂直な(100)面内の転位密度の平均値が2000cm−2未満であることを特徴とする、ドーパントを含む燐化インジウム結晶。
【請求項7】
直径が75mm以上であることを特徴とする、請求項5または請求項6記載の燐化インジウム結晶。
【請求項8】
直径が100mm以上であることを特徴とする、請求項5〜請求項7のいずれかに記載の燐化インジウム結晶。
【請求項9】
ドーパントがFe(鉄)であることを特徴とする、請求項5〜請求項8のいずれかに記載の燐化インジウム結晶。
【請求項10】
ドーパントがS(硫黄)であることを特徴とする、請求項5〜請求項8のいずれかに記載の燐化インジウム結晶。
【請求項11】
ドーパントがSn(錫)であることを特徴とする、請求項5〜請求項8のいずれかに記載の燐化インジウム結晶。
【請求項12】
ドーパントがZn(亜鉛)であることを特徴とする、請求項5〜請求項8のいずれかに記載の燐化インジウム結晶。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate


【公開番号】特開2012−236770(P2012−236770A)
【公開日】平成24年12月6日(2012.12.6)
【国際特許分類】
【出願番号】特願2012−190722(P2012−190722)
【出願日】平成24年8月31日(2012.8.31)
【分割の表示】特願2005−506459(P2005−506459)の分割
【原出願日】平成16年5月6日(2004.5.6)
【出願人】(000002130)住友電気工業株式会社 (12,747)
【Fターム(参考)】