説明

現像剤システムおよび電子写真プリンタ内の現像剤の可変流量を提供する方法

プリンタの感光ドラム(20)への現像剤の流れの可変の割合を提供する現像剤システム(10)および電子写真プリンタのための方法が提供される。システムは、現像剤の層を感光要素に回転可能に運ぶ調色シェル(18)により囲まれた磁気ブラシ(14)と、現像剤のタンクを含むサンプ(26)と、可変速度運搬ローラ(21)とを有する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は概して電子写真プリンタに関し、特に、好ましい可変の速度範囲で動作する運搬ローラの使用を通じて現像剤ステーションの磁気ブラシへの現像剤の流量を制御することによる安定した画質を提供するシステムおよび方法に関する。
【背景技術】
【0002】
乾燥した、粒子状の現像剤を感光部材につけるための回転磁気ブラシを使用する電子写真プリンタは技術分野で知られている。このような電子写真プリンタでは、磁気ブラシは回転可能な円筒状調色シェルにより囲まれた回転可能な磁気コアを有する。調色シェルは、磁気コアの回転軸に対して偏心して取付けられ得る。調色シェルの偏心した取付けは、シェルが磁気コアに最も近くに来る比較的強い磁束の領域と、シェルが磁気コアから最も離れる比較的弱い磁束の領域とを規定する。磁気ブラシは、強磁性の伝達粒子と静電荷を保持することができるトナー粒子との混合物を含む乾燥した2成分現像剤のタンクを保持する現像剤サンプの上に取付けられる。回転可能な運搬ローラは、サンプの現像剤のタンクと調色シェルとの間に配置される。作動中、回転可能な運搬ローラは、サンプから磁束が比較的弱い調色シェルの領域に、現像剤を引き付けるとともに運ぶ。回転調色シェルは順に現像剤を感光部材に向かって運ぶ。調色シェルと感光部材との間の最接近の線において、現像剤の粒子状トナー成分は、トナー粒子と感光部材の静電界との間の静電気引力の結果、感光部材に転写され、その結果として、感光部材上に静電潜像を現像する。現像された画像は一枚の紙のような基材に最終的に転写され、トナー像は定着ステーションを介して永続的な画像に定着される。磁気ブラシ、現像剤サンプおよび運搬ローラの組み合わせは、この出願では現像ステーションと称される。
【0003】
画像をできる限り素早く印刷するために、運搬ローラは現像剤を調色シェルに素早く供給することが必要である。しかし、調色シェルも、サンプからの現像剤の供給の変動を最小化することにより感光部材の幅に渡って現像剤材料の一定、一様流を供給することが必要である。通常、「計量された流れ(metered flow)」は調色シェルから調色シェルの回転軸に平行に均一に離間された計量スカイブ(metering skive)を用いることにより得られる。調色シェル上の現像剤のこのような計量された流れは、適切な厚さの現像剤材料の均一な層または「けば(nap)」が感光部材のニップに供給されることを確実にする。けばが均一でない場合、結果として生じる画像は線または画像の質を低下させる他の望ましくない乱れを有するかもしれない。現像剤のけばが厚すぎる場合、現像剤材料はニップを詰まらせ得るとともに現像剤ローラから排出され得、電子写真複製装置の他の場所の汚染をもたらす。けばが均一であるが薄すぎる場合、高品質画像を可能にする十分なトナーが存在しないかもしれない。
【0004】
許容できる画像品質を作り出すことは、現像剤慣らしの減少によってより複雑になる。定期的に、現像剤は、キャリアの特性の劣化のために高容量装置に交換される必要がある。現像剤のこの交換に関連した既知の問題は、その後で装置の設定値が最良の結果のために再調整されなければならない新しい現像剤のための慣らし期間があることである。最高の設定値が開始するために使用される場合、画像はかなりのまだらを示す。設定値が新しい現像剤で十分機能するように選択されると、現像剤が「慣らされる」につれて画像は徐々に濃度を失う。
【0005】
前述したように、現像剤材料の計量された流れを提供する過去の試みは、運搬ローラと調色セルとの間の現像剤供給の線から下流の調色シェルに渡る計量スカイブの使用を含む。スカイブのギャップおよび調色シェルとのその関係は、現像ローラの回転軸に沿った現像けばの均一な厚さと、厚すぎもせず薄すぎもしない所望の厚さとの両方を達成するように、厳重に制御されなければならない。計量スカイブのギャップの非常に小さい誤差ですら、けばの均一性または現像剤のけば厚さに許容できない大きな誤差をもたらし得る。したがって、計量スカイブが使用されるとき、それは現像剤ローラの磁気コアから最小の磁界強度の位置に配置される。このような位置決めは、現像剤けば高さの計量スカイブギャップに対する感度を2から4倍で大幅に低減することが発見されている。これは製造において計量スカイブギャップをより設定しやすくするするとともに現像剤ローラの長さに沿ったこのスカイブギャップの変化に対する現像剤けば厚さの感度を低下させることをもたらす。
【発明の概要】
【発明が解決しようとする課題】
【0006】
しかし、出願人はこのような計量スカイブに関連した多数の欠点を観察している。第1に、調色シェルが感光部材に供給することができる現像剤の量に制限を課すので、このような計量スカイブは、感光部材により達成され得る印刷速度を制限する。第2に、現像剤ローラの磁気コアから最小の磁界強度の好ましい位置でのこのようなスカイブの位置決めは、現像剤が調色シェルと感光要素との間の最接近の線から離れた180度近い比較的大きい角距離に着けられることを必要とする。このような大きい角距離は、調色シェル上の現像剤に比較的長い滞留時間をもたらす。出願人は、高い印刷速度を実現するためのブラシの磁気コアの急速回転と組み合わせたこのような比較的長い滞留時間が、現像剤を不利に古びさせることができ、感光部材上に静電潜像を現像するのに効果的でなくすることを観察している。第3に、計量スカイブとともに得られた計量された流れは、運搬ローラにより供給される材料の均一性に敏感である。第4に、計量スカイブの間隔は一般に、現像剤の慣れまたは現像剤の劣化を考慮していない固定された間隔に設定される。
【課題を解決するための手段】
【0007】
これらのおよび他の問題を解決するために、本発明の現像剤システムは、(1)磁気コアと、サンプのタンクから磁気ブラシの調色シェルに現像剤を運搬するための外側シェルとを有する自己計量運搬ローラであって、外側シェルの最大磁界強度が1000ガウスより小さく、好ましくは300ガウスより小さく、この外側シェルの時局間の最小磁界強度が最大磁界強度の約30%以上である、自己計量運搬ローラと、(2)現像剤を供給する最小速度から、引力およびサンプから運搬ローラによる現像剤の輸送の変動にかかわらず現像剤の一定の高い流量が調色シェルに提供されるような調色シェルの能力を飽和させる速度まで、運搬ローラを回転させる駆動組み立て体との組み合わせを有する。駆動組み立て体および運搬ローラ速度は、コントローラにより、画質を保持するとともに、特に許容限度内に画像濃度を保持するよう制御される。
【0008】
以下に示される本発明の好適な実施形態の詳細な説明では、添付の画像が参照される。
【図面の簡単な説明】
【0009】
【図1A】図1Aは、本発明の現像ステーションの改良とともに使用することに適した典型的な電子写真現像ステーションの概略側面図である。
【図1B】図1Bは、本発明の運搬ローラの側部断面図であり、ローラ磁気コア内の時局の分布を概略的に示すとともにその間の磁束線を概略的に示している。
【図2】図2は、現像ステーション設定値に応じた現像剤の流れの概略図である。
【図3】図3は、第1運搬ローラに対する現像剤ステーション設定点に応じた計測された現像剤の流れのグラフである。
【図4】図4は、第2運搬ローラに対する現像剤ステーション設定点に応じた計測された現像剤の流れのグラフである。
【図5】図5は、第1運搬ローラに対する現像剤ステーション設定点に応じた計測された現像剤の流れ−質量の面密度のグラフである。
【図6A】図6Aは、第1運搬ローラの磁界のプロットである。
【図6B】図6Bは、第2運搬ローラの磁界のプロットである。
【発明を実施するための形態】
【0010】
図1Aは、本発明が適用可能な現像剤ステーション10を示す。このような現像剤ステーション10はハウジング12を有する。現像ステーションハウジング12内に取付けられた、現像剤ローラまたは磁気ブラシ14は、(図1Aで時計回りに)回転する調色シェル18の内部で(図1Aで反時計回りに)回転する14極磁気コア16を有する。もちろん、磁気コア16およびシェルは他のどのような適切な相対回転も有し得る。回転調色シェル18は、光学書き込みステーション(図示せず)によりドラム上に書かれた静電潜像を現像するために、仮想線で示されたドラム形感光要素20の外側表面に現像剤を付ける。回転可能なシェル24に囲まれた固定コア22を有する磁気運搬ローラ21は、ハウジング12の底部に配置された現像剤タンクまたはサンプ26から調色シェル18の後部に現像剤25を供給する。好ましい実施形態では、シェル24は直径が約1.20インチである。トナー補給チューブ27は、現像剤25内のトナーおよび伝達粒子の比率を保持するために、トナーをタンク26内の現像剤25に届ける。適切な混合パドルを持つ送りオーガー(augers)28は、チューブ27からのトナーをタンク26内の現像剤とともに混合する一方、戻しオーガー30は、調色シェル18から剥離スカイブ36により除去されて現像剤タンク内に戻った、トナーを使い果たした現像剤を混合する。運搬ローラコントローラおよび駆動組み立て体42は、運搬ローラのシェル24に駆動可能に接続されるとともにシェル24の回転速度を制御する。詳細に示されていないが、運搬ローラコントローラおよび駆動組み立て体は、電気モータ、画像濃度および画像品質を計測するための濃度計、流される電流の量を制御することによりモータの速度を制御するデジタルコントローラ、および歯車列を有し得る。
【0011】
図1Bを参照すると、運搬ローラ21の固定コア22は少なくとも2つの磁石を有することが好ましく、図示されたように6時の位置と約10または11時の位置との間でコア22の円周に配置された少なくとも4つの磁石23を有することが好ましい。個別の磁石が示されているが、固定コアはまた、似たような磁界を作り出すように磁化された単一の磁性材料も有し得る。磁石23の極はさらに、6時から10−11時の位置にN−S−N−Sが交互になるように配置されるが、S−N−S−Nのパターンに単に簡単に交互にすることもできる。磁極の各磁界の半径方向ベクトル40は、円筒状コア22の中心軸Cに対して半径方向に位置合わせされる。接線方向の磁力線41は、示されたように磁石23の互い違いになる極を相互に接続する。以下により詳細に記述されるように、磁石23は、好ましくは約100ガウスと300ガウスの間の、より好ましくは約150ガウスと250ガウスの間の、最も好ましくは約200ガウスと300ガウスの間の回転シェル24の外側表面での、最大の半径方向および接線方向を組み合わせた磁界強度を提供する。さらに、回転シェル24の外側表面の周りの磁極23間の最小の接線方向の磁界強度は、好ましくは最大半径方向磁界強度の約30%以上、より好ましくは最大半径方向磁界強度の約35−50%以上である。好ましい実施形態では、磁石23は、プラスチック材料に混ぜられた磁性粒子の混合物から形成された可撓性のあるストリップ型の磁石である。必要な磁界強度を有するこのような磁石は市販されており、ローラ21の製造に必要なサイズに切断し易い。
【0012】
動作において、運搬ローラ21のシェル24は、駆動組み立て体42により、現像剤を送るために必要な最小速度から少なくとも感光剤を受け入れるとともに感光要素20に運搬する調色シェルの能力を飽和させる速度の速度範囲で時計回りに回転する。約6時の位置に配置された磁石23は、現像剤タンク26に隣接するとともに磁気現像剤25をシェル24が回転するにつれてシェル24の外側表面に引き寄せ、シェル24上に現像剤の層32を形成する。シェル24の外側表面24は、シェル24が現像剤32の層に加えるグリップを強化するために、示されたように峰と溝のスプロケット様パターンを有する。シェル24の平均直径は1.20インチであるが、この直径は峰と溝との間で1.27から1.15インチに変わる。
【0013】
現像剤層32は、磁気ブラシ14の調色シェル18の後部に届けられる。計量スカイブ34(仮想線で示される)は、運搬ローラ21が現像剤を調色シェル18に届ける線のすぐ下流に設けられ得る。計量スカイブ34と調色シェル18との間のギャップは、感光要素20に届けられる現像剤の層32が典型的な現像剤の許容できる画質を作り出すことができるように適切な厚さの一様なけばを有することを確実にするように注意深く調整される。しかし、許容できる画質を保持するためにおよび許容できる限度内に画像濃度を保持するために、運搬ローラの速度を変化させることにより新しい現像剤または古い現像剤に対して流れを調整することは有利である。これは、計量スカイブ内であるいは調色シェル上の現像剤の一様な層を作り出すための計量スカイブを必要としない自己計量運搬ローラで行われ得る。
【0014】
従来の運搬ローラおよび計量スカイブ34を用いる現像剤ステーション10について、磁気ブラシコアおよび現像シェル速度、運搬ローラ速度、オーガー回転速度、調色シェルに対する計量スカイブおよび除去スカイブのギャップが、以下に70ppm、83.3ppm、100ppmに対してそれぞれ与えられる。
【0015】
【表1】

ローラの表面速度はローラの直径を用いてrpmのローラ速度から計算することができる。例えば、70ppmの印刷速度では、2インチの直径を有する82rpmで回転する調色シェルは、8.6=2π×82/60インチ毎秒(ips)の表面速度を有する。60rpmで回転する最大直径1.27の運搬ローラは、4=1.27π×60/60ipsの最大表面速度を有し、他の印刷速度での調色ステーション構成部品の表面速度が定められる。調色シェルの速度は、83.3ppmで約10.2ips、100ppmで約12.3ipsである。
【0016】
図2は、運搬ローラの回転速度に応じた現像剤ステーション10での現像剤の流れを示す概略図である。図2の破線の可能のカーブAは、所定の位置の計量スカイブ34を用いる、そして運搬ローラを用いる調色シェル18上で計測された流れを示す。P1より低い回転速度において、運搬ローラは、ローラの回転速度により変化する調色シェル18に現像剤の生の(raw)流れを供給する。P1を超える回転速度において、運搬ローラは、破線カーブの平坦化により示された現像剤の計量された一定の流れを供給する。現像剤のこの計量された流れは、P1の後の運搬ローラの回転速度の変動を含む原因によるタンクから運ばれた現像剤の量の変動にもかかわらず、略一定のままである。図2の実線の上方のカーブBは、計量スカイブ34の無い調色シェル18上で計測された流れを示す。P2より低い回転速度において、運搬ローラ21は、ローラの回転速度により変化する調色シェル18に現像剤の流れを供給する。P2を超える回転速度において、運搬ローラ21は、計量スカイブ34により達成された計量された流れより実質的に大きい実線カーブの平坦化により示された現像剤の安定した、一定の流れを供給する。現像剤のこの安定した流れは、P2の後の運搬ローラの回転速度の変動を含む原因によるタンクから運ばれた現像剤の量の変動にもかかわらず、略一定のままである。図2は3つの領域に分けられ得る。領域Iでは、非計量流れ(実線)およびスカイブを使用する計量流れ(破線)の両方は、運搬ローラの速度に比例的に増加する。領域IIでは、生のおよび計量された流れは飽和状態に近づく。領域IIIでは、生の流れおよび計量された流れの両方は飽和し、運搬ローラの速度と無関係である。本発明は、図2の領域IおよびIIに示されたように、生の流れが運搬ローラの速度の増加に伴い増加する設定値から成る。計量スカイブは、現像剤がニップを塞ぐとともに現像剤ローラから排出される限度の下の許容できるレベルに流れを制御するために使用され得る。
【0017】
図3は、図2の領域Iおよび領域IIであるが領域IIIではない領域において作動できる第1運搬ローラの性能を示しているグラフである。垂直軸は調色シェル18の回転軸に垂直な方向のグラム毎インチ−秒またはg/(in.−sec.)での感光要素20への現像剤流量を示し、一方、水平軸は回転毎分(rpm)での第1運搬ローラの回転速度を示す。(ダイヤ、四角および三角で示された)下の3つのカーブは、計量スカイブ34が現像剤ステーション10に存在するときの70ページ毎分(ppm)、83.3ppmおよび100ppmそれぞれに対する、運搬ローラ速度に応じた現像剤流量を表示する。安定した、計量された流量は、従来技術の運搬ローラおよび計量スカイブ34の組み合わせにより、約100rpmから150rpmの全ての3つの印刷速度において生じる。(短いおよび長いダッシュマークで示された)上方の2つのカーブは、計量スカイブが現像剤ステーション10に存在しないときの83.3ppmおよび100ppmそれぞれに対する、運搬ローラ速度に応じた現像剤流量を表示する。現像剤の流れが、計量スカイブが存在しないときのこのようなローラの回転速度のこの範囲に対する運搬ローラ回転速度を変化させることにより制御され得ることに留意されたい。流量は、150rpmまでの回転速度に対して、いずれの上方のカーブも安定水平域に到達したことを示さずに運搬ローラ速度に比例する。
【0018】
図4は、図3に示された第1ローラの性能と比較した第2運搬ローラ21の性能を示す。第2運搬ローラは領域IIIにおいて作動でき、運搬ローラ速度の範囲に対して安定した計量された流れおよび非計量の流れが得られる。特に、短いおよび長いダッシュマークで示された上方の2つのカーブは、計量スカイブが存在せず第2運搬ローラが現像ステーション10無いで使用されるときの83.3ppmおよび100ppmそれぞれに対する、運搬ローラ速度に応じた現像剤流量を表示する。これらの2つのカーブは、運搬ローラ速度の変化または現像剤移送の瞬間的な変化量の他の変動に堅牢である現像剤の安定した流れが、計量スカイブが存在しないときに第2ローラ21を用いて達成されることを示す。非計量流れは、50から150rpmの運搬ローラ速度、10.2から12.3ipsの調色シェル速度に対する6.6ipsの運搬ローラ表面速度の速度範囲に対して、プラスまたはマイナス10%未満で変動する。安定した非計量の流れを提供する運搬ローラ速度範囲は、調色シェル速度の50%超である。ダイヤ、四角および三角で示された下方の3つのカーブは、計量スカイブ34が現像剤ステーション10に存在するときの70ページ毎分(ppm)、83.3ppmおよび100ppmそれぞれに対する、運搬ローラ速度に応じた現像剤流量を表示する。これらの3つのカーブの平坦は、ローラの回転速度またはダンクからの現像剤の移動の変動にもかかわらず、第2運搬ローラと計量スカイブとの組み合わせも安定した計量された現像剤の流れを提供できることを示す。
【0019】
運搬ローラ速度による流れの可制御性の表示は、図4のデータおよび図5の解析により提供され、この図5は第1運搬ローラにより得られる性能を示す。図5では、ページ毎分の印刷速度により正規化された現像剤の流れ(flow/ppm)およびg/(平方インチ)の単位での調色シェル上の現像剤質量面密度(DMAD)が第1運搬ローラに対して示される。70、83.3、および100ppmにおける計量されたおよび非計量の流れに対する全ての正規化された流れのカーブは、ほぼ同じ斜線上に位置し、試験された全ての印刷速度において、流れが現像剤質量面密度の一次関数であることを示している。0.035インチの計量スカイブの間隔での流れについて、DMADに対する上限に達するまで運搬ローラ速度が増加するので、flow/ppmはDMADに比例して増加する。DMADおよび流れのこの限度は計量スカイブの間隔により生じる。図5はまた、調色ローラ磁気コア速度およびシェル速度がより大きい印刷速度を得るために比例して増加するとともに、印刷速度により正規化された流れ(flow/ppm)が同じDMADに設定された調色ステーションに対して略同じであるので、流れが調色ローラ磁気コア速度およびシェル速度に正比例することも間接的に示す。
【0020】
図5はまた、計量流れおよび計量スカイブ無しで得られた非計量流れのカーブについて、流れおよびDMADの範囲が、試験された全ての印刷速度において運搬ローラ速度を増加または減少させることにより得ることができることも示す。第1運搬ローラに対して、約0.04から0.05g/(平方インチ)毎ppmの正規化された計量された流れが、70、83.3、および100ppmの印刷速度で使用される。これらの流れは、0.035インチの標準的な計量スカイブの間隔において得られる。第1運搬ローラが計量スカイブ無しで使用される場合、約0.65から0.80g/(インチ−秒)毎ppmの正規化された流れが、運搬ローラ速度を増加または減少させることにより得ることができる。最大運搬ローラ速度は150RPMで試験された。
【0021】
第2運搬ローラ21に関して、図4に示されるように、計量流れおよび非計量流れは運搬ローラ速度の関数として定数である。これは、最大流量が100ppmの印刷速度に対する調色シェル上の現像剤の層の飽和により得られることを示す。図4に示された第2運搬ローラの流れデータは、ppmの印刷速度で割ることにより正規化され得る。正規化された非計量流れ(flow/ppm)は、83.3および100ppmの印刷速度に対する50から150rpmの運搬ローラ速度の全範囲に対して、平均すると0.07g/(インチ 秒)毎ppmになる。これは100ppmまでの印刷速度に対する第1ローラにしようされた正規化された流量を大体50%超える。第2運搬ローラに対する正規化された計量流量は、従来技術のローラとほぼ同じであり、0.04から0.05g/(インチ−秒)毎ppmである。
【0022】
図6Aおよび6Bは、第1の4磁石運搬ローラと第2の運搬ローラとの間のそれぞれの運搬ローラ21の回転可能なシェル24の表面における磁界強度を比較する。両方のグラフにおいて、垂直軸はガウスで目盛りを付けられる一方、水平軸は角度で目盛りを付けられる。第1運搬ローラおよび第2運搬ローラの両方は、6時および10−11時の位置の間でローラの磁気コア22の周りに均一に離間された4磁極を使用する。磁石の極は図1Bに示されたように、コア22の中心軸Cと半径方向に位置合わせされる。回転シェル24の表面の磁界は、図1Bに示された力ベクトル40および41により概略的に示された半径方向および接線方向成分の和である。半径方向および接線方向磁界成分の強度が、図6Aおよび6Bにおいてそれぞれ細い実線および点線により、シェル24周りの各角度位置で示される。両方のグラフにおいて、半径方向磁界強度は、磁石23の互い違いになる極性によるピークと谷により特徴付けられる。接線方向磁界強度もまた起伏し、半径方向磁界強度のゼロ交差点において最大化または最小化する。合成磁界強度は両方のグラフの太い実線により示される。第1運搬ローラの磁界は、少なくとも100ガウスの有用な磁界が存在する第2運搬ローラの磁界より小さい。
【0023】
図6Aおよび6Bに示されたデータの生成およびプロットにおいて、出願人は、特許請求の範囲に記載された発明の発展に寄与する運搬ローラを囲む磁界の2つの予期しない特徴を発見した。第1は、図6Aのグラフが、急峻な最小磁界強度が第1運搬ローラの約7時および9時の位置に配置された2つの中間磁石23の間に生じることを示す。特に、このグラフは190および200ガウスの最大磁界強度が約94°および200°においてそれぞれ生じるが、わずか約30ガウスの最小磁界強度が約150度で生じることを示す。少し違う言い方をすると、図6Aのグラフは磁石23の列における最小磁界強度は最大磁界強度のわずか15%であることを示す。出願人はさらに、磁石23の列の中間のこのような比較的低い磁界強度が、第1運搬ローラ21が現像剤を運ぶための能力を実質的に弱める磁界の「穴」になるものを作り出すことを観察した。第2に、図6Bのグラフは、最大および最小磁界強度の間の割合の差が、磁石23の磁界強度の比較的穏やかな増加のみにより大きく改善され得ることを示す。特に、出願人は、2つの中央磁石の間の磁石23の接線方向磁界強度が30ガウスから100ガウスに増加した場合に、最小磁界強度が100ガウス、これは最大磁界強度の38%である、に増加することを発見した。したがって、接線方向磁界強度をわずか70ガウスに増加させることにより、最小と最大磁界強度の比率は250%だけ(すなわち、15%から38%に)増加する。


【特許請求の範囲】
【請求項1】
感光要素を有する電子写真プリンタ用の現像剤システムであって、
現像剤の層を前記感光要素に回転可能に運ぶ調色シェルにより囲まれた磁気コアと;
前記現像剤のタンクを有するサンプと;
前記現像剤を前記タンクから反対の極性の少なくとも2つの磁極を有する磁気ブラシの前記調色シェルに運ぶための運搬ローラと;
可変速度で前記運搬ローラを回転させる駆動組み立て体と;
前記運搬ローラの速度を変化させることにより現像剤の流れを制御する運搬ローラコントローラと、を有する、
現像剤システム。
【請求項2】
前記運搬ローラコントローラは、時間に応じて前記運搬ローラの速度を減少させることができる、
請求項1に記載の現像剤システム。
【請求項3】
前記運搬ローラの外側表面の最大磁界強度が1000ガウスより小さく、前記外側表面での前記磁極の間の最小磁界強度が前記最大磁界強度の約30%以上である、
請求項1に記載の現像剤システム。
【請求項4】
前記駆動組み立て体は、前記運搬ローラの速度が飽和速度を超えるときに前記調色シェル上の前記現像剤の流れが本質的に一定であるように、前記現像剤を前記調色シェルに届けるための前記運搬ローラの容量を飽和させる前記飽和速度まで、前記運搬ローラを回転させるとともに、計量スカイブが連動される場合に前記調色シェル上の流れが少なくなるように前記計量スカイブを連動させる、
請求項1に記載の現像剤システム。
【請求項5】
前記運搬ローラの速度が画像品質を保持するように制御される、
請求項1に記載の現像剤システム。
【請求項6】
前記運搬ローラの速度が許容できる範囲内に画像の濃度を保持するように制御される、
請求項1に記載の現像剤システム。
【請求項7】
スカイブを詰まらせる最大より低い流量に資源するための計量スカイブセットを有する、
請求項1に記載の現像剤システム。
【請求項8】
前記運搬ローラの外側表面の最大磁界強度が約100ガウスおよび300ガウスの間であり、前記外側表面の最小磁界強度が前記最大磁界強度の約35%以上である、
請求項1に記載の現像剤システム。
【請求項9】
前記運搬ローラの前記磁気コアは前記ローラの円周上の複数の磁石を有し、各前記磁石の極は、前記ローラの中心軸に対して半径方向に位置合わせされるとともに隣接する磁石間で互い違いになる、
請求項1に記載の現像剤システム。
【請求項10】
前記運搬ローラは前記磁気コアの周りに回転可能に取付けられた円筒状シェルを有し、前記磁石は前記磁気コアの周囲の約100度から160度の間の周りに広がる、
請求項9に記載の現像剤システム。
【請求項11】
前記磁石は、可撓性のストリップ磁石である、
請求項9に記載の現像剤システム。
【請求項12】
前記磁気コアは偶数の磁石を有する、
請求項9に記載の現像剤システム。
【請求項13】
少なくとも80ppmの印刷速度に一致して前記磁気ブラシ駆動する手段をさらに有する、
請求項1に記載の現像剤システム。
【請求項14】
前記現像剤を少なくとも5.0g/インチ−秒の割合で供給する速度で前記運搬ローラを回転させる手段をさらに有する、
請求項1に記載の現像剤システム。
【請求項15】
前記現像剤を少なくとも5.35g/インチ−秒の割合で供給する速度で前記運搬ローラを回転させる手段をさらに有する、
請求項14に記載の現像剤システム。
【請求項16】
前記回転させる手段は前記運搬ローラを少なくとも75rpmの速度で回転させる、
請求項15に記載の現像剤システム。
【請求項17】
計量スカイブの必要性無しに感光要素上に静電潜像を現像する磁気ブラシの調色シェルへの現像剤の流量を制御する方法であって:
前記現像剤のタンクと前記調色シェルとの間に運搬ローラを提供するステップであって、前記ローラの外側表面上の最大磁界強度および少なくとも2つの反対の極性の磁極を有することが前記調色シェル上の前記現像剤の流れを作り出すのに十分である、ステップと;
前記運搬ローラを、画質を維持するのに十分な制御された可変の速度で回転させるステップと、を有する、
方法。
【請求項18】
前記制御はさらに、前記現像剤が取り替えられた後に、前記運搬ローラの速度を変えることを含む、
請求項17に記載の方法。
【請求項19】
前記現像剤を少なくとも5.0g/インチ−秒の割合で供給する速度で前記運搬ローラを回転させるステップをさらに有する、
請求項17に記載の方法。
【請求項20】
前記計量スカイブを連動させるステップをさらに有する、
請求項17に記載の方法。

【図1A】
image rotate

【図1B】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6A】
image rotate

【図6B】
image rotate


【公表番号】特表2012−530275(P2012−530275A)
【公表日】平成24年11月29日(2012.11.29)
【国際特許分類】
【出願番号】特願2012−516052(P2012−516052)
【出願日】平成22年6月9日(2010.6.9)
【国際出願番号】PCT/US2010/001657
【国際公開番号】WO2010/147628
【国際公開日】平成22年12月23日(2010.12.23)
【出願人】(590000846)イーストマン コダック カンパニー (1,594)
【Fターム(参考)】