説明

生物学的に活性なメチレンブルー誘導体

【課題】光細胞毒性を有し、医療における光力学療法(PDT)、診断および検出に用いる光増感剤を提供する。
【解決手段】例えば、以下の化合物:


R1〜R4は、各々個々に、線状または枝分れのCnH2nYであり、nは1〜6であり、YはH、F、Cl、Br、I、OH、OCH3、OC2H5、OC3H7、CNまたはOCOCH3である。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、強い光細胞毒性を有し且つ光力学療法(PDT)の分野さらに医療症状の診断および検出における用途を有する生物学的に活性な光増感剤、並びに光化学内在化、がんワクチンの製造、微生物感染症の治療および光消毒または光滅菌において関連する使用に関する。
【背景技術】
【0002】
ある種の有機化合物(“光増感剤”)が酸素の存在下での光吸収によって細胞死を誘発させ得ることは知られている。その細胞毒性作用は、タイプIおよびタイプIIの光酸化を含む。そのような光増感剤は、光によるがんおよび他の疾患または感染症の治療(光力学療法)並びに光誘発微生物破壊による表面および流体の滅菌(消毒を含む)における用途が見出されている。この概念において、滅菌なる用語は、特定の状況下での微生物の低減または排除を意味するのに使用する。
また、ある種の着色性フェノチアジニウム化合物(例えば、メチレンブルー)がタイプIおよびタイプIIの光酸化過程に関与し得ることも知られているが、このタイプの化合物は、光力学療法用の増感剤としては不適切であるか低い有効性しか有さないことがすでに証明されており、あるいは低い光化学抗菌活性しか示唆されていない。
PDTにおける応用においては、良好な増感剤は、次の特性の少なくとも幾つかを、好ましくはすべてを有さなければならない。最も重要なのは、増感剤がターゲット細胞(例えば、腫瘍細胞または細菌細胞)の破壊を光(好ましくは、約600〜800 nmの波長)への暴露時に効率的に引起こさなければならない。光増感剤を使用するPDT処理は、ターゲット細胞と正常細胞間で高度の選択性を示さなければならない。増感剤は、相対的に暗毒性を殆ど有さず、また、患者における皮膚光感受性を殆どまたは全く引起こすべきでない。
光滅菌における応用においては、良好な増感剤は、理想的には周囲光を使用して、広範囲の微生物において強力な光毒性作用を示さなければならず、また、容易に光退色してはならない。
【0003】
腫瘍学においては、数種の異なるタイプの光増感剤が、食道および膀胱のような中空器官の固形腫瘍および散在性腫瘍の両方を治療するのに使用されている。しかしながら、これらの光増感剤の使用は、1部には腫瘍と健常組織間の選択性の無さ故に、さらに1部には生じ得る長期の皮膚光感受性故に制約されている。皮膚光感受性を殆どまたは全く生ぜず且つ腫瘍細胞を選択的に破壊する新規な光増感剤が求められている。
PDTは、腫瘍の治療において以前から使用されているものの、細菌および他の微生物によって生ずる感染症に対してはまだ使用されていない。細菌感染の治療に抗生物質を使用することは、テトラサイクリン類およびベータ-ラクタム類のような普通に使用される抗生物質に対して多くの細菌種が耐性を増大させていることから、挑戦的になってきている。MRSAのような院内感染抗生物質耐性感染症は、とりわけ問題である。光力学抗菌治療は、局所治療における抗生物質に代わる有望事項である。
抗菌剤を開発する場合、克服しなければならない大きな問題は、細菌細胞中への薬物の取込みである。グラム陰性菌およびグラム陽性菌は、その外表面の組成において異なり、抗微生物剤に対し、とりわけ取込みの点で異なって応答する。グラム陰性菌は、その高い負電荷表面ゆえに、最も普通に使用される光増感剤のような中性またはアニオン性薬剤に対して比較的不透過性である。グラム陰性菌並びにグラム陽性菌に対して有効である抗微生物光増感剤の開発は、耐性により益々有効でなくなりつつある普通に使用される抗生物質および薬物を置換えるのに極めて有益である。
【0004】
多くの種々のタイプの光増感剤が、細菌において研究されている。これらの光増感剤としては、フェノチアジニウム化合物類、フタロシアニン類、クロリン類および天然産光増感剤類がある。グラム陰性菌への取込みのためには、それらのカチオン性誘導体が最も有効であると認識されている。
フェノチアジニウム化合物は、600〜700 nmの波長において最大の吸収を有する青色染料である。これらの化合物は、その非光力学抗菌特性について研究されてきているが、稀に、メチレンブルーおよびトルイジンブルーを除いて、光力学的にも研究されている。
Wainwright等(1998年)は、1連のフェノチアジニウムメチレンブルー誘導体の有効性を腫瘍細胞系および細菌において研究している(非特許文献1参照)。新規なメチレンブルー(NMB)およびジメチルメチレンブルー(DMMB)が、MRSAの不活化において有効であり、また、着色メラノーマ細胞系に作用させたとき、メチレンブルーよりも有効な光増感剤であることも示唆している。Wagner等(1998年)は、これらの染料さらにまた疎水性誘導体をエンベロープ化ウィルスの不活化について研究している(非特許文献2参照)。
【先行技術文献】
【非特許文献】
【0005】
【非特許文献1】Wainwright M, Phoenix DA, Laycock SL, Wareing DRA, Wright PA. (1998). Photobactericidal activity of phenothiazinium dyes against methicillin-resistant strains of Staphylococcus aureus. FEMS Microbiology Letters 160, 177-181
【非特許文献2】Wagner SJ, Skripchenko A, Robinette D, Foley JW, Cincotta L (1998). Factors affecting virus photoinactivation by a series of phenothiazine dyes. Photochemistry and Photobiology 67, 343-349
【発明の概要】
【発明が解決しようとする課題】
【0006】
メチレンブルーの抗菌作用の正確な形態は解明されていないが、1つの仮説は、その立体化学性故にメチレンブルーがDNA中に介入し得ること、および光力学作用によりDNA損傷を引起こすことである。メチレンブルー自体は、抗腫瘍剤として有効でないことが示されている。さらに、メチレンブルーは、ある応用においては重大な欠点であり得る光退色に対して感受性であることも知られている。メチレンブルーの認識された制約故に、抗腫瘍PDTおよび抗微生物PDTの双方が、新規なフェノチアジン系光増感剤の開発によって有益となろう。
【課題を解決するための手段】
【0007】
本発明によれば、下記の式Iのフェノチアジニウム化合物が提供される:
【化1】

(式中、AおよびBは、各々個々に、
【化2】

であり、ZはCH2、O、S、SO2、HN、NCH3、NC2H5、NCH2CH2OHまたはNCOCH3であり、R1およびR2は、各々個々に、線状または枝分れのCnH2nYであり、nは1〜6であり、YはH、F、Cl、Br、I、OH、OCH3、OC2H5、OC3H7、CNまたはOCOCH3であり;
XP-はカウンターアニオンであり、Pは1、2または3である;
但し、AおよびBの双方が-N(CH3)2または-N(CH2CH3)2のいずれかである化合物は含まない)。
好ましくは、上記カウンターアニオンは、Cl-、Br-、I-、F-、NO3-、HSO4-、CH3CO2-のいずれか;ジアニオン、即ち、SO42-またはHPO42-;またはトリアニオン、即ち、PO43-から選択する。
好ましくは、AおよびBは同一であり、R1およびR2の双方はn-プロピル、n-ブチルまたはn-ペンチルである。
上記化合物は、微生物に対して使用し得る。好ましくは、上記化合物は、細菌に対して使用し得る。より好ましくは、上記化合物は、抗生物質耐性菌に対して使用し得る。
本発明の1つの実施態様においては、上記化合物は、PDT剤または光診断剤としての使用である。
【0008】
さらにまた、本発明は、式Iの化合物とポリマー間で形成された接合体または複合体も提供する。本明細書において使用するときの複合体なる用語は、本発明の化合物がポリマー中に埋め込まれているか、マトリックスまたは基体中に物理的に閉塞されているか、あるいはマトリックスまたは基体上に吸着されている状態を称する。ポリマーは、ペプチドまたはタンパク質のような生物学的ポリマーであり得る。好ましいポリマーとしては、無水物および/またはエステル基を有するポリマーがある。
さらに、本発明は、式Iの化合物とクロロトリアジン誘導体との反応によって形成された化合物も提供する。該クロロトリアジン誘導体は、結合クロロトリアジン基を有するポリマーであり得る。
1つの実施態様においては、本発明の化合物は、薬物として使用する。
本発明の化合物は、治療において、がん、前がん疾患、眼科疾患、血管疾患、自己免疫疾病、並びに皮膚および他の器官の増殖性症状のような望ましくない組織または細胞の除去を必要とするような症状のPDT用の光増感性薬物として有用である。これら物質の特別の予想外の利点は、全身投与後の種々の時間(使用する特定の増感剤に依存する)においてターゲット組織に対して光活性であるその能力、従って、脈管構造または腫瘍細胞(例えば)に直接ターッゲティングされる能力に係わる。また、これらの物質は、全身投与したときに周囲光に対して皮膚を感受性にする性向も、皮膚を着色する性向も低い。また、上記化合物は、皮膚および他の局所感染症の光活性化性の抗微生物治療として、PDTにおいて、熱傷創および他の病変の消毒において、皮膚を含む器官移植中の移植者組織および提供組織の消毒において、さらに歯科微生物疾患の治療においても使用し得る。
【0009】
また、上記化合物は、表面および流体の一般的滅菌用の光活性化性抗微生物剤としても有用である。現存する公知の抗微生物光増感剤を凌ぐこれら化合物の特別の利点は、光退色を受ける低い性向と併せ持った、低光照射量でのその高い光細胞毒性である。
さらにまた、本発明の化合物は、他のフェノチアジニウム光増感剤と比較して、これら化合物の細胞破壊活動を起させるのに、細胞核をターゲットとすることはなく、細胞が変異性形質転換を被るリスクがはるかに低いという利点を有する。
また、本発明は、本発明化合物を希釈剤または賦形剤と一緒に含む組成物も提供する。
本発明の化合物の使用の例は、バレット食道および頸部の上皮内新生物(前がん症状);膀胱がんおよび結腸がん;黄斑変性症(眼科疾患);心臓血管疾患、動脈硬化症および再狭窄のような血管問題;リウマチ様関節炎のような自己免疫疾患;乾癬、にきびおよびセメント質化症(excema)のような皮膚疾患;並びに子宮内膜症および月経過多のような他の良性症状を治療するためのPDT用の光増感性薬物としてである。また、上記化合物は、皮膚および創傷感染症、他の局所感染症の抗微生物治療として、さらに歯科細菌疾患の治療において使用し得る。また、上記化合物は、その光増感特性による光化学内在化(薬物の取込みと細胞内局在化を助長させるための光増感剤の使用)、およびその蛍光特性による光診断におけるような非治療用途においても使用し得る。後者の試みは、光増感剤が周囲の健常細胞におけるよりも腫瘍において濃縮し、蛍光を誘発させるとき(青色光の適用により)、腫瘍が周囲組織よりも強く蛍光を発するという利点を有する。
上記化合物は、表面および流体の滅菌用の光活性化抗微生物剤として使用し得る。
【0010】
従って、本発明は、上記の光増感剤を全身または局所投与し、その後、適切な照射量および波長または波長範囲の光を適用することによるがんおよび他のヒトまたは動物疾患の治療法方も提供する。
好ましくは、治療を必要とする対象者に投与する化合物は、R1およびR2がn-プロピルである式(I)の化合物であり、上記光暴露は薬物投与時点から10分までに行う。
本発明の好ましい実施態様においては、光暴露は薬物投与の1分以内で実施する。
より好ましくは、光暴露は、薬物投与時点において行う。
また、投与する化合物は、R1およびR2がn-ペンチルである式(I)の化合物であり、上記光暴露は薬物投与時点から上記よりも長時間で行う。
従って、本発明は、微生物感染症、熱傷創および他の病変、並びに歯科細菌疾患の治療方法を提供し、該方法は、治療上有効量の本発明の化合物を全身投与または治療すべき領域に適用し(例えば、スプレーにより)、上記領域を光に暴露させて上記化合物を活性にすることを含む。
好ましくは、上記方法は、R1およびR2がn-ブチルである式(I)の化合物を投与する処置を含む。
さらにまた、本発明は、本発明の化合物を表面または流体に適用し、上記化合物を光によって活性化させることを含む表面または流体の滅菌方法を提供する。
【0011】
本発明の適切な化合物は、高分子表面に、共有結合によって永続的にあるいは分子間相互作用によって可逆的に結合させ得、それによって、必要な時に光の照射によって何時でも滅菌し得る表面を提供し得る。これは、例えば、関連表面の長時間滅菌を維持するのが厄介である患者の静脈系、縫合糸、カテーテルおよび静脈系において有用である。上記化合物の光退色に対する耐性は、その発色団の長期安定性を必要とするような応用においては利点である。
従って、本発明は、本発明の化合物を結合させた少なくとも1つの表面を有する物品も提供する。
好ましくは、上記物品は、静脈、泌尿器またはバルーンカテーテル;縫合糸;整形外科用または人工インプラント;心臓弁;手術用ネジまたはピン;ペースメーカー導線;栄養管または呼吸管;血管ステント;眼内レンズ;または小関節置換物のような医療器具である。また、上記物品は、創傷治療における、さらには、医療用途用の材料、例えば、医療機器用の材料を包装するための用途も有し得る。
本発明の化合物は、病院の壁、床および天井;手術用テーブルのような臨床表面;食肉処理場;および科学研究所のクリーンルームに応用し得る。繊維類は、清掃用布巾類、拭取り材、手術衣、ベッドカバー、創傷用着衣および包帯のような織布、編物または不織布物品に変換し得る。
また、上記物品は、食品および飲料工業用の物品であり、包装用商品、包装紙、貯蔵用カートンまたは加工装置の部品であり得る。上記物品は、冷蔵機、自動販売機、製氷機、レストラン機器の部品または他の台所用品であり得る。
【0012】
本発明は、末端アミノ基上の置換基の大きさおよび疎水特性に生体外および生体内での光生物学的特性の予想外で顕著な依存性を示すフェノチアジニウム増感剤に関する。そのような構造上の特徴を注意深く選定することによって、現存の材料を凌ぐ明白な利点を有する光増感剤を提供する。従って、本発明の化合物は、腫瘍学の分野および抗微生物作用において下記の利点を提供することによって、従来技術の問題を克服する:
腫瘍学における利点
・メチレンおよびエチレンブルーと比較したときの極めて強い光活性。
・UV/青色領域の光の低吸収性。この低吸収性は、本発明化合物の皮膚光感受性に対する低い性向をもたらす。
・急速な皮膚クリアランス。
・腫瘍に対する高選択性
・低い暗毒性
・メチレンブルーと比較したときのDNA損傷における低いポテンシャル。
・現存のPDT薬と比較しての極めて短い薬物-光時間インターバル。
抗微生物性の利点
・グラム陽性菌およびグラム陰性菌、MRSAおよび真菌感染のような広範囲の微生物の不活化における高度の有効性。
・静止状態細菌に対する活性。
・宿主組織に対して最小の損傷を示す微生物に対する高度の選択性。
・光退色に対する予想外の低レベル。
【図面の簡単な説明】
【0013】
【図1】タイプ(I)の対称置換チアジン類の抗腫瘍光力学有効性(%腫瘍壊死)を示す。
【図2】図2は、薬物投与と光投与間の時間間隔の関数としてのテトラ-n-プロピルおよびテトラ-n-ペンチル誘導体の抗腫瘍光力学有効性(%腫瘍壊死)を示す。
【図3】ポリヘマトポルフィリン(PHP)と比較した、テトラ-n-プロピルおよびテトラ-n-ペンチル誘導体によって生ずる相対的皮膚光感受性を示す。
【図4】10μMのフェノチアジニウム化合物と一緒に30分インキュベートし、1.3mW/cm2で60分間照射した大腸菌のコロニー形成単位(CFU)/mlの対数変化を示す。
【図5】種々の濃度のテトラ-n-ブチルフェノチアジニウム誘導体と一緒に30分インキュベートし、1.3mW/cm2で15分間照射した大腸菌のCFU/mlの対数変化を示す。
【図6】10μMのフェノチアジニウム誘導体と一緒に30分インキュベートし、1.3mW/cm2で60分間照射した増殖静止期の大腸菌のCFU/mlの対数変化を示す。
【図7】栄養培地中に再懸濁させた大腸菌のCFU/mlの対数変化を示す。
【図8】10μMのフェノチアジニウム化合物と一緒に30分インキュベートし、レーザー光(665nm)で僅かに4分間、0.1Wで照射した後の大腸菌のCFU/mlの対数変化を示す。
【図9】30分インキュベーション後の大腸菌中への10μMのフェノチアジニウム化合物の取込みを示す。
【図10】10μMのテトラ-n-ブチルフェノチアジニウム誘導体と一緒にインキュベートし、次いで、0.1M pH7.0のリン酸カリウム緩衝液中で2回洗浄して存在し得る細胞外にまたはゆるく結合した増感剤を除去した大腸菌細胞のCFU/mlの対数変化を示す。
【図11】対照と比較したときの暗中での大腸菌培養物の増殖に対する各種フェノチアジニウム化合物の効果についてのデータを示す。
【図12】テトラ-n-ブチル誘導体のみを使用しての細菌増殖に対する光増感剤+光の効果を示す。
【図13】10μMのテトラ-n-ブチルフェノチアジニウム誘導体と一緒にインキュベートした後のプソイドモナス アエルギノサの%細胞生存率を示す。
【図14】10μMのテトラ-n-ブチルフェノチアジニウム誘導体と一緒にインキュベートした後のスタフィロコッカス アウレウスの%細胞生存率を示す。
【図15】0.1Wの665nmレーザー光による照射および10μMのテトラ-n-ブチルフェノチアジニウム誘導体とのインキュベーション後のMRSAの%細胞生存率を示す。
【図16】10μMのテトラブチルフェノチアジンと一緒にインキュベートし、0.1Wのレーザー光(664nm)で照射した後のカンジダ アルビカンスの%細胞生存率を示す。
【図17】テトラ-n-フェノチアジニウム誘導体を使用しての、当該光増感剤が宿主組織に損傷を与えないことを示す例証結果である。
【発明を実施するための形態】
【0014】
試験化合物
本試験において使用するフェノチアジニウム化合物は、リーズ大学色素化学部(Leeds University Department of Colour Chemistry)のJ. Griffithsによって合成された。これらの化合物は、下記の式のものであった:
【化3】

R1〜R4 = n-C3H7:テトラ-n-プロピル
R1〜R4 = n-C4H9:テトラ-n-ブチル
R1〜R4 = n-C5H11:テトラ-n-ペンチル
R1〜R4 = n-C6H13:テトラ-n-ヘキシル
メチレンブルー(R1〜R4 = n-CH3)およびエチレンブルー(R1〜R4 = n-C2H5)も、比較目的で試験した。
各光増感剤の原液は、水および/またはDMSO中で調製し、必要とするまで暗所に保存した。各試験溶液は、必要に応じて、緩衝液、溶媒または生物学的媒体中で調製した。
上記各フェノチアジニウム化合物のスペクトルおよび物理特性
水およびメタノール中での上記各フェノチアジニウム化合物のスペクトルデータは、化合物すべてが650〜700 nm領域において吸収ピークを有するが、正確なピーク位置には顕著な変動性があることを示している(表1)。長鎖のアルキル鎖を有するフェノチアジニウム化合物の方が長波長において吸収ピークを有し、また、ピーク位置は、メタノールと比較して水中の方が一般に長波長にある。これらの差異は、恐らく、各光増感剤の凝集状態を反映しているのであろう。
下記で表す各光増感剤のオクタノール-水分配係数(対数 P)も表1に示す。
対数P = (オクタノール中のmg/ml)/(緩衝液中のmg/ml)
【0015】
表1:各フェノチアジニウム化合物のスペクトルおよび物理特性

Ex.Maxは蛍光励起波長最高値であり、Em.Maxは蛍光放出波長最高値である。

オクタノール-緩衝液分配係数(対数P)は、上記薬物の親油性を決定する。予想し得たように、親油性はR値の増大につれて増大するが、高いR値においてさえも、上記化合物は生物学的媒体中で可溶性のままであることに留意すべきである。
【0016】
哺乳動物細胞および腫瘍用のPDT剤としてのフェノチアジニウム誘導体
各フェノチアジニウム誘導体を、1連の培養物中の哺乳動物細胞におけるPDT有効性について評価した。RIF-1マウス線維肉腫細胞を、MTTアッセイを使用してPDT後の残存細胞生存率を評価することによって試験した。1連の試験からのデータは、表2に要約しており、4つのフェノチアジン誘導体におけるLD50値(使用条件下における細胞の半数を死滅させるのに必要な光増感剤濃度)を示している。また、比較のため、メチレンブルーおよびエチレンブルーのデータも示している。これらの化合物の幾つかは暗中でも細胞を死滅させることができ、表2は、暗のみの対照におけるLD50に対する比も示している。表2からは、テトラ-n-ペンチル誘導体、テトラ-n-ブチル誘導体およびテトラ-n-プロピル誘導体は、これらの条件下ですべて有効なPDT剤であり、メチレンブルーおよびエチレンブルーよりもはるかに活性であることが分かる。最も有効であるのは、テトラ-n-プロピル誘導体である。また、メチレンブルーにおいては、暗毒性と光毒性のLD50間に小さい比しかないが、この比は、各フェノチアジニウム誘導体においてははるかに大きいことも明白である。
上記の結果は、メチレンブルーに比較して、これらの化合物のはるかに増大した光毒性のみならず、暗毒性の相対的な欠如も例証している。このことは、治療の面での著しい利点である。表2は、メチレンブルーおよびエチレンブルーと比較した上記各誘導体の相対的活性を、それら固有の1重項酸素を産生させる能力を尺度として使用して示している。各種化合物間で極めてわずかな差異しかなく、細胞中で観察される顕著な差異がほぼ完全に生物学的要因によっていることが理解できるが、そのメカニズムはまだ解明されていない。また、表2は、各種フェノチアジニウム化合物の初期細胞内局在化並びに光投与後に生じ得る再局在化もメチレンブルーおよびエチレンブルーのそれと比較して示している。特筆すべきことに、すべての誘導体が初期ではリソソーム中に局在しているものの、その後、メチレンブルーが核に再局在化しているのに対し(恐らくDNAに対して有害または変異作用を有し得る)、テトラ-n-プロピル、テトラ-n-ブチル、テトラ-n-ペンチルおよびテトラ-n-ヘキシル誘導体は、はるかに良好なPDTターゲットであるミトコンドリアに再局在化している。
【0017】
表2:各フェノチアジンの化学特性、並びにRIF-1マウス線維肉
腫細胞中での光毒性、暗毒性、細胞取込みおよび細胞内局在化

1 90%DMF:10%水中の100mg/mlの各フェノチアジンによる10分間赤色光照射後の1,3-ジフェニルイソベンゾフランの%光酸化。
2 細胞を各フェノチアジンと2時間インキュベートした。光毒性の測定においては、細胞を3J/cm2 (10mW/cm2)の白色光で照射した。暗毒性は並行して測定した。細胞生存率は、MTTアッセイを使用して24時間後に評価した。
3 細胞を各フェノチアジンと2時間インキュベートした。細胞を2%SDS中に可溶化させ、各フェノチアジン量を蛍光により測定した。
4 細胞をPDT LD50濃度の各フェノチアジンと2時間インキュベートし、630nm光での照射前および10分間照射中の蛍光像を捕らえた。
【0018】
表3は、種々のヒト組織およびがんを表す1連の培養物中の各種細胞中での各誘導体におけるLD50値を示している。明らかに、テトラ-n-プロピル、テトラ-n-ブチルおよびテトラ-n-ペンチル誘導体は、この場合も、メチレンブルーに比較して、高度に活性であり、また、試験した細胞系すべてにおいても活性である。
表3:ヒト腫瘍細胞系における各フェノチアジンの光毒性および暗毒性

1 咽頭腺癌
2 子宮頸部扁平上皮細胞癌
3 膀胱移行細胞癌腫
4 結腸腺癌
細胞は、各フェノチアジンと2時間インキュベートした。光毒性の測定においては、細胞を3J/cm2 (10mW/cm2)の665nm白色光で照射した。暗毒性は並行して測定した。細胞生存率は、スルホローダミンB (SRB)アッセイを使用して48時間後に評価した。
【0019】
数種の不斉フェノチアジニウム誘導体(R1 = R2 ≠ R3 = R4)を調製し、培養物中の細胞中で試験した。これらの誘導体の幾つかは、絶対活性および光対暗毒性比の双方の点でメチレンブルーよりも優れた光増感剤であることを示している。これらの化合物のサンプルデータを表4に示す。
表4:メチレンブルーと比較しての不斉フェノチアジン類の化学特性並
びにSiHaヒト子宮頸部扁平上皮細胞がん細胞中での光毒性および暗毒性

1 90%DMF:10%水中の100 mg/mlの各フェノチアジニウム化合物における10分間赤色光照射後の1,3-ジフェニルイソベンゾフランの%光酸化。
2 細胞を各フェノチアジニウム化合物と一緒に2時間インキュベートした。光毒性の測定に当たっては、細胞を3J/cm2の665 nm光で照射した。暗毒性を並行して測定した。細胞生存率は、スルホローダミンB (SRB)アッセイを使用して48時間後に評価した。
【0020】
図1は、タイプ(I)の対称置換チアジン類の抗腫瘍光力学有効性(%腫瘍壊死)を示す。CaNT皮下腫瘍を有する雌CBA/Gyマウスに、16.6μモル/キログラムの投与量で上記薬物溶液を注射した。これらのマウスを注射後1時間最適波長の光(別の試験で決定した)で処置した。光源は30 nmの帯域幅を与える適切なフィルターを備えたパターソン(Patterson)ランプであり、処理は、50 mWcm-2の速度で60 J cm-2であった。図1からは、腫瘍応答がアルキル基の性質に極めて依存性であることが理解でき、テトラ-n-ペンチルおよびテトラ-n-ブチル誘導体がメチレンブルーに比較してとりわけ有効であった。
図2は、薬物投与と光照射間の時間間隔の関数としてのテトラ-n-プロピルおよびテトラ-n-ペンチル誘導体の抗腫瘍光力学有効性(%腫瘍壊死)を示す。これらのデータは、上記2つの化合物間の全く予想外の差異を示している。テトラ-n-プロピル誘導体が極めて短い薬物-光時間間隔で(即ち、薬物投与の殆ど直後に光を照射することにより)極めて活性であるのに対し、テトラ-n-ペンチル誘導体は、極めて短時間では極めて低活性であるが、1時間後にはかなり高い活性を有する。この知見の説明はまだ解明されていないが、明らかに、これらの異なる性質は、異なる応用において活用し得る。例えば、速効性の薬物は血管治療において使用でき、遅延作用性の薬物は腫瘍細胞治療において使用できる。
図3は、ポリヘマトポルフィリン(PHP) (フォトフリンと同等)と比較した、テトラ-n-ブチルおよびテトラ-n-ペンチル誘導体によって生ずる相対的皮膚光感受性を示す。フォトフリンは、腫瘍学における現在の主要PDT剤であるが、患者において長期の皮膚光感受性を引起すという大きな欠点を有する。このモデルにおいては、上記皮膚光感受性は、薬物と光への暴露後24時間での耳厚の増大に関して測定する。図3は、予想通り、PHPは高レベルの皮膚光感受性を示すが、上記2つのフェノチアジニウム誘導体は光感受性を殆どあるいは全く示していないことを示している。また、これら2つの誘導体は、投与後極めて僅かしか皮膚着色を生じていなかった。
【0021】
光抗微生物活性
一般的方法
以下に示す方法は、大腸菌(E coli)においてであるが、試験した他の細菌、即ち、P.アエルギノサ(aeruginosa)、S.アウレウス(aureus)およびMRSAにおいても本質的に同一であった。
細菌の標準調製法
以下に概略する標準プロトコールは、種々の試験パラメーターの変動を検証するのに適するように修正した。
100mlの栄養培地(0.5%酵母抽出物、1.0%トリプトン、質量/容量)に大腸菌株DH5を無菌的に接種し、振盪インキュベーター内で、37℃で1夜インキュベートした。上記インキュベーターは、1分当り250ストロークおよび2.5cm円周の回転運動にセットした。インキュベートした後、10mlの培養物を200mlの栄養培地に無菌的に移し、中期対数期まで上述の振盪インキュベーター内で増殖させた。細胞を遠心処理(3000rpm、10分間)によって集め、0.1Mリン酸カリウム緩衝液(pH 7.0)中に再懸濁させ、再度遠心処理した(3000rpm、10分間)。上清液を廃棄し、ペレットを、0.1Mリン酸カリウム緩衝液(pH 7.0)中に、650nmで0.85〜0.90の吸光度まで再懸濁させた。
栄養培地中での照射を含む試験においては、細菌細胞をこの段階で栄養培地中に再懸濁させた。
【0022】
細菌細胞不活化試験
25mlの上記で調製した細胞懸濁液を、250mlの滅菌ホイルで覆った三角フラスコ内で、0.25mlの0.1mMの光増感剤原液と一緒にインキュベートした。上記懸濁液は、37℃の振盪インキュベーター内で、250rpmで暗中30分間インキュベートした。上記懸濁液を500Wのハロゲンランプで75cmの距離から60分間照射した。ランプの出力は、1時間照射において4.68J/cm2を与える1.3mW/cm2であった。上記懸濁液の照射サンプルおよび照射しないサンプルの各50mlを取出し、0.1M pH7.0のリン酸カリウム緩衝液中で希釈した。その後、50mlの希釈懸濁液を栄養寒天(0.5%酵母抽出物、1.0%トリプトン、2.0%寒天、質量/容量)上に塗布し、37℃で1夜インキュベートして、30〜300個の単位を形成する多数のコロニーを得た。その後、細胞不活化を測定した。
フェノチアジニウム化合物を含まないが0.25mlのDMSOを含む30分インキュベーション段階前後の細菌塗布を含む対照試験は、CFU/mlの変化を示さなかった。また、フェノチアジニウム化合物を含まないが0.25mlのDMSOを含む単独の細菌培養物の照射もCFUの変化を示さなかった。栄養培地中での照射においては、対照試験は、1時間照射中に0.2のCFU/mlの対数10増加を示した。
幾つかの照射はレーザーによって実施し、その場合、上記細菌懸濁液を665nmのCeramoptecダイオードアレーレーザーにより0.1Wで照射した。
【0023】
増殖細菌細胞に対するフェノチアジニウム化合物の有効性の測定
ホイルで覆った250mln三角フラスコ内の200mlの栄養培地(0.5%酵母抽出物、1.0%トリプトン、質量/容量)に、10mlの完全増殖細菌培養物を無菌的に接種した。さらに、上記培地は、フェノチアジニウム化合物を含まないが1.0mlのDMSOを含有する対照は別として、1.0mlの1mMフェノチアジニウム化合物原液を10μMの最終濃度で含有していた。
上記懸濁液を、振盪インキュベーター内で、37℃および250rpmで暗中インキュベートした。1mlのサンプルを6時間1時間毎に採取し、光散乱により生ずる550nmでの見掛け光学密度に基づく濁度を測定した。対照の各試験は、この波長が光増幅剤吸収の領域外であることを示している。光学密度の読取り後、上記1.0mlサンプルをMSE Micro-Centaur遠心機(10 000g x 5分)内でスピンさせ、上清液の吸光度スペクトルを分光測定により読取った。
テトラ-n-ブチル誘導体おいてだけは、同様な実験を、細菌を光増感剤なしで3時間増殖させて実施し、その後、各フェノチアジニウム化合物を添加した。その後の増殖を、光への暴露および暗中での両方において、時間の関数としてモニターした。
【0024】
カンジダ アルビカンスの調製および光誘発不活化
酵母カンジダ アルビカンス(Candida albicans)に関する試験においては、この微生物を、サブロー(Sabouraud) (オキソイド)液体培地中で、対数増殖段階まで増殖させた(細胞は、4時間の増殖後に収穫した)。その後、細胞を、650nmでの0.87の光学密度まで再懸濁させた、この光学密度は、他の部生物において使用した8.5対数10CFU/mlと比較して、7.0対数10CFU/mlに等価である。照射手順は、先の各試験で使用したのと同じであった。照射後、上記酵母をサブローデキストロース寒天(オキソイド)上に塗布し、37℃で24時間インキュベートしてコロニー形成単位についてアッセイした。
光退色
0.25mlの1mM光増感剤溶液、0.25mlの10mMトリプトファンを、25mlの60%メタノール、40%リン酸カリウム緩衝液(pH 7.0)に添加した。試験は、トリプトファンを0.25mlの60%メタノール、40%リン酸カリウム緩衝液(pH 7.0)で置換えたトリプトファンの不存在下においても実施した。
混合物を、上記の細胞不活化試験(1.3mW/cm2)におけるようにして、60分間照射し、サンプルを15分毎に採取し、500nm〜700nmのUV-可視光分光測定器で読取った。高光照射量においては、照射は、9mW/cm2で60分であった。
【0025】
結果
フェノチアジニウム誘導体の抗菌特性
図4は、10μMのフェノチアジニウム化合物と一緒に30分インキュベートし、1.3mW/cm2で60分間照射した大腸菌のコロニー形成単位(CFU)/mlの対数変化を示す。ハロゲンランプによる60分照射後の細胞生存率についてのデータを記録した。メチレンブルーからエチレンブルーまでの低下、その後のテトラ-n-ブチルフェノチアジニウム誘導体までのほぼ1000倍の上昇である基における傾向を示す実質的な細菌不活化があることを理解できる。その後、より長鎖のフェノチアジニウム化合物は、テトラ-n-ヘキシル誘導体が殆ど不活性であるように細菌細胞死滅能力の低下を示していた。テトラ-n-ブチルフェノチアジンは、0.001%の%細胞生存率に等価の5.1対数10の最大のml当りコロニー形成単位の変化をもたらしていた。0.19対数10CFUの最低の変化は、65.3%の細胞生存率であるテトラ-n-ヘキシル誘導体の使用であった。光のみの対照による細胞不活化はなかった。
図5は、種々の濃度のテトラ-n-ブチルフェノチアジニウム誘導体と一緒に30分インキュベートし、1.3mW/cm2で15分間照射した大腸菌のCFU/mlの対数変化を示す。10μMがテトラ-n-ブチルフェノチアジニウム誘導体を使用して細菌不活化について試験した最大有効濃度であった。この濃度によるCFU/mlの対数変化は、4.59対数10単位であった。細胞死滅効果は、すべての試験濃度で達成されていたが、低めの薬物投与量では低下していた。50μMでは、10μMに比較して低下した2.15単位の対数変化であった。これは、光増感剤の凝集、従って、細胞に対する低い薬物投与量に基づき得た。
【0026】
多くの抗生物質は非増殖性または静止細菌に対しては貧弱な有効性しか有せず、上記フェノチアジニウム化合物の静止期細菌を不活化させる能力を評価することは重要である。静止期間中、上記細胞は、厚めのペプチドグリカン細胞壁を有してたんぱく質代謝において異なり、従って、光力学作用に対して低い感受性しか示し得ない。図6は、10μMのフェノチアジニウム化合物と一緒に30分インキュベートし、1.3mW/cm2で60分間照射した増殖静止期の大腸菌のCFU/mlの対数変化を示す。テトラ-n-プロピルおよびテトラ-n-ブチル誘導体の有効性は静止期細菌に対してはほんの僅かに低下しており、ここでも、テトラ-n-ブチル誘導体が最も有効であることが理解できる。
細菌類の不活化は、光増感剤が細菌リポ多糖類膜よりもむしろ細胞外たんぱく質と優先的に結合し得るので、治療環境においてはより挑戦的であり得る。このことを、光増感剤結合において細菌細胞と拮抗し得る多くの因子を含有する栄養培地中に上記細菌を再懸濁させることによって試験した。図7は、栄養培地中に再懸濁させた大腸菌のCFU/mlの対数変化を示しており、この図から、細胞死滅レベルの低下は殆どないことが理解できる。ここでも、テトラ-n-ブチルフェノチアジニウム誘導体は、最高の抗菌活性を有している。
図8は、10μMのフェノチアジニウム化合物と一緒に30分インキュベートし、レーザー光(665nm)で僅かに4分間、0.1Wで照射した後の大腸菌のCFU/mlの対数変化を示す。ここでも、フェノチアジン誘導体間に同じ活性パターンが見られ、有効性が固有のレーザー光によっても存在することを示している。レーザー源の潜在的な利点は、光照射量の精度増大と照射時間の短縮である。
レーザー光によるさらなる試験は、5.69 CFU/mlの対数変化がテトラ-n-ブチルフェノチアジニウム誘導体における0.1Wの14分照射によって達成し得ること、および20分照射後に、ほぼ8.5単位の対数変化があるが、このCFU数は、この指数を統計的に信頼し得るようにするには小さ過ぎることを示していた。
【0027】
細菌細胞中への上記光増感剤の取込みは、光活性を決定するのに明らかに重要である。図9は、30分インキュベーション後の大腸菌細胞中への10μMのフェノチアジニウム化合物の取込みを示す。細胞を0.1M pH7.0のリン酸カリウム緩衝液中で2回洗浄して細胞外にまたはゆるく結合した増感剤を除去した。各フェノチアジニウム化合物の取込みは、テトラ-n-ブチル誘導体が細菌細胞に最も取り込まれている点で、光毒性に幾分相関していることが理解できる。しかしながら、取込みと光活性間の相関は、正確さにはほど遠い。例えば、テトラ-n-ブチル誘導体における光活性と取り込みとの比は、テトラ-n-ヘキシル誘導体における比よりもはるかに大きい。これらの比は、光活性が取り込みに基づいてのみ説明し得るとするならば、誘導体すべてにおいて同じであると予期され得るであろう。従って、テトラ-n-ブチルおよびテトラ-n-プロピル誘導体の極端に高い活性は、まだ解明されていない幾つかのさらなる要因によらねばならないことは明白である。
提示していないデータによれば、テトラ-n-ブチル誘導体は大腸菌中に極めて迅速に取込まれ;5分と30分のインキュベーション時間での取込み間に差異はないことが証明されている。しかしながら、栄養培地の存在においては、取込みは、幾分低めであり、度合において低下していることが判明した。
図10は、10μMのテトラ-n-ブチルフェノチアジニウム誘導体と一緒にインキュベートし、次いで、0.1M pH7.0のリン酸カリウム緩衝液中で2回洗浄して存在し得る細胞外にまたはゆるく結合した増感剤(光毒性に対して作用を有し得る)を除去した大腸菌細胞のCFU/mlの対数変化を示す。照射には、0.1Wのレーザー光(665nm)を4分間使用した。結果は、洗浄および未洗浄細胞のCFU/mlの対数変化間に殆ど差がないことを示しており、細胞死を引起す堅固に結合した光増感剤であることを示唆している。現在のところ、細菌細胞内での正確な光増感剤の位置は未知であるが、光力学作用は有効で非再生性である。
【0028】
対照と比較したときの暗中での大腸菌培養物の増殖に対する各種フェノチアジニウム化合物の効果についてのデータを図11に示す。インキュベーションは37℃で暗中6時間実施し、測定は、前述したような550nmでの見掛け濁度によった。各フェノチアジニウム化合物を含有する培養物すべてが、対照と比較したとき、増殖低下を示しており、テトラ-n-ブチルフェノチアジニウム誘導体が細菌懸濁液中の細胞数に最大の抑制を示している。この暗中抑制は、光中での細胞不活化において観察された度合の桁数よりも多数桁低いことを重視すべきである。
テトラ-n-ブチル誘導体のみによるさらなる作業を実施して細菌増殖に対する光増感剤+光の効果を測定した。図12に示すこれらのデータは、3時間後の光増感剤添加による細菌増殖において、暗中では増殖が持続したが、光中では増殖が完全に排除されていることを明らかに示している。データは、この場合も、本光増感剤の極めて強力な光殺菌効果を例証している。
図13は、10μMのテトラ-n-ブチルフェノチアジニウム誘導体と一緒にインキュベートした後のプソイドモナス アエルギノサ(緑膿菌シュードモナス)の%細胞生存率を示す。照射は、0.1Wのレーザー光(665nm)によった。P. アエルギノサは、潰瘍および熱傷創の感染症のような多くの皮膚症状に一般的に関連するグラム陰性菌である。図面は、テトラ-n-ブチルフェノチアジニウム誘導体がこの生物体を極めて有効に光力学的に不活化させることを示している。0.1Wのレーザー光による僅か2分の照射時間により、99%よりも高い細胞死滅に至っており、また、照射時間の10分への延長はほぼ4の細胞死滅対数を与えている。対照試験は、10μMのテトラ-n-ブチルフェノチアジニウム誘導体による光増感剤の不存在下での照射のみによっては細胞数の低減が生じないことを示していた。
【0029】
図14は、10μMのテトラ-n-ブチルフェノチアジニウム誘導体と一緒にインキュベートした後のスタフィロコッカス アウレウス(黄色ブドウ球菌)の%細胞生存率を示す。照射は、0.1Wのレーザー光(665nm)によった。S.アウレウスは、厚い外側ペプチドグリカン層を有し外部リポ多糖類を有さない点でグラム陰性菌とは異なるグラム陽性菌である。その細菌構造は、ほぼ全ての一般的に使用される抗生物質に耐性であるMRSA(メチシリン耐性黄色ブドウ球菌)におけるのと同一である。データは、僅か1分の照射後にほぼ99%の細菌が不活化されていることおよび10分後にほぼ5の細胞死滅対数があることを示しており、本グラム陽性菌に対するテトラ-n-ブチル誘導体の極めて高い光活性を例証している。
光増感剤が抗生剤耐性形であるMRSAに対しても活性であるかどうかを測定することは、それが大きな衛生および工業上の用途を有することから重要である。図15は、0.1Wの665nmレーザー光による照射および10μMのテトラ-n-ブチルフェノチアジニウム誘導体とのインキュベーション後のMRSAの%細胞生存率を示す。データは、この光増感剤がMRSAの死滅において実際に高度に光活性であることを明白に示している。
フェノチアジニウム誘導体の抗真菌特性
上記テトラブチル誘導体が光中で真菌細胞を死滅させる能力を試験するために、上記光増感剤をカンジダ アルビカンスの細胞と一緒にインキュベートし、培養物を上述したようにしてレーザー光に供した。結果は図16に示しており、この真核生物も容易に破壊されていることが明白である。従って、本光増感剤も、多くの一般的感染症、例えば、鵞口瘡の原因であるこの真菌生物に対して高度に光活性である。
【0030】
哺乳動物組織に対比しての細菌細胞に対する選択性
微生物を破壊させながら宿主組織には最小限の損傷であることが治療目的において明らかに重要である。このことを、テトラ-n-ブチルフェノチアジニウム誘導体の溶液を実験マウスの耳に塗布し、総投与量が細菌または真菌排除において必要とした投与量のほぼ20倍である条件下において照射することによって試験した。宿主組織に対して生じ得る作用を、あり得る耳厚の増大を測定することによって評価した。これは、皮膚における光力学反応を検出するための標準モデルである。図17は、得られた結果を、PHP、即ち、長期の皮膚反応を起こすことが知られているフォトフリンと等価の薬物の静脈内投与からの結果と比較して示す。図17から、PHPからの反応は予想通り極めて強力であるのに対し、テトラ-n-ブチルフェノチアジニウム誘導体からの反応は殆どまたは全くないことが明白であり、哺乳動物組織は抗微生物治療中に損傷されないことを示唆している。
光退色
光退色は、光増感剤からの検出可能な色を消去して、その色を不活性にするものであり、光および還元または酸化に対する不安定性の結果である。そのような光退色は、可能性のある用途次第で利点または欠点を有し得る。例えば、光退色は、線およびカテーテル類のコーティングにおいては望ましくない。2組の試験を実施した;前述のトリプトファンを含むまたは含まない高光照射量(9.0mW/cm2)での試験と低光照射量(1.3 mW/cm2)での試験。トリプトファンを含むまたは含まない低光照射量での吸収スペクトルは、いずれのフェノチアジニウム化合物においても変化を示さず、これらの化合物がこの投与量で安定であることを例証していた。高光照射量においては、スペクトル変化はメチレンブルーにおいて観察され、光退色を示していた。最高吸光度は低下し、波長ピークは1時間の照射に亘って移動した。これらの変化は、トリプトファンを含む場合と含まない場合で同程度に生じた。しかしながら、他のフェノチアジニウム化合物のうちでこの劣化を示したものはなく、上記高光投与量で光退色に対して安定なままであった。
【0031】
ポリマー中での内包、ポリマー表面への結合、またはポリマー表面上への吸着に適する構造Iのフェノチアジニウム化合物
(a) ポリマー内での内包
製造例:
ジクロロメタン(10 cm3)中のセルローストリアセテート(0.5 g)の透明溶液に、増感剤(I、X = Y = n-Bu) (0.01 g)を添加し、混合物を上記増感剤が完全に溶解するまで攪拌した。その後、溶液をガラスプレート上に注型し、ゆっくり乾燥させて、透明青色フィルムを得た。このフィルムは、光への暴露時に典型的な1重項酸素産生特性を示した。即ち、上記フィルムを含有するトルエン中のテトラフェニルシクロペンタジエノン(特徴的な1重項酸素検出体)通気赤色溶液は、40Wタングステンフィラメントランプからの光への暴露時に急速に退色した。同じ溶液は、上記フィルム不存在下では同じ時間照射したとき退色を示さなかった。
(b) ポリマー上への吸着
フェノチアジニウム化合物IaおよびIbを下記の反応式に従って調製し、暗青色固形物として単離した。これらの固形物を質量分析によって特性決定した。
【化4】

化合物(IaおよびIb)は極めて塩基性であり、それぞれ、希酸中で容易にプロトン化されて(IIa)および(IIb)を生成し、これらは、高分子表面上、例えば、ポリアミド類、ポリアクリレート類、ポリエステル類、ポリカーボネート類、ポリウレタン類上に強く吸着し、水または溶媒による剥離に強力に耐え得た。また、IaまたはIbは、酸性表面上に直接吸着させて相応するカチオン塩を直接生成させ得た。
【化5】

【0032】
(c) 上記フェノチアジニウム増感剤のポリマー基体への共有結合
誘導体IaおよびIb
化合物IaおよびIbは、上記増感剤単位をポリマーに共有結合させる手段を与え得る種々の置換反応における求核剤として極めて反応性であることを示した。
即ち、無水物との反応が、下記の反応に例示されるようにして生じた:
【化6】

製造例:
ポリエチレン-グラフト-無水マレイン酸(1.0 g)をトルエン(25 cm3)中に温めながら溶解させた。増感剤Ia (0.20 g)を加え、反応混合物を還流下に1時間加熱した。混合物をメタノール中に注ぎ入れ、沈降物を濾別し、メタノールで洗浄し、乾燥させて、増感剤結合コポリマーを暗青色粉末(1.1 g)として得た。上記増感剤の上記ポリマーへの共有結合は、上記粉末をジクロロメタン中に溶解させ、メタノールの添加により上記粉末を沈降させることによって確認した。上清液中に青色は残っていなかった。
同様な求核置換反応は、エステル基を含有するポリマーによっても生ずる:
【化7】

即ち、フェノチアジニウム誘導体IaおよびIbはクロロトリアジン誘導体に対しても極めて反応性であり、そのポリマーへの結合は、下記の手順によって実施し得る:
【化8】

(式中、ポリアミドポリマーの場合 X = -NH-(ポリマー)であり、セルロースポリマーの場合 X = -O-(ポリマー)である)。
【0033】
また、上記製造例中の残留塩素は、下記の反応におけるように、他の反応性基によって置換し得る:
【化9】

(式中、XおよびY = -NH-(ポリマー)、XおよびY = -O-(ポリマー)、または Xはアミン-NHRもしくは-NRR'であり得、Y = -NH-(ポリマー)もしくはY = -O-(ポリマー)であり得る)。
これらの方法は、上記フェノチアジニウム誘導体をポリマーに結合させる唯一の手段ではなく、他の方法も、当業者に公知の現存のポリマーグラフト化化学論に基づいて使用し得る。
製造例:
炭酸ナトリウム(0.20 g)と塩化シアヌル(0.30 g)を室温の乾燥アセトン(170 cm3)中の増感剤Ia (0.26 g)の溶液中に加え、混合物を15分間攪拌した。1枚の透明セルロースフィルム(2.2 g)を水酸化ナトリウムの水溶液(1M;500 cm3)中に10分間浸漬し、次いで、水酸化ナトリウムが残らないように洗浄した。その後、このフィルムを上記増感剤溶液中に入れ、攪拌混合物を50℃で15分間加熱した。水(200 ml)を加え、混合物を60℃で30分間加熱した。その後、青色セルロースフィルムを取出し、水洗し、次いで、炭酸ナトリウム溶液(6%)中で加熱して残存し得る未固定染料を除去した。上記セルロースへの共有結合は、青色が除去されなかった場合、上記フィルムを沸騰炭酸ナトリウム溶液または沸騰メタノール溶液中で加熱することによって確認した。このフィルムは、光への暴露時に典型的な1重項酸素産生特性を示し、トルエン中のテトラフェニルシクロペンタジエノン空気飽和溶液に浸漬し、40Wタングステンフィラメントランプからの光に暴露させたとき、赤色ジエノンは、フィルムを含有しない同じ溶液よりも迅速に退色した。

【特許請求の範囲】
【請求項1】
下記の式Iのフェノチアジニウム化合物:
【化1】

(式中、AおよびBは、各々個々に、
【化2】

であり、ZはCH2、O、S、SO2、HN、NCH3、NC2H5、NCH2CH2OHまたはNCOCH3であり、R1およびR2は、各々個々に、線状または枝分れのCnH2nYであり、nは1〜6であり、YはH、F、Cl、Br、I、OH、OCH3、OC2H5、OC3H7、CNまたはOCOCH3であり;
XP-はカウンターアニオンであり、Pは1、2または3である;
但し、AおよびBの双方が-N(CH3)2または-N(CH2CH3)2のいずれかである化合物は含まない)。
【請求項2】
前記カウンターアニオンが、Cl-、Br-、I-、F-、NO3-、HSO4-、CH3CO2-のいずれか;ジアニオン、即ち、SO42-またはHPO42-;またはトリアニオン、即ち、PO43-から選ばれる、請求項1記載の化合物。
【請求項3】
AおよびBが同一であり、R1およびR2の双方がn-プロピル、n-ブチルまたはn-ペンチルである、請求項1記載の化合物。
【請求項4】
微生物に対して使用するための、請求項1〜3のいずれか1項記載の化合物。
【請求項5】
細菌に対して使用するための、請求項4記載の化合物。
【請求項6】
抗生剤耐性菌に対して使用するための、請求項4または5記載の化合物。
【請求項7】
PDT剤または光診断剤として使用するための、請求項1〜3のいずれか1項記載の化合物。
【請求項8】
薬物として使用するための、請求項1〜3のいずれか1項記載の化合物。
【請求項9】
皮膚および他の局所感染症の抗菌治療として、熱傷創および他の病変の滅菌用、および歯科細菌疾患の治療用に使用するための、請求項1〜3のいずれか1項記載の化合物。
【請求項10】
前がん症状;がん;黄斑変性症のような眼科疾患;心臓血管疾患、動脈硬化症および再狭窄のような血管問題;リウマチ様関節炎のような自己免疫疾患;乾癬、にきびおよびセメント質化症のような皮膚疾患;並びに子宮内膜症および月経過多のような他の良性症状の治療において使用するための、請求項1〜3のいずれか1項記載の化合物。
【請求項11】
表面または流体の滅菌用の光活性化抗菌剤として使用するための、請求項1〜3のいずれか1項記載の化合物。
【請求項12】
光化学内在化において使用するための、請求項1〜3のいずれか1項記載の化合物。
【請求項13】
光検出および/または光診断において使用するための、請求項1〜3のいずれか1項記載の化合物。
【請求項14】
請求項1〜13のいずれか1項記載の化合物とポリマー間で形成された接合体または複合体。
【請求項15】
前記ポリマーが無水物および/またはエステル基を含む、請求項14記載の接合体または複合体。
【請求項16】
請求項1〜13のいずれか1項記載の化合物とクロロトリアジン誘導体との反応によって形成される化合物。
【請求項17】
前記クロロトリアジン誘導体が結合クロロトリアジン基を有するポリマーである、請求項16記載の化合物。
【請求項18】
請求項1〜17のいずれか1項記載の化合物、接合体または複合体を希釈剤または賦形剤と一緒に含む組成物。
【請求項19】
前がん症状;がん;黄斑変性症のような眼科疾患;心臓血管疾患、動脈硬化症および再狭窄のような血管問題;リウマチ様関節炎のような自己免疫疾患;乾癬、にきびおよびセメント質化症のような皮膚疾患;並びに子宮内膜症および月経過多のような他の良性症状の治療方法であって、対象者に治療上有効量の請求項1〜3のいずれか1項記載の化合物を投与し、前記対象者を光に暴露させて前記化合物を活性にすることを特徴とする治療方法。
【請求項20】
投与する前記化合物が請求項3においてR1およびR2がn-プロピルであると定義した化合物であり、前記光への暴露を薬物投与時点から10分までに行う、請求項19記載の方法。
【請求項21】
前記光への暴露を薬物投与の1分以内で行う、請求項20記載の方法。
【請求項22】
前記光への暴露を薬物の投与時点で行う、請求項20記載の方法。
【請求項23】
投与する前記化合物が請求項4においてR1およびR2がn-ペンチルであると定義した化合物であり、前記光への暴露を薬物投与時点から1時間までに行う、請求項19記載の方法。
【請求項24】
微生物感染症、熱傷創および他の病変、および歯科細菌疾患の治療方法であって、治療すべき領域に治療上有効量の請求項1〜3のいずれか1項記載の化合物を投与し、前記領域を光に暴露させて前記化合物を活性にすることを特徴とする治療方法。
【請求項25】
投与する前記化合物が請求項5においてR1およびR2がn-ブチルであると定義した化合物である、請求項24記載の方法。
【請求項26】
表面または流体の滅菌方法であって、前記表面または流体に請求項1〜3のいずれか1項記載の化合物を適用し、前記化合物を光によって活性化させることを特徴とする滅菌方法。
【請求項27】
請求項1〜3のいずれか1項記載の化合物、接合体または複合体を結合させた少なくとも1つの表面を有する物品。
【請求項28】
結合が共有結合または分子間相互作用による、請求項27記載の物品。
【請求項29】
医療器具である、請求項27または28記載の物品。
【請求項30】
食品工業において使用する、請求項27または28記載の物品。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate


【公開番号】特開2009−280588(P2009−280588A)
【公開日】平成21年12月3日(2009.12.3)
【国際特許分類】
【出願番号】特願2009−160062(P2009−160062)
【出願日】平成21年7月6日(2009.7.6)
【分割の表示】特願2003−500075(P2003−500075)の分割
【原出願日】平成14年5月30日(2002.5.30)
【出願人】(503107451)フォトファーマイカ リミテッド (1)
【Fターム(参考)】