説明

画像処理方法及び画像処理装置

【課題】 臨場感のある画像を提供することができる画像処理方法及び画像処理装置を提供する。
【解決手段】 視点から観察される3次元空間内のオブジェクト12にフォグ効果を与える画像処理方法であって、3次元空間内に設定されたフォグ基準面10とオブジェクト12との間の距離dに基づいて、視点から観察したオブジェクト12のフォグ濃度を定める。

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、画像処理方法及び画像処理装置に係り、特に、フォグ効果を発生する画像処理方法及び画像処理装置に関する。
【0002】
【従来の技術】コンピュータ・グラフィックスの分野では、臨場感のある画像を提供すべく、画像中に、霧、もや、煙、ほこり等のフォグ(fog)を発生させるフォグ効果発生技術が注目されている。
【0003】従来のフォグ効果発生技術について説明する。従来のフォグ効果発生技術では、フォグを発生する際、視点とポリゴン上の点との距離を算出し、その距離に基づいてその点のフォグ濃度を設定していた。例えば、視点とポリゴン上の点との距離が大きい場合には、ポリゴン上のその点についてのフォグ濃度を濃くし、視点とポリゴン上の点との距離が短い場合には、その点についてのフォグの濃度を薄くしていた。
【0004】
【発明が解決しようとする課題】しかしながら、このような従来のフォグ効果発生技術では、視点からの距離が大きくなるほどフォグ濃度が濃くなるため、例えば地面の近くに濃い霧が立ちこめていて、上空にいくと霧が薄くなるような臨場感のある画像を提供することはできなかった。
【0005】また、従来のフォグ効果発生技術では、フォグ濃度を変化させる場合でも、フォグ濃度の変化のしかたが均一であり、霧がもやもやしているような臨場感のある画像を提供することはできなかった。
【0006】本発明の目的は、臨場感のある画像を提供することができる画像処理方法及び画像処理装置を提供することにある。
【0007】
【課題を解決するための手段】上記目的は、視点から観察される3次元空間内のオブジェクトにフォグ効果を与える画像処理方法であって、前記3次元空間内に設定されたフォグ基準面と前記オブジェクトとの間の距離に基づいて、前記視点から観察した前記オブジェクトのフォグ濃度を定めることを特徴とする画像処理方法により達成される。これにより、フォグ基準面とオブジェクトとの間の距離に応じてフォグ濃度を設定するので、地面に近くに濃い霧がたちこめているような臨場感のある画像を提供することができる。
【0008】また、上記目的は、視点から観察される3次元空間内のオブジェクトにフォグ効果を与える画像処理方法であって、前記3次元空間内に設定されたフォグ基準面と前記オブジェクトとの間の距離と、前記視点と前記オブジェクトとの間の距離とに基づいて、前記視点から観察した前記オブジェクトの前記フォグ濃度を定めることを特徴とする画像処理方法により達成される。これにより、フォグ基準面からの距離が等しいオブジェクトであっても、近くのオブジェクトについてはフォグ濃度が薄くなり、遠くのオブジェクトについてはフォグ濃度が濃くなるので、臨場感のある画像を提供することができる。
【0009】また、上記の画像処理方法において、前記フォグ基準面の一側に属するオブジェクトについては第1の関数を用いて前記フォグ濃度を演算し、前記フォグ基準面の他側に属するオブジェクトについては前記第1の関数と異なる第2の関数を用いて前記フォグ濃度を演算することが望ましい。これにより、更に臨場感のある画像を提供することができる。
【0010】また、上記の画像処理方法において、前記フォグ濃度をランダムに変化させてヘイズ処理を行うことが望ましい。これにより、フォグがもやもやとしている状態を表現することができ、臨場感のある画像を提供することができる。
【0011】また、上記の画像処理方法において、前記フォグ基準面を複数設け、前記複数のフォグ基準面に対して定められた前記フォグ濃度を合成することが望ましい。これにより、更に臨場感のある画像を提供することができる。
【0012】また、上記目的は、視点から観察される3次元空間内のオブジェクトにフォグ効果を与える画像処理装置であって、前記3次元空間内に設定されたフォグ基準面と前記オブジェクトとの間の距離に基づいて、前記視点から観察した前記オブジェクトのフォグ濃度を定めるフォグ濃度設定手段を有することを特徴とする画像処理装置により達成される。これにより、フォグ基準面とオブジェクトとの間の距離に応じてフォグ濃度を設定するので、地面に近くに濃い霧がたちこめているような臨場感のある画像を提供することができる。
【0013】また、上記目的は、視点から観察される3次元空間内のオブジェクトにフォグ効果を与える画像処理装置であって、前記3次元空間内に設定されたフォグ基準面と前記オブジェクトとの間の距離と、前記視点と前記オブジェクトとの間の距離とに基づいて、前記視点から観察した前記オブジェクトのフォグ濃度を定めるフォグ濃度設定手段を有することを特徴とする画像処理装置により達成される。これにより、フォグ基準面からの距離が等しいオブジェクトであっても、近くのオブジェクトについてはフォグ濃度が薄くなり、遠くのオブジェクトについてはフォグ濃度が濃くなるので、臨場感のある画像を提供することができる。
【0014】また、上記の画像処理装置において、前記フォグ濃度設定手段は、前記フォグ基準面の一側に属するオブジェクトについては第1の関数を用いて前記フォグ濃度を演算し、前記フォグ基準面の他側に属するオブジェクトについては前記第1の関数と異なる第2の関数を用いて前記フォグ濃度を演算することが望ましい。これにより、更に臨場感のある画像を提供することができる。
【0015】また、上記の画像処理装置において、前記フォグ濃度をランダムに変化させてヘイズ処理を行うヘイズ処理手段を更に有することが望ましい。これにより、フォグがもやもやとしている状態を表現することができ、臨場感のある画像を提供することができる。
【0016】また、上記の画像処理装置において、前記フォグ基準面は複数設けられ、前記フォグ濃度設定手段は、前記複数のフォグ基準面に対して定められた前記フォグ濃度を合成することが望ましい。これにより、更に臨場感のある画像を提供することができる。
【0017】
【発明の実施の形態】[第1実施形態]本発明の第1実施形態による画像処理方法及び画像処理装置を図1乃至図6を用いて説明する。図1は、本実施形態による画像処理方法の原理を示す概念図である。図2は、本実施形態による画像処理装置を示すブロック図である。図3は、距離とフォグ濃度との関係を示すグラフである。図4は、ヘイズ処理器を示すブロック図である。図5は、空間的ランダム成分発生器の原理を示すグラフである。図6は、ヘイズ処理が行われた後のフォグ濃度を示すグラフである。
【0018】図1に示すように、3次元空間に、フォグ基準面10が設けられている。図1の縦軸は3次元空間における高さ方向を示しており、横軸は3次元空間における奥行き方向を示しており、紙面垂直方向は3次元空間における左右方向を示している。
【0019】フォグ基準面10上には、例えばポリゴン12が位置している。実際の画像処理においては複数のポリゴンが存在するが、説明を簡略化するため、図1では、1つのポリゴン12のみ示している。
【0020】本実施形態による画像処理装置は、フォグ基準面10とポリゴン12上の点との間の距離dを演算し、この距離dに応じてフォグ濃度を設定することに主な特徴がある。即ち、従来の画像処理装置では、視点とポリゴン上の点との間の距離に応じてフォグ濃度を設定していたため、地面の近くに霧が立ちこめているような様子を表現することはできなかった。これに対し、本実施形態では、フォグ基準面10とポリゴン12上の点との間の距離dに応じてフォグ濃度を設定するので、地面の近くに霧が立ちこめているような様子を表現することができ、臨場感のある画像を提供することができる。
【0021】例えば、図3に示すように、フォグ基準面10からの距離dが大きくなるに従ってフォグ濃度αが薄くなるような関数を用いれば、地面の近くでは霧が濃くなり、地面から遠ざかるに従って霧が薄くなるような画像を提供することができる。
【0022】次に、本実施形態による画像処理方法及び画像処理装置を図2を用いて説明する。
【0023】図2に示すホストCPU14は、本実施形態による画像処理装置全体を制御する機能を有している。ホストCPU14は、画面に表示するオブジェクトに関するデータをジオメトリ演算器16に入力する。
【0024】ジオメトリ演算器16は、オブジェクトに関するデータを、ポリゴンのデータに変換する機能を有している。具体的には、ポリゴンを3次元の視点座標系上に配置すべく、ポリゴンの頂点の3次元座標を求める。演算によって求められたポリゴンの頂点の3次元座標のデータは、ラスタライザ18に入力される。
【0025】ラスタライザ18は、オブジェクトを2次元の表示画面上に表示すべく、ポリゴンの3次元座標を2次元座標にラスタライズする機能を有している。具体的には、オブジェクトを複数のラインに分解し、2次元座標として定義する。これにより、ポリゴンの頂点は2次元座標として定義される。
【0026】ラスタライザ18により求められた2次元座標のデータは、フォグ生成器22に設けられた補間演算器28に入力される。フォグ生成器22には、補間演算器28の他、フォグ基準面データレジスタ24、距離演算器26、フォグ濃度演算器30、及びフォグ色レジスタ32が設けられている。
【0027】補間演算器28は、ラスタライザ18から入力された2次元座標を補間することにより、表示画面上の1画素に対応した3次元座標(x,y,z)を求める機能を有している。補間演算器28で求められた3次元座標(x,y,z)は、距離演算器26に入力される。
【0028】フォグ基準面データレジスタ24は、フォグ基準面10のデータを記憶しておくためのものである。フォグ基準面10が例えば平面の場合には、フォグ基準面10は平面の式lx+my+nz=p(l、m、n、及びpは任意の実数)で表される。この場合、フォグ基準面データレジスタ24には、l、m、n、及びp等のデータが記憶される。フォグ基準面データレジスタ24に記憶されたデータは、距離演算器26に入力される。
【0029】距離演算器26は、フォグ基準面10とポリゴン12上の点との間の距離dを、表示画面の1画素に対応して求める機能を有している。フォグ基準面10が平面である場合には、フォグ基準面10とポリゴン12上の点との間の距離dは、d=|lx+my+nz−p|/(l2+m2+n20.5により求められる。
【0030】こうして求められた距離dは、フォグ濃度演算器30に入力される。フォグ濃度演算器30は、ポリゴン上の点におけるフォグ濃度αを求めるためのものである。フォグ濃度演算器30は、任意の関数α=f(d)によりフォグ濃度αを求める。例えば、地面に霧が立ちこめているような様子を表現するためには、距離dが大きくなるに伴ってフォグ濃度αが小さくなるよう、図3に示すような関数を用いることができる。こうして求められたフォグ濃度αは、ヘイズ処理器34に入力される。また、ヘイズ処理器34は、距離演算器26により求められた距離dが入力される。
【0031】ヘイズ処理器34は、後述するように、フォグがもやもやしている様子を表現するためのものである。ヘイズ処理器34により求められたフォグ濃度α′のデータは、フォグ合成器36に入力される。
【0032】フォグ色レジスタ32は、フォグ色Cfogを記憶するためのものである。フォグ色レジスタ32に記憶されたフォグ色Cfogのデータは、フォグ合成器36に入力される。
【0033】ラスタライザ18により求められた2次元座標のデータは、フォグ生成器22のみならず、ポリゴン色生成器20にも入力される。ポリゴン色生成器20は、ポリゴン12上の点の色、即ちポリゴン色Cpolyを生成する機能を有するものである。ポリゴン色Cpolyは、表示画面の1画素に対応するように求められる。ポリゴン色生成器20で求められたポリゴン色Cpolyのデータは、フォグ合成器36に入力される。
【0034】フォグ合成器36は、フォグ濃度α′、フォグ色Cfog、及びポリゴン色Cpolyのデータを用いて合成することにより、ポリゴン12上の点の表示色Cdisのデータを求める機能を有している。表示色Cdisのデータは、表示画面上の1画素に対応して求められる。ポリゴン12上の点の表示色Cdisは、Cdis=(1−α′)・Cpoly+α′・Cfogの式により求められる。こうして求められたポリゴン12上の表示色Cdisは、ディスプレイ装置38に出力され、ディスプレイ装置38の画面に表示される。
【0035】次に、ヘイズ処理器34について、図4乃至図6を用いて詳細に説明する。ヘイズ処理器34には、フォグがもやもやする状態を表現すべく、空間的ランダム成分発生器100、及び濃度のランダム成分発生器120が設けられている。
【0036】空間的ランダム成分発生器100は、フォグがもやもやする状態を表す際の、空間的な成分を発生する機能を有している。更新頻度レジスタ102には、空間的ランダム成分の更新頻度を示す更新頻度データDupd1が記憶される。更新頻度データDupd1の値は、表示画面の1更新時間(1int)の整数倍の値とする。更新頻度レジスタ102に記憶された更新頻度データDupd1は、乱数発生器104に入力される。乱数発生器104は、更新頻度データDupd1に基づいた頻度で乱数データDran1を発生する。乱数発生器104から発生した乱数データDran1は、範囲比較器106に入力される。オフ期間幅レジスタ108は、フォグの濃度が変化する空間的な幅を設定するためのものである。オフ期間幅レジスタ108には、オフ期間幅データDoff1が記憶される。オフ期間幅データDoff1は、距離の区間成分、及び一定距離の平面におけるオフ期間出現頻度成分を持つものとする。なお、オフ期間幅データDoff1の値は、フォグのもやもやした状態を人間の視覚により画面上で認識できる程度に、適宜設定することが望ましい。
【0037】範囲比較器106には、距離d、乱数データDran1、及びオフ期間幅データDoff1が入力される。範囲比較器106は、乱数データDran1と距離dとを比較し、これらが一致した場合に、オフ期間幅データDoff1の値に基づいて制御信号CTLをOFFにするものである。この制御信号CTLはマスク132に入力される。制御信号CTLは通常はONであるが、乱数データDran1と距離dの値が一致すると、オフ期間幅データDoff1の値に基づいてOFFとなる。
【0038】このような空間的ランダム成分発生器100による空間的ランダム成分の発生状態を、図5を用いて説明する。図5に実線で示すように、フォグ濃度αは、フォグ基準面10からの距離dに基づいて決まる。フォグ基準面10から距離d1だけ離間した領域ではフォグ濃度はα1となり、フォグ基準面10から距離dnだけ離間した領域ではフォグ濃度はαnとなる。ここで、空間的ランダム成分発生器100の範囲比較器106からのCTL信号がOFFとなると、図5に丸印で示す領域においてフォグ濃度が変化することとなる。
【0039】濃度のランダム成分発生器120には、フォグの濃度を変化させる頻度を記憶するための、更新頻度レジスタ122が設けられている。更新頻度レジスタ122に記憶された更新頻度データDupd2は、乱数発生器124に入力される。なお、更新頻度データDupd2の値は、表示画面の1更新時間の整数倍とする。乱数発生器124は、更新頻度データDupd2に基づいた頻度で乱数データDran2をマスク132に出力する。
【0040】マスク132に入力された乱数データDran2は、制御信号CTLがONのときだけ減算器134に出力される。減算器134は、フォグ濃度αから乱数データDran2を減算し、フォグ濃度α′を出力する。これにより、図6に示すように、距離dに対してフォグ濃度α′がランダムに変化する。
【0041】このように、本実施形態によれば、フォグ基準面とポリゴンとの間の距離に応じてフォグ濃度を設定するので、地面に近くに濃い霧がたちこめているような臨場感のある画像を提供することができる。
【0042】また、本実施形態によれば、ランダムにフォグの濃度を変化させるヘイズ処理を行うので、フォグのもやもやとした様子を表現することができ、臨場感のある画像を提供することができる。
【0043】(変形例)次に、本実施形態による画像処理方法の変形例を図7を用いて説明する。図7は、本実施形態による画像処理方法の原理を示す概念図である。
【0044】本実施形態による画像処理方法は、視点とポリゴン12上の点とを結ぶ線分と、フォグ基準面10との間で構成される積分値に基づいて、ポリゴン12上の点におけるフォグ濃度αを求めることを特徴とするものである。
【0045】これにより、遠い位置にあるポリゴンについてはフォグ濃度が濃くなり、近い位置にあるポリゴンについてはフォグ濃度が薄くなる。
【0046】従って、本変形例によれば、フォグ基準面からの距離が等しいオブジェクトであっても、近くのオブジェクトについてはフォグ濃度が薄くなり、遠くのオブジェクトについてはフォグ濃度が濃くなるので、臨場感のある画像を提供することができる。
【0047】[第2実施形態]本発明の第2実施形態による画像処理方法を図8及び図9を用いて説明する。図8は、本実施形態による画像処理方法の原理を示す概念図である。図9は、本実施形態による画像処理方法を用いた場合の画像表示例を示す図である。図1乃至図7に示す第1実施形態による画像処理方法及び画像処理装置と同一の構成要素には、同一の符号を付して説明を省略または簡潔にする。
【0048】本実施形態による画像処理方法は、フォグ基準面10の上側の空間を表空間、フォグ基準面10の下側の空間を裏空間として、それぞれの異なる関数や定数を用いてフォグ濃度αを変化させることを特徴とするものである。
【0049】例えば、表空間では、α=f(d)の関数によりフォグ濃度αを求め、例えば、図8(b)に示すようにフォグ濃度αを設定する。なお、第1実施形態で示すように、ヘイズ処理を行い、フォグ濃度α′を用いることにより、更に臨場感のある画像を提供することができる。一方、裏空間では、任意の定数をフォグ濃度αとし、例えば、図8(c)に示すようにフォグ濃度を設定する。
【0050】このようにフォグ基準面10に対して表空間と裏空間とで異なる関数や定数を用いてフォグ濃度を設定すれば、更に臨場感のある画像を提供することができる。
【0051】本実施形態による画像処理方法を用いた画像表示の具体例を図9を用いて説明する。
【0052】図9(a)は、山150の麓に雲海があり、雲海の上方に霧がかかっている様子を示している。山150の麓には、フォグ基準面10が設けられている。フォグ基準面10の上側は、表空間となっており、図8(b)に示すような関数が用いられている。このため、フォグ基準面10から遠ざかって上空に行くに伴い、霧が薄くなっている。一方、フォグ基準面10の下側は、裏空間となっており、図8(c)に示すような定数が用いられている。従って、図9(a)の斜線部ではフォグの濃度が一定となっており、雲海が形成されているように表現される。
【0053】図9(b)は、地球152を表している。地球152は丸いため、フォグ基準面10aとして曲面が用いられる。フォグ基準面10aの外側は表空間となっており、フォグ基準面10aの内側は裏空間となっている。表空間においては、図8(b)に示すような関数が用いられており、フォグ濃度αが地球から遠ざかるに伴い薄くなっている。一方、フォグ基準面10の内側の裏空間では、フォグ濃度αとして定数が用いられている。このため、フォグ基準面10の内側、即ち裏空間では、フォグ濃度αは一定となっている。従って、本実施形態によれば、地球の近くは雲などにより覆われており、地球から離れると大気がだんだん薄っている状態を表現することができる。
【0054】このように、本実施形態によれば、フォグ基準面の表空間と裏空間とでそれぞれ異なった関数や定数を用いてフォグ濃度を設定するので、更に臨場感のある画像を提供することができる。
【0055】[変形実施形態]本発明は上記実施形態に限らず種々の変形が可能である。
【0056】例えば、第1及び第2実施形態では、フォグ基準面は1つのみ設けたが、フォグ基準面は複数設けてもよい。この場合、フォグ濃度は、それぞれのフォグ基準面に対して合成したものが用いられることとなる。例えば、平面のフォグ基準面と曲面のフォグ基準面を設ければ、窪みの中にフォグがたまっている様子を表現することができる。また、地面に対応するようなフォグ基準面と、画面に対応するようなフォグ基準面とを設ければ、地面からの距離と奥行きとに応じてフォグ濃度を変化させることができる。
【0057】また、第1及び第2実施形態では霧や雲などを例として説明したが、霧や雲に限定されるものではなく、湯気、もや、ほこり、ちり、竜巻、霞、煙などあらゆるものに対して適用することができる。
【0058】また、フォグ基準面として曲面を用いる場合には、曲面を複数の平面に分割して近似し、その平面からの距離dを用いてもよい。
【0059】また、第1及び第2実施形態では、ポリゴンのフォグ濃度を設定する場合を例に説明したが、あらゆるオブジェクトのフォグ濃度を設定する際に適用することができる。
【0060】
【発明の効果】以上の通り、本発明によれば、フォグ基準面とオブジェクトとの間の距離に応じてフォグ濃度を設定するので、地面に近くに濃い霧がたちこめているような臨場感のある画像を提供することができる。
【0061】また、本発明によれば、ランダムにフォグの濃度を変化させるヘイズ処理を行うので、フォグのもやもやとした様子を表現することができ、臨場感のある画像を提供することができる。
【0062】また、本発明によれば、フォグ基準面の表空間と裏空間とでそれぞれ異なった関数や定数を用いてフォグ濃度を設定するので、更に臨場感のある画像を提供することができる。
【図面の簡単な説明】
【図1】本発明の第1実施形態による画像処理方法の原理を示す概念図である。
【図2】本発明の第1実施形態による画像処理装置を示すブロック図である。
【図3】距離dとフォグ濃度αとの関係を示すグラフである。
【図4】ヘイズ処理器を示すブロック図である。
【図5】空間的ランダム成分発生器の原理を示すグラフである。
【図6】ヘイズ処理が行われた後のフォグ濃度を示すグラフである。
【図7】本発明の第1実施形態の変形例による画像処理方法の原理を示す概念図である。
【図8】本発明の第2実施形態による画像処理方法の原理を示す概念図である。
【図9】本発明の第2実施形態による画面表示例を示す図である。
【符号の説明】
10…フォグ基準面
10a…フォグ基準面
12…ポリゴン
14…ホストCPU
16…ジオメトリ演算器
18…ラスタライザ
20…ポリゴン色生成器
22…フォグ生成器
24…フォグ基準面データレジスタ
26…距離演算器
28…補間演算器
30…フォグ濃度演算器
32…フォグ色レジスタ
34…ヘイズ処理器
36…フォグ合成器
38…ディスプレイ装置
100…空間的ランダム成分発生器
102…更新頻度レジスタ
104…乱数発生器
106…範囲比較器
108…オフ期間幅レジスタ
120…濃度のランダム成分発生器
122…更新頻度レジスタ
124…乱数発生器
132…マスク
134…減算器
150…山
152…地球

【特許請求の範囲】
【請求項1】 視点から観察される3次元空間内のオブジェクトにフォグ効果を与える画像処理方法であって、前記3次元空間内に設定されたフォグ基準面と前記オブジェクトとの間の距離に基づいて、前記視点から観察した前記オブジェクトのフォグ濃度を定めることを特徴とする画像処理方法。
【請求項2】 視点から観察される3次元空間内のオブジェクトにフォグ効果を与える画像処理方法であって、前記3次元空間内に設定されたフォグ基準面と前記オブジェクトとの間の距離と、前記視点と前記オブジェクトとの間の距離とに基づいて、前記視点から観察した前記オブジェクトの前記フォグ濃度を定めることを特徴とする画像処理方法。
【請求項3】 請求項1又は2記載の画像処理方法において、前記フォグ基準面の一側に属するオブジェクトについては第1の関数を用いて前記フォグ濃度を演算し、前記フォグ基準面の他側に属するオブジェクトについては前記第1の関数と異なる第2の関数を用いて前記フォグ濃度を演算することを特徴とする画像処理方法。
【請求項4】 請求項1乃至3のいずれか1項に記載の画像処理方法において、前記フォグ濃度をランダムに変化させてヘイズ処理を行うことを特徴とする画像処理方法。
【請求項5】 請求項1乃至4のいずれか1項に記載の画像処理方法において、前記フォグ基準面を複数設け、前記複数のフォグ基準面に対して定められた前記フォグ濃度を合成することを特徴とする画像処理方法。
【請求項6】 視点から観察される3次元空間内のオブジェクトにフォグ効果を与える画像処理装置であって、前記3次元空間内に設定されたフォグ基準面と前記オブジェクトとの間の距離に基づいて、前記視点から観察した前記オブジェクトのフォグ濃度を定めるフォグ濃度設定手段を有することを特徴とする画像処理装置。
【請求項7】 視点から観察される3次元空間内のオブジェクトにフォグ効果を与える画像処理装置であって、前記3次元空間内に設定されたフォグ基準面と前記オブジェクトとの間の距離と、前記視点と前記オブジェクトとの間の距離とに基づいて、前記視点から観察した前記オブジェクトのフォグ濃度を定めるフォグ濃度設定手段を有することを特徴とする画像処理装置。
【請求項8】 請求項6又は7記載の画像処理装置において、前記フォグ濃度設定手段は、前記フォグ基準面の一側に属するオブジェクトについては第1の関数を用いて前記フォグ濃度を演算し、前記フォグ基準面の他側に属するオブジェクトについては前記第1の関数と異なる第2の関数を用いて前記フォグ濃度を演算することを特徴とする画像処理装置。
【請求項9】 請求項6乃至8のいずれか1項に記載の画像処理装置において、前記フォグ濃度をランダムに変化させてヘイズ処理を行うヘイズ処理手段を更に有することを特徴とする画像処理装置。
【請求項10】 請求項6乃至9のいずれか1項に記載の画像処理装置において、前記フォグ基準面は複数設けられ、前記フォグ濃度設定手段は、前記複数のフォグ基準面に対して定められた前記フォグ濃度を合成することを特徴とする画像処理装置。

【図1】
image rotate


【図2】
image rotate


【図3】
image rotate


【図5】
image rotate


【図6】
image rotate


【図4】
image rotate


【図7】
image rotate


【図8】
image rotate


【図9】
image rotate


【公開番号】特開2000−339496(P2000−339496A)
【公開日】平成12年12月8日(2000.12.8)
【国際特許分類】
【出願番号】特願平11−145037
【出願日】平成11年5月25日(1999.5.25)
【出願人】(000132471)株式会社セガ・エンタープライゼス (811)
【Fターム(参考)】