説明

空気入りタイヤ

【課題】低燃費性と耐偏摩耗性とを両立させるとともに、乾燥路面および湿潤路面における操縦安定性にも優れた空気入りタイヤを提供する。
【解決手段】一対のビード部11間でトロイド状に延びるカーカス1を骨格とし、そのクラウン部ラジアル方向外側に、スチールコードをゴム引きしてなる少なくとも2層の交錯ベルト層2とトレッドゴム3が順次配置された空気入りタイヤである。スチールコードが、素線径0.10〜0.20mmのスチール素線6〜10本からなる単撚り構造またはコア−単層シース構造を有し、スチールコードの打ち込み本数が40本/50mm以上であり、ベルト層2内で隣接する該スチールコード間の距離が0.3mm以上であり、かつ、トレッドゴムの、30℃における動的貯蔵弾性率E’(MPa)および60℃における損失正接tanδが、5.0≦E’および0.050≦tanδ≦0.240で表される関係を満足する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、空気入りタイヤ(以下、単に「タイヤ」とも称する)に関し、詳しくは、操縦安定性に優れ、なおかつドライ性能およびウェット性能、耐偏摩耗性並びに低燃費性の向上を図った乗用車用空気入りタイヤに関する。
【背景技術】
【0002】
一般に、空気入りタイヤは、一対のビード部間にトロイド状に延在するカーカスを骨格とし、そのタイヤ半径方向外側には、補強層として、ゴム引きされたスチールコードからなるベルト層が配置される。また、ベルト層のタイヤ半径方向外側には、トレッドゴムが配置されて踏面部を形成している。
【0003】
近年、車両の安全性を向上させるために、タイヤの乾燥路面および湿潤路面の双方における摩擦係数(μ)を上昇させて、タイヤのドライ性能およびウェット性能を同時に向上させることが求められており、このドライ性能およびウェット性能に関する改善要求に対して、種々の技術が開発されてきている。例えば、タイヤのドライ性能およびウェット性能に直接寄与するタイヤのトレッド用ゴム組成物の開発にあたっては、0℃付近での損失正接(tanδ)と30℃付近での損失正接(tanδ)とを指標とすることが一般的に有効であり、具体的には、0℃付近でのtanδが高いゴム組成物をトレッドに用いることで、タイヤの湿潤路面での摩擦係数(μ)を上昇させてウェット性能を向上させることができ、一方、30℃付近でのtanδが高いゴム組成物をトレッドに用いることで、タイヤの乾燥路面での摩擦係数(μ)を上昇させてドライ性能を向上させることができる。
【0004】
また、昨今の環境問題への関心の高まりに伴う世界的な二酸化炭素排出規制の動きに関連して、自動車の低燃費化に対する要求も強まりつつある。このような要求に対応するために、タイヤ性能についても転がり抵抗の低減が求められている。ここで、タイヤの転がり抵抗に寄与するタイヤのトレッド用ゴム組成物の開発にあたっては、60℃付近での損失正接(tanδ)を指標とすることが一般に有効であり、具体的には、60℃付近でのtanδが低いゴム組成物をトレッドに用いることで、タイヤの発熱を抑制して転がり抵抗を低減し、結果として、タイヤの低燃費性を向上させることができる。
【0005】
これらドライ性能、ウェット性能および低燃費性を兼ね備えたタイヤを実現するための技術としては、例えば、特許文献1に、スチレン・ブタジエン共重合体ゴムを含むゴム成分(A)100質量部に対して、カーボンブラックおよび白色充填剤からなる群から選択される少なくとも一種の充填剤(B)20〜70質量部と、軟化剤(C)0〜30質量部と、ポリスチレン換算重量平均分子量が2×10〜50×10である(メタ)アクリレート系(共)重合体(D)3〜30質量部とを配合してなるゴム組成物が開示されている。
【0006】
また一方、ベルト層に用いられるスチールコードに関しては、操縦安定性の向上や乗心地の向上等の観点から、従来より種々検討がなされてきており、例えば、特許文献2に、素線径の細い(素線径0.06〜0.10mm)特定のスチールコードを用いることによりコーナリング時の操縦性、安定性等を向上させる技術が記載されている。また、特許文献3には、曲げ抵抗および引張り伸びによりスチールコードを規定したタイヤが、特許文献4〜6には、ベルト層を、コード直径と1本のコード内のフィラメント数とベルト層の打ち込みコード数との関係式により規定したタイヤが、夫々開示されている。
【0007】
さらに、特許文献7には、所定のスチールフィラメントからなるスチールコードであって、ベルト曲げ剛性、コード強力およびベルトコードの空隙量により定義される値の範囲を所定に規定したタイヤが開示され、特許文献8〜10には、所定の撚り構造を有し、コード強力、コード破断時伸びおよびコード曲げ剛性により定義される値の範囲を所定に規定したタイヤ補強用スチールコードが開示されている。さらにまた、特許文献11には、ベルトコードの撚り合わせ構造および素線径並びにベルトコード打ち込み数によりベルトを規定したタイヤが、特許文献12には、撚り構造、曲げ剛性/コード強力比、コード強力および素線径について所定の要件を満足するタイヤが、特許文献13には、ベルトコード構造および打ち込み本数を所定に規定したベルトプライを、緩衝ゴムを介して配置したタイヤが、夫々開示されている。
【特許文献1】特開2006−274049号公報(特許請求の範囲等)
【特許文献2】特開昭59−38102号公報(特許請求の範囲等)
【特許文献3】特開昭60−185602号公報(特許請求の範囲等)
【特許文献4】特開昭63−2702号公報(特許請求の範囲等)
【特許文献5】特開昭63−2703号公報(特許請求の範囲等)
【特許文献6】特開昭63−2704号公報(特許請求の範囲等)
【特許文献7】特開昭64−85381号公報(特許請求の範囲等)
【特許文献8】特開昭64−85382号公報(特許請求の範囲等)
【特許文献9】特開昭64−85383号公報(特許請求の範囲等)
【特許文献10】特開昭64−85384号公報(特許請求の範囲等)
【特許文献11】特開平1−141103号公報(特許請求の範囲等)
【特許文献12】特開平3−74206号公報(特許請求の範囲等)
【特許文献13】特開平3−143703号公報(特許請求の範囲等)
【発明の開示】
【発明が解決しようとする課題】
【0008】
しかしながら、一般に、上記したような低燃費性に優れるトレッドゴムは、その一方、偏摩耗性に劣るという難点を有することが知られている。したがって、これらの性能を両立させて、諸要求性能を兼ね備えたタイヤを実現することのできる技術の確立が望まれていた。
【0009】
そこで本発明の目的は、上記問題を解消して、低燃費性と耐偏摩耗性とを両立させるとともに、乾燥路面(ドライ)および湿潤路面(ウェット)における操縦安定性にも優れた空気入りタイヤを提供することにある。
【課題を解決するための手段】
【0010】
本発明者は鋭意検討した結果、低燃費系配合を適用したトレッドゴムと、所定のベルト構造とを組み合わせることで、上記問題を解消できることを見出して、本発明を完成するに至った。
【0011】
すなわち、本発明の空気入りタイヤは、一対のビード部間でトロイド状に延びるカーカスを骨格とし、該カーカスのクラウン部ラジアル方向外側に、スチールコードをゴム引きしてなる少なくとも2層の交錯ベルト層とトレッドゴムが順次配置された空気入りタイヤにおいて、前記スチールコードが、素線径0.10〜0.20mmのスチール素線6〜10本からなる単撚り構造またはコア−単層シース構造を有し、該スチールコードの打ち込み本数が40本/50mm以上であり、ベルト層内で隣接する該スチールコード間の距離が0.3mm以上であり、かつ、前記トレッドゴムの、30℃における動的貯蔵弾性率E’(MPa)および60℃における損失正接tanδが、夫々次式、
5.0≦E’
0.050≦tanδ≦0.240
で表される関係を満足することを特徴とするものである。
【0012】
本発明においては、前記トレッドゴムにおいて、ゴム成分100質量部に対し白色充填剤が20〜80質量部およびカーボンブラックが10〜30質量部配合され、かつ、該白色充填剤の部数Aと該カーボンブラックの部数Bとが次式、
20≦(A/(A+B))×100≦95
で表される関係を満足することが好ましい。
【0013】
また、本発明においては、前記スチールコードが、コード最外層に位置する少なくとも1組の隣接するスチール素線間において、ゴムが侵入可能な隙間を有するよう撚合わされてなる構造を有することが好ましく、前記スチールコードの断面形状が扁平であり、かつ、該扁平断面の長径方向が、前記ベルト層の幅方向に沿って配列していることも好ましい。特には、前記スチールコードが、互いに撚り合わされずに並列して配置された2本のスチール素線をコアとし、該コアの周囲に、残りのスチール素線が、少なくとも1組の隣接するスチール素線間にゴムが侵入可能な隙間を有するよう撚り合わされてなるコア−単層シース構造を有する。さらにまた、好適には、前記スチールコードの打ち込み本数が40〜60本/50mmであり、前記ベルト層内で隣接するスチールコード間の距離が0.4〜1.0mmである。
【発明の効果】
【0014】
本発明によれば、上記構成としたことにより、低燃費性と耐偏摩耗性とを両立させるとともに、乾燥路面および湿潤路面における操縦安定性にも優れた空気入りタイヤを実現することが可能となった。
【発明を実施するための最良の形態】
【0015】
以下、本発明の好適な実施の形態について詳細に説明する。
図1に、本発明の空気入りラジアルタイヤの一例の概略断面図を示す。図示するように、本発明のタイヤは、一対のビード部11間でトロイド状に延びるカーカス1を骨格とし、そのクラウン部ラジアル方向外側に、スチールコードをゴム引きしてなる少なくとも2層の交錯ベルト層2(2a,2b)と、トレッドゴム3とが順次配置されてなる。
【0016】
本発明においては、トレッドゴム3として、30℃における動的貯蔵弾性率E’(MPa)および60℃における損失正接tanδが、夫々次式、
5.0≦E’
0.050≦tanδ≦0.240
で表される関係を満足するものを用いる。これにより、低燃費性を確保するとともに、乾燥路面における操縦安定性を向上することができる。
【0017】
30℃における動的貯蔵弾性率E’が5.0MPa未満では、乾燥路面における操縦安定性の向上効果が得られない。この動的貯蔵弾性率E’は、好適にはさらに、次式、
8.0≦E’
を満足するものとする。また、60℃における損失正接tanδが0.050未満ではグリップ低下による操縦安定性が懸念され、一方、0.240を超えると転がり抵抗での優位性を失う。
【0018】
また、本発明のタイヤにおいては、交錯ベルト層2が後述する所定のベルト構造を有することにより、高い周方向引っ張り剛性および面内曲げ剛性を発揮するとともに、低い面外曲げ剛性を有するという特性を有する。
【0019】
ベルト層が高い周方向の引っ張り剛性を有することで、ベルト部材が内圧による張力を負担して、たが効果を発揮することができ、また、高い面内曲げ剛性を有することで、コーナリング時における面内曲げ変形が小さくなることから大きなコーナリングフォースを発生して、良好な操縦安定性を発揮することができる。
【0020】
また、ベルト層は、コーナリング限界点近傍では大きな面内方向への曲げ変形を受け、この変形により、曲げ変形内側では大きな圧縮変形を受けることになって、バックリングが発生する。しかし、本発明においては、2層ベルト層の面外曲げ剛性を低下させることで、圧縮に伴う面外変形圧力が低下して、タイヤ内部圧力によってバックリング変形を抑えることができ、結果として接地圧力の抜けを抑制して接地性を向上し、かつ、踏面内で接地圧分布を均一化することができる。これにより、トレッドゴムに加わる入力についても均一化することができ、耐偏摩耗性および耐摩耗性を向上することができるのである。前述したように、本発明に用いる低燃費系配合のトレッドゴムは耐偏摩耗性に劣るが、かかるベルト層と組み合わせて用いることで、低燃費系配合のトレッドゴムを、偏摩耗を発生させることなく適用することが可能となる。
【0021】
本発明においては、ベルト層2のスチールコードが、素線径0.10〜0.20mm、好適には0.15〜0.20mmのスチール素線6〜10本からなる単撚り構造またはコア−単層シース構造を有する。
【0022】
素線径を0.10〜0.20mmとしたのは、素線径が0.20mmを超えるとコードの曲げ剛性が高くなり、ベルト層の面外曲げ剛性を低くすることが困難になるためである。一方、素線径が0.10mm未満であると、本発明に適合する素線数および隣接コード間距離の条件の下で、高い周方向引張剛性を得ることが困難になるとともに、コスト高となる。
【0023】
また、素線本数が多いと、コードが曲げられたときの素線同士の干渉によって曲げ剛性が増大するが、本発明では素線本数が10本以下と少ないので、素線同士の干渉の曲げ剛性に対する影響が小さい。一方、素線本数が6本未満であると、本発明に適合する素線数および隣接コード間距離の条件の下で、高い周方向引張剛性を得ることが困難になる。
【0024】
さらに、本発明においては、スチールコードを、スチール素線6〜10本からなる単撚り構造またはコア−単層シース構造とし、最大素線数を制限するとともに単純な撚り構造としたので、ゴムペネ性の確保が容易である。特には、スチールコードを、コード最外層に位置する少なくとも1組の隣接するスチール素線間において、ゴムが侵入可能な隙間を有するよう撚り合わされてなるオープン構造とすることが好ましい。これにより、複撚コードに比べて生産性が高く、低コスト化が可能であるというメリットも得られる。
【0025】
また、本発明においては、スチールコードの打ち込み本数が40本/50mm以上、好適には40〜60本/50mmである。打ち込み本数を40本/50mm以上としたのは、(1)必要な周方向引張剛性および周方向引張剛性を得るためには、最低限必要なスチール占有率を確保する必要があること、(2)交錯ベルト層の周方向引張剛性および周方向引張剛性は、同じスチール占有率であっても、上下のベルト層によって形成されるスチールコードの網目が小さく、かつ数が多いほど高くなること、によるものである。
【0026】
ここで、素線径が小さいほど、また、素線数が少ないほど、打込み本数を多くして、特に上記(2)の効果を有効に利用することが好ましいが、ベルト層内で隣接するスチールコード間の距離は、0.3mm以上とすることが肝要である。ベルト層内での隣接スチールコード間の距離が0.3mm未満であると、スチールコード端部で発生した微細なクラックが隣接するスチールコード相互間にまたがって成長し、その後、ベルトの積層相互間にもつながって急拡大して、ベルトセパレーションに至る亀裂進展速度が格段に速くなってしまう。かかる隣接スチールコード間の距離は、0.4〜1.0mm程度とすることが好ましい。
【0027】
また、好ましくは、スチールコードの断面形状を扁平とし、その扁平断面の長径方向をベルトの層の幅方向に沿って配列させることにより、より高い面内曲げ剛性と、より低い面外曲げ剛性を得ることができる。また、ゴムペネ性の確保に対しても有効である。
【0028】
断面形状が扁平なスチールコード構造としては、素線の螺旋形状が一方向に押しつぶされた単撚り構造や、互いに撚り合わされずに並列して配置された2本のスチール素線をコアとし、その周囲にスチール素線を撚り合わせてシースを形成した構造等を適用することができる。特に、2並列+4〜7等の、互いに撚り合わされずに並列して配置された2本のスチール素線をコアとし、その周囲に残りのスチール素線が、少なくとも1組の隣接するスチール素線間にゴムが侵入可能な隙間を有するよう撚り合わされてなるコア−単層シース構造のスチールコードを適用することは、より高い面内曲げ剛性と、より低い面外曲げ剛性、および良好なゴムペネ性を得ることができるので、特に好ましい。
【0029】
本発明に用いるトレッドゴム3としては、具体的には、ゴム成分100質量部に対し白色充填剤が20〜80質量部およびカーボンブラックが10〜30質量部配合されてなり、かつ、これら白色充填剤の部数Aとカーボンブラックの部数Bとが次式、
20≦(A/(A+B))×100≦95
で表される関係を満足するものを好適に用いることができる。
【0030】
白色充填剤の部数Aが20質量部未満であると湿潤路面での操縦安定性のメリットが得られず、一方、80質量部を超えると、ゴムシートのまとまりが悪くなるなど、加工性に劣ることとなる。また、カーボンブラックが10質量部未満であると熱入れ性等において加工性に劣ることとなり、30質量部を超えると湿潤路面での操縦安定性のメリットが低下する。さらに、(A/(A+B))×100<20であると、湿潤路面での操縦安定性のメリットが得られず、一方、(A/(A+B))×100>95であると、ゴムシートのまとまりが悪くなるなど、加工性に劣ることとなる。
【0031】
トレッドゴム3のゴム成分としては、具体的には例えば、スチレン・ブタジエン共重合体ゴム(SBR)、天然ゴム(NR)や、スチレン・イソプレン共重合体ゴム(SIR)、ポリイソプレンゴム(IR)、ポリブタジエンゴム(BR)、ブチルゴム(IIR)およびエチレン・プロピレン共重合体等の合成ゴムが挙げられる。
【0032】
また、白色充填剤としては、シリカや水酸化アルミニウム等が挙げられ、これらの中でも、シリカが好ましい。シリカとしては、特に限定されず、例えば、湿式シリカ(含水ケイ酸)、乾式シリカ(無水ケイ酸)、ケイ酸カルシウム、ケイ酸アルミニウム等が挙げられ、これらの中でも、破壊特性の改良効果並びにウェットグリップ性および低転がり抵抗性の両立効果に優れる点で、湿式シリカが好ましい。なお、白色充填剤としてシリカを用いる場合、その補強性を更に向上させる観点から、配合時にシランカップリング剤を添加することが好ましい。かかるシランカップリング剤としては、ビス(3−トリエトキシシリルプロピル)テトラスルフィド、ビス(3−トリエトキシシリルプロピル)トリスルフィド、ビス(3−トリエトキシシリルプロピル)ジスルフィド、ビス(2−トリエトキシシリルエチル)テトラスルフィド、ビス(3−トリメトキシシリルプロピル)テトラスルフィド、ビス(2−トリメトキシシリルエチル)テトラスルフィド、3−メルカプトプロピルトリメトキシシラン、3−メルカプトプロピルトリエトキシシラン、2−メルカプトエチルトリメトキシシラン、2−メルカプトエチルトリエトキシシラン、3−トリメトキシシリルプロピル−N,N−ジメチルチオカルバモイルテトラスルフィド、3−トリエトキシシリルプロピル−N,N−ジメチルチオカルバモイルテトラスルフィド、2−トリエトキシシリルエチル−N,N−ジメチルチオカルバモイルテトラスルフィド、3−トリメトキシシリルプロピルベンゾチアゾールテトラスルフィド、3−トリエトキシシリルプロピルベンゾチアゾールテトラスルフィド、3−トリエトキシシリルプロピルメタクリレートモノスルフィド、3−トリメトキシシリルプロピルメタクリレートモノスルフィド、ビス(3−ジエトキシメチルシリルプロピル)テトラスルフィド、3−メルカプトプロピルジメトキシメチルシラン、ジメトキシメチルシリルプロピル−N,N−ジメチルチオカルバモイルテトラスルフィド、ジメトキシメチルシリルプロピルベンゾチアゾールテトラスルフィド等が挙げられ、これらの中でも、補強性改善効果の観点から、ビス(3−トリエトキシシリルプロピル)テトラスルフィドおよび3−トリメトキシシリルプロピルベンゾチアゾールテトラスルフィドが好ましい。これらシランカップリング剤は、1種単独で使用してもよいし、2種以上を併用してもよい。
【0033】
さらに、カーボンブラックとしては、特に限定されるものではないが、FEF,SRF,HAF,ISAF,SAFグレードのものなどを用いることができ、中でも特に、ヨウ素吸着量(IA)が60mg/g以上でかつ、ジブチルフタレート(DBP)吸油量が80mL/100g以上のものが好適である。カーボンブラックを配合することで、ゴム組成物の諸物性を改善することができるが、耐摩耗性を向上させる観点からは、HAF,ISAF,SAFグレードのものがより好ましい。
【0034】
トレッドゴム3は、軟化剤を含有してもよく、その配合量としては、ゴム成分100質量部に対して0〜30質量部の範囲である。軟化剤の配合量が30質量部を超えると、加硫ゴムの引っ張り強度および低発熱性が悪化する傾向がある。軟化剤としては、プロセスオイル等を用いることができ、かかるプロセスオイルとして、より具体的には、パラフィンオイル、ナフテン系オイル、アロマオイル等が挙げられる。これらの中でも、引っ張り強度および耐摩耗性の観点からは、アロマオイルが好ましく、ヒステリシスロスおよび低温特性の観点からは、ナフテン系オイルおよびパラフィンオイルが好ましい。
【0035】
トレッドゴム3には、一般的なゴム用架橋系を用いることができ、架橋剤と加硫促進剤とを組み合わせて用いることが好ましい。架橋剤としては硫黄等を用いることができ、その使用量としては、ゴム成分100質量部に対し、硫黄分として0.1〜10質量部の範囲が好ましく、1〜5質量部の範囲がより好ましい。架橋剤の配合量が、ゴム成分100質量部に対し硫黄分として0.1質量部未満では、加硫ゴムの破壊強度、耐摩耗性および低発熱性が低下し、一方、10質量部を超えると、ゴム弾性が失われる。また、加硫促進剤としては、特に限定されるものではないが、2−メルカプトベンゾチアゾール(M)、ジベンゾチアジルジスルフィド(DM)、N−シクロヘキシル−2−ベンゾチアジルスルフェンアミド(CZ)、N−t−ブチル−2−ベンゾチアゾリルスルフェンアミド(NS)等のチアゾール系加硫促進剤、ジフェニルグアニジン(DPG)等のグアニジン系加硫促進剤などが挙げられる。加硫促進剤の使用量としては、ゴム成分100質量部に対して0.1〜5質量部の範囲が好ましく、0.2〜3質量部の範囲がより好ましい。これら加硫促進剤は、1種単独で使用してもよいし、2種以上を併用してもよい。
【0036】
トレッドゴム3には、上記の他、例えば、老化防止剤、酸化亜鉛、ステアリン酸、酸化防止剤、オゾン劣化防止剤等のゴム業界で通常用いられる添加剤を、本発明の目的を害しない範囲内で適宜選択して配合することができる。
【0037】
本発明においては、上記トレッドゴム3およびベルト層2に係る条件を満足することにより所期の効果を得ることができるものであり、上記以外の他部材の構造や材質等については、特に制限されるものではない。例えば、図示するように、本発明のタイヤの一対のビード部11には夫々ビードコア4が埋設され、カーカス1はこのビードコア4の周りにタイヤ内側から外側に折り返して係止されている。また、ベルト層2のクラウン部外周にはトレッドゴム3からなるトレッド部12が、カーカス1のサイド部にはサイドウォール部13が、夫々配置されている。さらに、タイヤに充填する気体としては、通常の空気または酸素分圧を調整した空気の他、窒素、アルゴン、ヘリウム等の不活性ガスを用いることができる。
【実施例】
【0038】
以下、本発明を、実施例を用いてより詳細に説明する。
図1に示すような、カーカス1のクラウン部ラジアル方向に、スチールコードをゴム引きしてなる2層の交錯ベルト層2a,2bと、トレッドゴム3とを順次備える空気入りラジアルタイヤを作製した。各実施例および比較例のベルト層としては、夫々下記表2,3に従う条件を満足するものを用いた。タイヤサイズは225/45R17とし、交錯ベルト層2a,2bの角度は、タイヤ幅方向に対し±63°とした。使用したトレッドゴムの配合を、下記表1に示す。
【0039】
【表1】

【0040】
【表2】

【0041】
得られた各供試タイヤにつき、下記に従い評価を行った。その結果を、トレッドゴムの30℃における動的貯蔵弾性率E’および60℃における損失正接tanδの測定値とともに、下記の表3中に併せて示す。
【0042】
(E’およびtanδの測定)
レオメトリックス社製の粘弾性測定装置を用いて、周波数15Hz、歪5%の条件で、トレッドゴムの30℃における動的貯蔵弾性率(E’)および60℃における損失正接(tanδ)を測定した。
【0043】
(操縦安定性)
各供試タイヤを実車に装着して、乾燥状態(ドライ)および湿潤状態(ウェット)のサーキットにおけるドライバーのフィーリング走行により、操縦安定性の評価を行った。結果は、10点満点の評点で示した。数値が大なるほど操縦安定性に優れ、良好である。なお、ドライ操縦安定性については、0.5点の差異は性能上大きく、一般ドライバーにおいて性能差を認識できるレベルである。
【0044】
(偏摩耗性)
耐偏摩耗性の評価を、下記に従い行った。
図2に示す形状のサンプルを作製して、ランボーン試験機を用いて摩耗試験を実施し、試験後に(b−a)の値を測定し、オリジナルの差(=4mm)からの変化分の小さい方が耐偏摩耗性に優れると判断した。試験条件はスリップ率:45%、試験時間:30分/サンプルとし、オリジナルの値はa:46mm、b:50mmであった。
【0045】
(加工性)
加工性の評価を、下記に従い行った。
シーティングロール上で未加硫ゴムをシーティングの後、10cm×2cm×2mmの型に打ち抜き、24時間の放置後に打ち抜き後からの収縮変化を測定した。収縮量が40%以下の場合を○(良好)、40%を超え60%以下の場合を△、60%を超える場合を×とした。
【0046】
【表3】

*1)A:シリカ(白色充填剤)およびB:カーボンブラックの、ゴム成分100質量部に対する部数(質量部)を示す。
【0047】
上記表3に示すように、ベルト層のスチールコードおよびトレッドゴムとして、本発明に従う所定条件を満足するものを用いた実施例の空気入りタイヤにおいては、低燃費性と耐偏摩耗性とを両立させつつ、乾燥路面および湿潤路面における操縦安定性についても優れた性能を得ることができることが確かめられた。
【図面の簡単な説明】
【0048】
【図1】本発明の一実施の形態に係る空気入りタイヤを示す概略断面図である。
【図2】実施例における耐偏摩耗性の評価試験に用いたサンプル形状を示す概略図である。
【符号の説明】
【0049】
1 カーカス
2(2a,2b) 交錯ベルト層
3 トレッドゴム
4 ビードコア
11 ビード部
12 トレッド部
13 サイドウォール部

【特許請求の範囲】
【請求項1】
一対のビード部間でトロイド状に延びるカーカスを骨格とし、該カーカスのクラウン部ラジアル方向外側に、スチールコードをゴム引きしてなる少なくとも2層の交錯ベルト層とトレッドゴムが順次配置された空気入りタイヤにおいて、
前記スチールコードが、素線径0.10〜0.20mmのスチール素線6〜10本からなる単撚り構造またはコア−単層シース構造を有し、該スチールコードの打ち込み本数が40本/50mm以上であり、ベルト層内で隣接する該スチールコード間の距離が0.3mm以上であり、かつ、
前記トレッドゴムの、30℃における動的貯蔵弾性率E’(MPa)および60℃における損失正接tanδが、夫々次式、
5.0≦E’
0.050≦tanδ≦0.240
で表される関係を満足することを特徴とする空気入りタイヤ。
【請求項2】
前記トレッドゴムにおいて、ゴム成分100質量部に対し白色充填剤が20〜80質量部およびカーボンブラックが10〜30質量部配合され、かつ、該白色充填剤の部数Aと該カーボンブラックの部数Bとが次式、
20≦(A/(A+B))×100≦95
で表される関係を満足する請求項1記載の空気入りタイヤ。
【請求項3】
前記スチールコードが、コード最外層に位置する少なくとも1組の隣接するスチール素線間において、ゴムが侵入可能な隙間を有するよう撚合わされてなる構造を有する請求項1または2記載の空気入りタイヤ。
【請求項4】
前記スチールコードの断面形状が扁平であり、かつ、該扁平断面の長径方向が、前記ベルト層の幅方向に沿って配列している請求項1〜3のうちいずれか一項記載の空気入りタイヤ。
【請求項5】
前記スチールコードが、互いに撚り合わされずに並列して配置された2本のスチール素線をコアとし、該コアの周囲に、残りのスチール素線が、少なくとも1組の隣接するスチール素線間にゴムが侵入可能な隙間を有するよう撚り合わされてなるコア−単層シース構造を有する請求項4記載の空気入りタイヤ。
【請求項6】
前記スチールコードの打ち込み本数が40〜60本/50mmである請求項1〜5のうちいずれか一項記載の空気入りタイヤ。
【請求項7】
前記ベルト層内で隣接するスチールコード間の距離が0.4〜1.0mmである請求項1〜6のうちいずれか一項記載の空気入りタイヤ。

【図1】
image rotate

【図2】
image rotate


【公開番号】特開2008−143485(P2008−143485A)
【公開日】平成20年6月26日(2008.6.26)
【国際特許分類】
【出願番号】特願2006−336233(P2006−336233)
【出願日】平成18年12月13日(2006.12.13)
【出願人】(000005278)株式会社ブリヂストン (11,469)
【Fターム(参考)】