説明

蛍光顕微鏡および蛍光相関分光解析装置

【課題】 複数の励起光照射領域それぞれについて同時に又は順次に蛍光相関分光法により測定するのに好適に用いられ得る励起光照射光学系を備える蛍光顕微鏡および蛍光相関分光解析装置を提供する。
【解決手段】 蛍光顕微鏡11は、対物レンズ101、ダイクロイックミラー102、ハーフミラー105、ミラー106、レーザ光源111、NDフィルタ112、ビームエクスパンダ113、ミラー114、空間光変調素子115、レンズ131、バンドパスフィルタ132、空間光変調素子133、検出部134等を備える。空間光変調素子115は、空間的な変調が可変であり、以降の光学系を介して空間的に変調した励起光を被測定試料1に照射させることで、被測定試料1中において励起光が照射される領域の個数・位置・形状を設定することができる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、被測定試料中の蛍光物質から発せられる蛍光の強度の時間的な揺らぎに基づいて該蛍光物質の並進拡散定数等を測定する蛍光相関分光解析装置、および、この蛍光相関分光解析装置において好適に用いられる蛍光顕微鏡に関するものである。
【背景技術】
【0002】
蛍光相関分光法(FCS: Fluorescence Correlation Spectroscopy)は、極低濃度の蛍光物質が存在する溶液の被測定試料中の微小領域に励起光を照射するととともに、その微小な励起光照射領域で発生した蛍光の強度を検出して、その蛍光強度の経時変化の自己相関関数を求め、この自己相関関数を解析することで、被測定試料中の蛍光物質の並進拡散運動等を測定するものである(例えば特許文献1を参照)。
【0003】
このような蛍光相関分光法を用いて被測定試料中の蛍光物質を解析する蛍光相関分光解析装置は、励起光照射および蛍光検出の為の共焦点型の蛍光顕微鏡と、蛍光顕微鏡により検出された蛍光の強度に基づいて自己相関関数を求めて解析をする解析部と、を備えて構成される。
【0004】
特許文献1では、蛍光相関分光法を用いたマルチアレイ検出について言及されている。この文献で言うマルチアレイ検出は、複数の励起光照射領域それぞれに励起光を照射し、複数の励起光照射領域それぞれで発生する蛍光を検出して、各々の励起光照射領域について自己相関関数を求めて解析をするものである、と考えられる。
【0005】
仮に、この文献に記載されているように複数の励起光照射領域それぞれについて同時に又は順次に蛍光相関分光法により測定が可能であれば、例えば被測定試料としての細胞の内部における蛋白質等の分子の間の相互作用を観測することが可能となると考えられる。
【特許文献1】特許第3517241号公報
【発明の開示】
【発明が解決しようとする課題】
【0006】
ところで、例えば被測定試料としての細胞の内部における複数の励起光照射領域それぞれを測定する場合には、これら測定すべき複数の励起光照射領域は、励起光入射方向に垂直な所定平面上に存在するとは限らず、励起光入射方向について異なる位置に存在することもあり、更には、細胞内を3次元的に測定したい場合もある。また、細胞の内部における透過率や屈折率は必ずしも均一でなく、励起光照射強度の不均一や収差が問題となる場合がある。
【0007】
しかしながら、特許文献1記載のものを含め従来の装置における励起光照射光学系は、複数の励起光照射領域が励起光照射方向について異なる位置に存在する場合や、透過率や屈折率が均一でない場合には、適用することができない。特許文献1には、複数の励起光照射領域それぞれに励起光を照射する為の励起光照射光学系の構成や、複数の励起光照射領域それぞれで発生した蛍光を検出する為の蛍光検出光学系の構成について、何ら開示も示唆もない。
【0008】
本発明は、上記問題点を解消する為になされたものであり、複数の励起光照射領域それぞれについて同時に又は順次に蛍光相関分光法により測定するのに好適に用いられ得る励起光照射光学系を備える蛍光顕微鏡および蛍光相関分光解析装置を提供することを目的とする。
【課題を解決するための手段】
【0009】
本発明に係る蛍光顕微鏡は、被測定試料中の励起光照射領域で発生した蛍光を検出する蛍光顕微鏡であって、(1) 励起光を出力する励起光源部と、(2) 励起光源部から出力された励起光に対して空間的な変調を与える空間光変調素子を有し、この空間光変調素子により空間的に変調された励起光を被測定試料に照射する励起光照射光学系と、(3) 励起光照射光学系により励起光が照射された励起光照射領域で発生した蛍光を入力して結像するとともに、当該結像面のうち特定領域に入力した蛍光を選択的に出力する選択出力手段を有する蛍光検出光学系と、(4) 選択出力手段から出力された蛍光の強度を検出する検出部と、を備えることを特徴とする。
【0010】
また、本発明に係る蛍光相関分光解析装置は、上記の本発明に係る蛍光顕微鏡と、蛍光顕微鏡の検出部により検出された蛍光の強度の経時変化の自己相関関数を求める解析部と、を備えることを特徴とする。
【0011】
本発明では、励起光源部から出力された励起光は、励起光照射光学系に含まれる空間光変調素子により空間的な変調が与えられて、被測定試料に照射される。励起光照射光学系により励起光が照射された励起光照射領域で発生した蛍光は蛍光検出光学系により結像され、当該結像面のうち特定領域に入力した蛍光は選択出力手段により選択的に出力される。選択出力手段から出力された蛍光の強度は検出部により検出される。そして、解析部により、検出部により検出された蛍光の強度の経時変化の自己相関関数が求められる。
【0012】
ここで、励起光照射光学系に含まれる空間光変調素子は位相変調型のものであるのが好適である。蛍光検出光学系に含まれる選択出力手段は、空間光変調素子であるのが好適であり、更に、強度変調型の空間光変調素子であるのが好適である。また、本発明に係る蛍光顕微鏡は、被測定試料を撮像する撮像手段を更に備えるのが好適である。
【0013】
本発明に係る蛍光顕微鏡は、(1) 励起光源部が、互いに波長が異なる第1励起光および第2励起光を出力し、(2) 励起光照射光学系が、第1励起光および第2励起光それぞれについて別個に空間光変調素子を有し、第1励起光および第2励起光を同一光路として被測定試料に照射し、(3) 蛍光検出光学系が、第1励起光が照射された励起光照射領域で発生した第1蛍光と、第2励起光が照射された励起光照射領域で発生した第2蛍光とを互いに分離するとともに、第1蛍光および第2蛍光それぞれについて別個に選択出力手段を有し、(4) 検出部が、選択出力手段から出力された第1蛍光および第2蛍光それぞれの強度を検出するのが好適である。
【0014】
このとき、本発明に係る蛍光相関分光解析装置は、上記の本発明に係る蛍光顕微鏡と、蛍光顕微鏡の検出部により検出された第1蛍光および第2蛍光それぞれの強度の経時変化の相互相関関数を求める解析部と、を備えることを特徴とする。
【0015】
この場合には、励起光源部から出力された第1励起光および第2励起光それぞれは、励起光照射光学系に含まれる空間光変調素子により空間的な変調が与えられ、同一光路とされて被測定試料に照射される。第1励起光が照射された励起光照射領域で発生した第1蛍光と、第2励起光が照射された励起光照射領域で発生した第2蛍光とは、蛍光検出光学系により分離されて結像され、当該結像面のうち特定領域に入力した各々の蛍光は選択出力手段により選択的に出力される。選択出力手段から出力された第1蛍光および第2蛍光それぞれの強度は検出部により検出される。そして、解析部により、検出部により検出された第1蛍光および第2蛍光それぞれの強度の経時変化の相互相関関数が求められる。
【発明の効果】
【0016】
本発明に係る蛍光顕微鏡および蛍光相関分光解析装置は、複数の励起光照射領域それぞれについて同時に又は順次に蛍光相関分光法により測定し得る。
【発明を実施するための最良の形態】
【0017】
以下、添付図面を参照して、本発明を実施するための最良の形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。
【0018】
(第1実施形態)
先ず、本発明に係る蛍光顕微鏡および蛍光相関分光解析装置の第1実施形態について説明する。図1は、第1実施形態に係る蛍光相関分光解析装置10の構成図である。この図に示される蛍光相関分光解析装置10は、蛍光顕微鏡11、解析部12および表示部13を備え、透明平板2上に置かれた被測定試料1に励起光を照射して該被測定試料1で発生した蛍光を検出するものである。
【0019】
蛍光顕微鏡11は、対物レンズ101、ダイクロイックミラー102、ハーフミラー105、ミラー106、レーザ光源111、NDフィルタ112、ビームエクスパンダ113、ミラー114、空間光変調素子115、レンズ131、バンドパスフィルタ132、空間光変調素子133、検出部134、レンズ151、バンドパスフィルタ152およびCCD(Charged Coupled Device)153を備える。
【0020】
レーザ光源111から被測定試料1に到るまでの光学系は、レーザ光源111から出力された励起光を被測定試料1に照射するための励起光照射光学系を構成している。被測定試料1から検出部134に到るまでの光学系は、被測定試料1で発生した蛍光を検出部134へ導く蛍光検出光学系を構成している。また、被測定試料1からCCD153へ到るまでの光学系は、被測定試料1を撮像するための撮像光学系および撮像手段を構成している。
【0021】
レーザ光源(励起光源部)111は、被測定試料1に含まれる蛍光物質を励起し得る波長の励起光を出力する。NDフィルタ112は、レーザ光源111から出力された励起光の強度を調整して出力する。ビームエクスパンダ113は、NDフィルタ112から出力された励起光を入力し、その励起光の光束径を適当な大きさまで拡大するとともにコリメートして出力する。
【0022】
空間光変調素子115は、ビームエクスパンダ113から出力されてミラー114により反射された励起光を入力し、その励起光に対して空間的な変調を与えて、その空間変調した励起光を出力する。空間光変調素子115は、空間的な変調が可変であり、以降の光学系を介して空間的に変調した励起光を被測定試料1に照射させることで、被測定試料1中において励起光が照射される領域の個数・位置・形状を設定することができ、また、励起光照射強度の不均一や収差の問題を解消することができる。
【0023】
空間光変調素子115は、透過型のものであってもよいし、反射型のものであってもよい。また、空間光変調素子115は、振幅変調型のものであってもよいし、位相変調型のものであってもよいし、振幅および位相の双方を変調し得るものであってもよい。ただし、励起光の利用効率の観点からは、空間光変調素子115は位相変調型のものであるのが好ましい。例えば、空間光変調素子115として、液晶を含む微小な画素が平面上に2次元配列されたものが用いられる。
【0024】
ダイクロイックミラー102は、空間光変調素子115から出力された励起光を反射させて対物レンズ101に入射させるとともに、対物レンズ101から出力された蛍光を透過させる。対物レンズ101は、ダイクロイックミラー102により反射された励起光を入力して、その励起光を被測定試料1中の所定領域(励起光照射領域)に照射する。また、対物レンズ101は、励起光照射領域で発生した蛍光を入力して、その蛍光をダイクロイックミラー102へ出力する。
【0025】
ハーフミラー105は、対物レンズ101から出力されダイクロイックミラー102を透過した光を入力し、その光の一部を反射させ残部を透過させることで光を2分岐し、反射させた光をレンズ131へ出力し、透過させた光をミラー106へ出力する。なお、ハーフミラー105に替えて着脱自在のミラーが用いられてもよい。レンズ131は、ハーフミラー105により反射された蛍光を入力して、対物レンズ101とともに、被測定試料1中の励起光照射領域で発生した蛍光の像を空間光変調素子133上に形成する。バンドパスフィルタ132は、レンズ131と空間光変調素子133との間の光路上に設けられ、蛍光を選択的に透過させる一方、励起光の散乱成分を遮断する。
【0026】
空間光変調素子133は、対物レンズ101およびレンズ131による蛍光の結像面のうち特定領域に入力した蛍光を選択的に出力する選択出力手段として作用する。空間光変調素子133に替えて、開口を有するマスクが用いられて、その開口に蛍光像が位置するようにしてもよい。しかし、開口に相当する上記特定領域が可変であるのが好ましいことから、空間光変調素子133は、蛍光結像面のうち選択的に蛍光を出力すべき特定領域の個数・位置・形状が可変であるのが好適である。このようにすることにより、等価的な共焦点光学系を実現することができる。
【0027】
空間光変調素子133は、透過型のものであってもよいし、反射型のものであってもよい。また、空間光変調素子133は、振幅変調型のものであってもよいし、位相変調型のものであってもよいし、振幅および位相の双方を変調し得るものであってもよい。ただし、検出光学系中の空間光変調素子133は、励起光照射光学系中の空間光変調素子115と比べて各種条件制御が不要であるので、コストの観点からは強度変調型のものであるのが好適である。例えば、空間光変調素子133として、テキサス・インストルメンツ社(Texas Instruments Inc.)のデジタル・マイクロミラー・デバイス(DMD: Digital Micromirror Device)が好適に用いられる。
【0028】
検出部134は、空間光変調素子133から出力されて到達した蛍光の強度を検出する。この検出部134として、光電子増倍管やアバランシュフォトダイオードが好適に用いられる。解析部12は、検出部134により検出された蛍光の強度の経時変化I(t)を記憶し、このI(t)から自己相関関数G(τ)を求める(下記(1)式)。そして、この自己相関関数G(τ)に基づいて、被測定試料1中の励起光照射領域における蛍光物質の並進拡散定数等を求めることができる。ここで、tは時間変数であり、τは相関時間を表す変数である。
【0029】
【数1】

ミラー106は、ハーフミラー105を透過した光をレンズ151へ向けて反射させる。レンズ151は、ミラー106により反射された光を入力して、対物レンズ101とともに、被測定試料1中の励起光照射領域で発生した光の像をCCD153の撮像面上に形成する。バンドパスフィルタ152は、レンズ151とCCD153との間の光路上に設けられ、蛍光を透過させる一方、励起光の散乱成分を遮断する。CCD153は、撮像面上に形成された像を撮像する。そして、表示部13は、CCD153により撮像された像を表示する。また、表示部13は、解析部12による解析の結果を表示するのも好適である。
【0030】
図2は、対物レンズ101および被測定試料1の拡大図である。対物レンズ101として水浸のものが用いられ、対物レンズ101と透明平板2との間の光路には水3が充填されている。透明平板2は、励起光および蛍光の双方に対して透過率が高く無蛍光性の材料からなる平板であって、例えば石英ガラスからなるカバーガラスが好適に用いられる。被測定試料1は透明平板2の上に置かれる。
【0031】
被測定試料1中の励起光照射領域は、励起光照射光学系中の空間光変調素子115における励起光の空間的変調に応じて、個数・位置・形状が設定される。これは、空間光変調素子115による空間的変調により波面が調整された励起光が、空間光変調素子115から被測定試料1に到るまでの光学系の光学的伝達関数の影響を受けて、被測定試料1に照射されるからである。すなわち、空間光変調素子115における励起光の空間的変調は、空間光変調素子115から被測定試料1に到るまでの光学系の光学的伝達関数、および、被測定試料1における所望の励起光照射領域の位置等に基づいて、決定される。各励起光照射領域の位置は、対物レンズ101の光軸に垂直な方向(x方向,y方向)についてだけでなく、対物レンズ101の光軸に平行な方向(z方向)についても、設定が可能である。複数の励起光照射領域それぞれ対して励起光は同時に又は順次に照射され得る。
【0032】
図2では、被測定試料1は、観測領域1Aと観測領域1Bとからなるものとしている。観測領域1Aと観測領域1Bとは、屈折率が互いに異なり、或いは、透過率が互いに異なる。また、3つの励起光照射領域P〜Pが示されている。励起光照射領域P,Pは観測領域1A内に位置し、励起光照射領域Pは観測領域1B内に位置している。
【0033】
図3は、被測定試料1中の励起光照射領域の拡大図である。一般に、或る有限の光束径を有する光を集光レンズで集光すれば、その集光位置における光ビームは、径方向の強度分布がガウス形状であって、半径wのビームウェストを有する。蛍光相関分光法では、励起光照射領域として半径wで長さLの円柱状の領域を考え、この励起光照射領域に存在する蛍光物質の個数が数個程度となるようにする。そして、蛍光物質が励起光照射領域に出入りすることで、励起光照射領域に存在する蛍光物質の個数が時間的に揺らいで、励起光照射領域から発生する蛍光の強度も時間的に揺らぐことから、この蛍光強度の時間的揺らぎを表す自己相関関数G(τ)に基づいて、励起光照射領域における蛍光物質の並進拡散定数等を求めることができる。
【0034】
図4〜図9は、空間光変調素子115における励起光の空間的位相変調の例を示す図である。図4(a),図5(a),図6(a),図7,図8および図9それぞれは、空間光変調素子115における画素毎の励起光の位相変調を濃淡として示しており、例えば、0から2πまでの間を等分割した256通りの位相値に対して256階調の濃淡として表示される。また、図4(b),図5(b)および図6(b)それぞれは、対物レンズ101の視野における被測定試料1内の励起光照射領域の位置を黒点で示している。
【0035】
図4に示された第1の例では、同図(a)に示されたような2次元位相グレーティングが空間光変調素子115に形成され、これに応じて、同図(b)に示されたような2つの励起光照射領域が被測定試料1に形成される。同図(b)では、左にある励起光照射領域における励起光強度は、右にある励起光照射領域における励起光強度の2倍となっている。
【0036】
図5に示された第2の例では、同図(a)に示されたような1次元位相グレーティングが空間光変調素子115に形成され、これに応じて、同図(b)に示されたような1つの励起光照射領域が被測定試料1に形成される。被測定試料1に形成される励起光照射領域の位置は、空間光変調素子115に形成される1次元位相グレーティングの周期および方位に応じたものとなり、対物レンズ101の光軸に垂直な方向(x方向,y方向)について調整され得る。
【0037】
図6に示された第3の例では、同図(a)に示されたような2次元位相グレーティングが空間光変調素子115に形成され、これに応じて、同図(b)に示されたような2つの励起光照射領域が被測定試料1に形成される。被測定試料1に形成される各々励起光照射領域の位置は、空間光変調素子115に形成される2次元位相グレーティングの各々の方位および周期に応じたものとなる。同図(b)では、左にある励起光照射領域における励起光強度と、右にある励起光照射領域における励起光強度とは、互いに同じとなっている。
【0038】
図7に示された第4の例では、主光線入射位置を中心点として径方向に位相が次第に変化するような空間的位相変調パターンが空間光変調素子115に形成される。この場合、空間光変調素子115は、屈折率分布型レンズと同様の作用を奏する。被測定試料1に形成される励起光照射領域の位置は、空間光変調素子115における径方向の位相変化率に応じたものとなり、対物レンズ101の光軸に平行な方向(z方向)について調整され得る。
【0039】
図8に示された第5の例では、空間光変調素子115に形成される空間的位相変調パターンは、図5(a)に示された空間的位相変調パターンと、図7に示された空間的位相変調パターンとが、足し合わされたものとなっている。この場合、被測定試料1に形成される励起光照射領域の位置は、対物レンズ101の光軸に垂直な方向(x方向,y方向)について調整され得るとともに、対物レンズ101の光軸に平行な方向(z方向)についても調整され得る。
【0040】
図9に示された第6の例では、空間光変調素子115に形成される空間的位相変調パターンは、空間光変調素子115から被測定試料1に到るまでの光学系の非点収差を補正することでできるものとなっている。
【0041】
これら図4〜図9から判るように、空間光変調素子115における励起光の空間的位相変調のパターンに応じて、被測定試料1に形成される励起光照射領域の個数・位置・励起光強度が調整され得、また、励起光照射光学系の収差(非点収差だけでなく色収差および球面収差などをも含む。)が補正され得る。なお、図9に示される空間的位相変調パターンに他の空間的位相変調パターンを足し合わせたものを空間光変調素子115に形成することで、被測定試料1に形成される励起光照射領域の個数・位置・励起光強度の調整、および、励起光照射光学系の収差の補正が、同時に可能となる。
【0042】
次に、第1実施形態に係る蛍光相関分光解析装置10を用いた蛍光相関分光測定の一例について説明する。図10は、第1実施形態に係る蛍光相関分光解析装置10を用いた蛍光相関分光測定の手順を示すフローチャートである。
【0043】
初めに、ステップS1では、被測定試料1に替えて標準試料が透明平板2の上に置かれて、蛍光検出が行われる。ここで、標準試料は、粘性が既知の媒質(バッファ液)中に、分子量が既知の蛍光物質が存在するものである。バッファ液としては例えば水が用いられる。蛍光物質としては、例えば、蛍光蛋白質(GFP: Green Fluorescence Protein)がそのまま用いられ、或いは、ローダミン(Rhodamin)やアレクサ(Alexa)等の蛍光色素でラベル化されたアンジオテンシン(Angiotensin)またはビオチン(Biotin)が用いられる。
【0044】
このような標準試料が透明平板2上に置かれた状態で、レーザ光源111から励起光(例えば波長488nm)が出力されると、その励起光は、NDフィルタ112より強度が調整され、ビームエクスパンダ113により光束径が調整され、ミラー114により反射されて、空間光変調素子115に入射する。空間光変調素子115に入射して空間的に変調された励起光は、ダイクロイックミラー102により反射され、対物レンズ101を経て透明平板2上の標準試料に照射される。
【0045】
標準試料内の励起光照射領域で発生した蛍光は、対物レンズ101,ダイクロイックミラー102,ハーフミラー105,レンズ131およびバンドパスフィルタ132を経て、空間光変調素子133に入射する。空間光変調素子133に入射した蛍光のうち特定領域に入射した蛍光は、検出部134により受光されて強度が検出され、その検出された蛍光の強度の経時変化I(t)が解析部12により記憶される。このとき、標準試料内の励起光照射領域から空間光変調素子133に到るまでの光学系は、等価的な共焦点光学系を構成している。
【0046】
続くステップS2では、解析部12により、ステップS1で検出された蛍光強度の経時変化I(t)が解析される。すなわち、このI(t)から自己相関関数が求められ(上記(1)式)、その求められた自己相関関数は、理想分子運動モデルを想定した場合の下記(2)式の自己相関関数G(τ)によりフィッティング処理される。この(2)式中で、Fはトリプレット状態の割合であり、τtripはトリプレット状態の減衰時間であり、Nは励起光照射領域内の蛍光物質の平均個数であり、Mは成分識別番号(M=1or2or3)であり、yは第i番目の成分の寄与率であり、τDiは第i番目の成分の並進拡散時間である。また、Sは、励起光照射領域の半径wおよび長さLから定まる構造パラメータである(図3を参照)。
【0047】
【数2】

このフィッティング処理では、例えば最小二乗法が用いられ、実測による自己相関関数に基づいて、理想分子運動モデルを想定した場合の自己相関関数におけるパラメータが決定される。ここで決定されるべきパラメータは、標準試料中の蛍光物質の並進拡散時間τDi、または、励起光照射領域内の蛍光物質の平均個数Nである。標準試料中の蛍光物質の並進拡散時間τDiが求められれば、蛍光物質の大きさも求められる。また、励起光照射領域内の蛍光物質の平均個数Nが求められれば、実測定時における蛍光強度から1蛍光分子あたりの蛍光量も容易に求められる。
【0048】
続くステップS3では、測定の対象である被測定試料1が透明平板2の上に置かれて、その被測定試料1が撮像される。ここで、被測定試料1は、例えば、細胞であり、屈折率または透過率が互いに異なる観測領域1Aと観測領域1Bとからなる(図2を参照)。また、この被測定試料1には、ステップS1,S2で標準試料にドープされたものと同じ蛍光物質がドープされている。
【0049】
このような被測定試料1が透明平板2上に置かれた状態で、レーザ光源111から励起光が出力されると、その励起光は、NDフィルタ112より強度が調整され、ビームエクスパンダ113により光束径が調整され、ミラー114により反射されて、空間光変調素子115に入射する。空間光変調素子115に入射して空間的に変調された励起光は、ダイクロイックミラー102により反射され、対物レンズ101を経て透明平板2上の被測定試料1に照射される。このとき、空間光変調素子115における励起光の空間的変調が経時的に変化して、被測定試料1においては、スポット状の励起光が2次元走査され、或いは、ライン状の励起光が1次元走査される。
【0050】
被測定試料1内の励起光照射領域で発生した蛍光は、対物レンズ101,ダイクロイックミラー102,ハーフミラー105,ミラー106,レンズ151およびバンドパスフィルタ152を経て、CCD153の撮像面上に結像される。上述のように、被測定試料1への励起光の照射が走査されることにより、CCD153により被測定試料1が撮像される。そして、その撮像された被測定試料1の像は表示部13により表示され、これにより、被測定試料1内の観測領域1Aと観測領域1Bとを峻別することができる。なお、この被測定試料1の撮像に際しては、被測定試料1を照明する為の専用の照明用光源や照明光学系が用いられてもよい。
【0051】
続くステップS4では、上記の被測定試料1が透明平板2の上に置かれて、ステップS1と同様にして蛍光検出が行われる。ここでは、被測定試料1内の観測領域1Aおよび観測領域1Bそれぞれに励起光照射領域が形成される。例えば、観測領域1A内に励起光照射領域P,Pが形成され、観測領域1B内に励起光照射領域Pが形成される(図2を参照)。そして、励起光照射領域P〜Pそれぞれについて、検出された蛍光の強度の経時変化I(t)が解析部12により記憶される。
【0052】
続くステップS5では、ステップS2と同様にして、解析部12により、ステップS4で検出された励起光照射領域P〜Pそれぞれについての蛍光強度の経時変化I(t)が解析される。これにより、励起光照射領域P〜Pそれぞれについて、蛍光物質の並進拡散時間または平均個数が求められる。
【0053】
続くステップS6では、観測領域1A内にある励起光照射領域P,PについてステップS5において得られた結果が同等であるか否かが判定される。もし、両者の結果が異なれば、励起光照射領域P,Pそれぞれに照射される励起光の強度を調整すべく、空間光変調素子115による励起光の空間的変調パターンを変更して、再びステップS4,S5を行う。一方、両者の結果が同等であれば、次のステップS7へ進む。
【0054】
ステップS7では、透明平板2上の被測定試料1に対して、既にドープされている蛍光物質と特異的に結合し得る他の分子がドープされて、ステップS4と同様にして蛍光検出が行われる。ここで、例えば、既にドープされている蛍光物質がGFPである場合には、新たにドープされるべき他の分子は抗GFPである。既にドープされている蛍光物質が蛍光色素でラベル化されたアンジオテンシンである場合には、新たにドープされるべき他の分子は抗アンジオテンシンである。また、既にドープされている蛍光物質が蛍光色素でラベル化されたビオチンである場合には、新たにドープされるべき他の分子は抗ビオチンである。そして、励起光照射領域P〜Pそれぞれについて、検出された蛍光の強度の経時変化I(t)が解析部12により記憶される。
【0055】
続くステップS8では、ステップS5と同様にして、解析部12により、ステップS7で検出された励起光照射領域P〜Pそれぞれについての蛍光強度の経時変化I(t)が解析される。これにより、励起光照射領域P〜Pそれぞれについて、蛍光物質の並進拡散時間または平均個数が求められる。既にドープされていた蛍光物質(分子A)と新たにドープされた他の分子(分子B)とが結合されてなる分子ABは、分子Aと比べて、分子量が大きく、ブラウン運動が遅くなるので、並進拡散定数が大きい。
【0056】
したがって、励起光照射領域P〜Pそれぞれについて得られた蛍光物質の並進拡散時間を比較することにより、観測領域1Aおよび観測領域1Bそれぞれにおける分子Aと分子Bとの結合の程度が求められる。また、観測領域1Aおよび観測領域1Bそれぞれにおいて、分子Aと結合分子ABとの検出比率や解離定数(Kd値)も求められ、また、分子Aおよび結合分子ABそれぞれの並進拡散時間も求められる(特開平11−326208号公報を参照)。
【0057】
なお、ステップS7,S8において、透明平板2上の被測定試料1に対して新たに他の分子をドープしなくても、被測定試料1内に既にドープされている蛍光物質が、被測定試料1内に既に存在する又は生成される他の分子と特異的に結合する場合にも、同様にして、これら蛍光物質と他の分子との相互作用を解析することができる。例えば、既にドープされている蛍光物質が、特定配列化された核酸(DNA、RNA)が蛍光色素でラベル化されたものである場合には、被測定試料1内の他の分子は、被測定試料1としての細胞の内部で生成される分子(ドープされた核酸と特異的に結合し得る核酸または蛋白質)である。また、分子結合を外部刺激により促進または抑制する場合にも、同様にして、分子間の相互作用を測定することができる。ここで言う外部刺激は、例えば、電気的刺激、磁気的刺激、化学的刺激、熱的刺激、光学的刺激、放射線照射による刺激、等である。
【0058】
続くステップS9では、ステップS3で撮像された被測定試料1の像と、ステップS8で得られた被測定試料1の蛍光検出結果と、が対比される。図11は、ステップS3で撮像された被測定試料1の像と、ステップS8で得られた被測定試料1の蛍光検出結果と、を示す図である。同図(a)は、ステップS3で撮像された被測定試料1の像のみを示し、同図(b)は、ステップS3で撮像された被測定試料1の像と、ステップS8で得られた被測定試料1の蛍光検出結果(蛍光物質の並進拡散時間または平均個数)と、を重ねて示す。例えば、この図に示されるように、並進拡散時間は、観測領域1A中であって観測領域1Bに近い領域1A、観測領域1A中であって領域1Aを囲む領域1A、観測領域1A中であって領域1Aを囲む領域1A、観測領域1A中の他の領域1A、の順に大きい。このような表示から、被測定試料1としての細胞の内部における蛋白質の作用等を解析することができる。
【0059】
このように、空間光変調素子115における励起光の空間的変調パターンを順次に変更することで、対物レンズ101の視野内の被測定試料1の蛍光検出結果の分布が得られる。このとき、対物レンズ101の光軸に垂直な方向(x方向,y方向)についてだけでなく、対物レンズ101の光軸に平行な方向(z方向)についても、被測定試料1の蛍光検出結果の分布が得られるので、対物レンズ101の視野内の被測定試料1の蛍光検出結果の3次元分布が得られる。
【0060】
(第2実施形態)
次に、本発明に係る蛍光顕微鏡および蛍光相関分光解析装置の第2実施形態について説明する。図12は、第2実施形態に係る蛍光相関分光解析装置20の構成図である。この図に示される蛍光相関分光解析装置20は、蛍光顕微鏡21および解析部22を備え、透明平板2上に置かれた被測定試料1に励起光を照射して該被測定試料1で発生した蛍光を検出するものである。特に、この蛍光相関分光解析装置20は、蛍光相互相関分光法(FCCS: Fluorescence Cross Correlation Spectroscopy)を用いて被測定試料1を測定するのに好適に用いられる。
【0061】
蛍光顕微鏡21は、対物レンズ101、ダイクロイックミラー102、ダイクロイックミラー103、ダイクロイックミラー104、ミラー106、ミラー107、レーザ光源111、NDフィルタ112、ビームエクスパンダ113、ミラー114、空間光変調素子115、レーザ光源121、NDフィルタ122、ビームエクスパンダ123、ミラー124、空間光変調素子125、レンズ131、バンドパスフィルタ132、空間光変調素子133、検出部134、レンズ141、バンドパスフィルタ142、空間光変調素子143および検出部144を備える。
【0062】
レーザ光源111およびレーザ光源121それぞれから被測定試料1に到るまでの光学系は、レーザ光源111,121から出力された励起光を被測定試料1に照射するための励起光照射光学系を構成している。被測定試料1から検出部134および検出部144それぞれに到るまでの光学系は、被測定試料1で発生した蛍光を検出部134,144へ導く蛍光検出光学系を構成している。なお、本実施形態においても、被測定試料1を撮像するための撮像光学系および撮像手段を備えるのが好適であるが、説明を省略する。
【0063】
本実施形態では、励起光を出力する励起光源部として、互いに波長が異なる励起光を出力するレーザ光源111およびレーザ光源121が設けられている。レーザ光源111から出力される第1励起光、および、レーザ光源121から出力される第2励起光それぞれは、被測定試料1に含まれる蛍光物質を励起し得る波長のものである。
【0064】
NDフィルタ112は、レーザ光源111から出力された第1励起光の強度を調整して出力する。ビームエクスパンダ113は、NDフィルタ112から出力された第1励起光を入力し、その第1励起光の光束径を適当な大きさまで拡大するとともにコリメートして出力する。空間光変調素子115は、ビームエクスパンダ113から出力されてミラー114により反射された第1励起光を入力し、その第1励起光に対して空間的な変調を与えて、その空間変調した第1励起光を出力する。
【0065】
NDフィルタ122は、レーザ光源121から出力された第2励起光の強度を調整して出力する。ビームエクスパンダ123は、NDフィルタ122から出力された第2励起光を入力し、その第2励起光の光束径を適当な大きさまで拡大するとともにコリメートして出力する。空間光変調素子125は、ビームエクスパンダ123から出力されてミラー124により反射された第2励起光を入力し、その第1励起光に対して空間的な変調を与えて、その空間変調した第2励起光を出力する。
【0066】
空間光変調素子115,125は、空間的な変調が可変であり、以降の光学系を介して空間的に変調した励起光を被測定試料1に照射させることで、被測定試料1中において励起光が照射される領域の個数・位置・形状を設定することができ、また、励起光照射強度の不均一や収差の問題を解消することができる。
【0067】
空間光変調素子115,125は、透過型のものであってもよいし、反射型のものであってもよい。また、空間光変調素子115,125は、振幅変調型のものであってもよいし、位相変調型のものであってもよいし、振幅および位相の双方を変調し得るものであってもよい。ただし、励起光の利用効率の観点からは、空間光変調素子115,125は位相変調型のものであるのが好ましい。例えば、空間光変調素子115,125として、液晶を含む微小な画素が平面上に2次元配列されたものが用いられる。
【0068】
ダイクロイックミラー103は、空間光変調素子115から出力された第1励起光を透過させるとともに、空間光変調素子125から出力されてミラー107により反射された第2励起光を反射させて、これら第1励起光と第2励起光とを同一光路としてダイクロイックミラー102へ出力する。
【0069】
ダイクロイックミラー102は、ダイクロイックミラー103から到達した第1励起光および第2励起光を反射させて対物レンズ101に入射させるとともに、対物レンズ101から出力された蛍光を透過させる。対物レンズ101は、ダイクロイックミラー102により反射された第1励起光および第2励起光を入力して、それらの励起光を被測定試料1中の所定領域(励起光照射領域)に照射する。また、対物レンズ101は、励起光照射領域で発生した蛍光を入力して、その蛍光をダイクロイックミラー102へ出力する。
【0070】
ダイクロイックミラー104は、第1励起光が照射された被測定試料1中の励起光照射領域で発生した第1蛍光と、第2励起光が照射された被測定試料1中の励起光照射領域で発生した第2蛍光とを互いに分離する。第1蛍光と第2蛍光とは互いに波長が異なる。すなわち、ダイクロイックミラー104は、対物レンズ101から出力されダイクロイックミラー102を透過した光を入力し、そのうちの第1蛍光を選択的に反射させ、第2蛍光(および励起光の散乱成分)を透過させる。ミラー106は、ダイクロイックミラー104を透過した光を入力して、そのうちの第2蛍光を反射させ、励起光の散乱成分を吸収する。
【0071】
レンズ131は、ダイクロイックミラー104により反射された第1蛍光を入力して、対物レンズ101とともに、被測定試料1中の励起光照射領域で発生した第1蛍光の像を空間光変調素子133上に形成する。バンドパスフィルタ132は、レンズ131と空間光変調素子133との間の光路上に設けられ、第1蛍光を選択的に透過させる一方、励起光の散乱成分を遮断する。空間光変調素子133は、対物レンズ101およびレンズ131による第1蛍光の結像面のうち特定領域に入力した第1蛍光を選択的に出力する選択出力手段として作用する。検出部134は、空間光変調素子133から出力されて到達した第1蛍光の強度を検出する。
【0072】
レンズ141は、ミラー106により反射された第2蛍光を入力して、対物レンズ101とともに、被測定試料1中の励起光照射領域で発生した第2蛍光の像を空間光変調素子143上に形成する。バンドパスフィルタ142は、レンズ141と空間光変調素子143との間の光路上に設けられ、第2蛍光を選択的に透過させる一方、励起光の散乱成分を遮断する。空間光変調素子143は、対物レンズ101およびレンズ141による第2蛍光の結像面のうち特定領域に入力した第2蛍光を選択的に出力する選択出力手段として作用する。検出部144は、空間光変調素子143から出力されて到達した第2蛍光の強度を検出する。
【0073】
空間光変調素子133,143に替えて、開口を有するマスクが用いられて、その開口に蛍光像が位置するようにしてもよい。しかし、開口に相当する上記特定領域が可変であるのが好ましいことから、空間光変調素子133,143は、蛍光結像面のうち選択的に蛍光を出力すべき特定領域の個数・位置・形状が可変であるのが好適である。このようにすることにより、等価的な共焦点光学系を実現することができる。
【0074】
空間光変調素子133,143は、透過型のものであってもよいし、反射型のものであってもよい。また、空間光変調素子133,143は、振幅変調型のものであってもよいし、位相変調型のものであってもよいし、振幅および位相の双方を変調し得るものであってもよい。ただし、検出光学系中の空間光変調素子133,143は、励起光照射光学系中の空間光変調素子115,125と比べて各種条件制御が不要であるので、コストの観点からは強度変調型のものであるのが好適である。
【0075】
解析部22は、検出部134により検出された第1蛍光の強度の経時変化I(t)を記憶するとともに、検出部144により検出された第2蛍光の強度の経時変化I(t)を記憶し、これらのI(t)およびI(t)から相互相関関数G(τ)を求める(下記(3)式)。そして、この相互相関関数G(τ)に基づいて、被測定試料1中の励起光照射領域における蛍光物質の相互作用を解析することができる。
【0076】
【数3】

この蛍光相関分光解析装置20は以下のように動作する。一方のレーザ光源111から第1励起光(例えば波長488nm)が出力されると、その第1励起光は、NDフィルタ112より強度が調整され、ビームエクスパンダ113により光束径が調整され、ミラー114により反射され、空間光変調素子115に入射して、この空間光変調素子115により空間的に変調される。他方のレーザ光源121から第2励起光(例えば波長633nm)が出力されると、その第2励起光は、NDフィルタ122より強度が調整され、ビームエクスパンダ123により光束径が調整され、ミラー124により反射され、空間光変調素子125に入射して、この空間光変調素子125により空間的に変調される。
【0077】
空間光変調素子115により空間的に変調された第1励起光、および、空間光変調素子125により空間的に変調された第2励起光は、ダイクロイックミラー103により同一光路とされた後、ダイクロイックミラー102により反射され、対物レンズ101を経て透明平板2上の被測定試料1に照射される。被測定試料1には、第1励起光により励起され得る蛍光色素(例えばAlexa488)でラベル化された第1蛍光物質、および、第2励起光により励起され得る蛍光色素(例えばAlexa633)でラベル化された第2蛍光物質がドープされている。
【0078】
被測定試料1内の励起光照射領域で第1励起光の照射により発生した第1蛍光(波長530nm)は、対物レンズ101,ダイクロイックミラー102,ダイクロイックミラー104,レンズ131およびバンドパスフィルタ132を経て、空間光変調素子133に入射する。空間光変調素子133に入射した第1蛍光のうち特定領域に入射した第1蛍光は、検出部134により受光されて強度が検出され、その検出された第1蛍光の強度の経時変化I(t)が解析部22により記憶される。このとき、被測定試料1内の励起光照射領域から空間光変調素子133に到るまでの光学系は、等価的な共焦点光学系を構成している。
【0079】
被測定試料1内の励起光照射領域で第2励起光の照射により発生した第2蛍光(波長680nm)は、対物レンズ101,ダイクロイックミラー102,ダイクロイックミラー104,ミラー106,レンズ141およびバンドパスフィルタ142を経て、空間光変調素子143に入射する。空間光変調素子143に入射した第2蛍光のうち特定領域に入射した第2蛍光は、検出部144により受光されて強度が検出され、その検出された第2蛍光の強度の経時変化I(t)が解析部22により記憶される。このとき、被測定試料1内の励起光照射領域から空間光変調素子143に到るまでの光学系は、等価的な共焦点光学系を構成している。
【0080】
そして、解析部22により、これらのI(t)およびI(t)から相互相関関数G(τ)が求められて、その求められた相互相関関数G(τ)は、理想分子運動モデルの場合の相互相関関数によりフィッティング処理される。これにより、被測定試料1内の励起光照射領域における第1蛍光物質と第2蛍光物質との間の相互作用が解析され得る。
【0081】
以上のように、本実施形態に係る蛍光相関分光解析装置20においても、前述の第1実施形態に係る蛍光相関分光解析装置10と同様に、空間光変調素子115,125における励起光の空間的位相変調のパターンに応じて、被測定試料1に形成される励起光照射領域の個数・位置・励起光強度が調整され得、また、励起光照射光学系の収差が補正され得る。
【0082】
加えて、この蛍光相関分光解析装置20では、被測定試料1内の励起光照射領域に互いに波長が異なる第1励起光および第2励起光が照射され、励起光照射領域に存在する第1蛍光物質が第1励起光により励起ざれて該第1蛍光物質から第1蛍光が発生するとともに、励起光照射領域に存在する第2蛍光物質が第2励起光により励起ざれて該第2蛍光物質から第2蛍光が発生する。そして、蛍光相互相関分光法(FCCS)により、第1蛍光強度I(t)および第2蛍光強度I(t)それぞれが各々共焦点光学系により検出され、励起光照射領域における第1蛍光物質と第2蛍光物質との間の相互作用が解析され得る。
【0083】
また、この蛍光相関分光解析装置20では、被測定試料1内の第1励起光照射領域に第1励起光を照射して第1蛍光を検出する一方で、この第1励起光照射領域とは異なる第2励起光照射領域に第2励起光を照射して第2蛍光を検出することもできる。そして、蛍光相関分光法(FCS)により、互いに位置が異なる第1励起光照射領域および第2励起光照射領域それぞれにおいて、別個に蛍光物質の挙動を測定することができる。
【図面の簡単な説明】
【0084】
【図1】第1実施形態に係る蛍光相関分光解析装置1の構成図である。
【図2】対物レンズ101および被測定試料1の拡大図である。
【図3】被測定試料1中の励起光照射領域の拡大図である。
【図4】空間光変調素子115における励起光の空間的位相変調の第1の例を示す図である。
【図5】空間光変調素子115における励起光の空間的位相変調の第2の例を示す図である。
【図6】空間光変調素子115における励起光の空間的位相変調の第3の例を示す図である。
【図7】空間光変調素子115における励起光の空間的位相変調の第4の例を示す図である。
【図8】空間光変調素子115における励起光の空間的位相変調の第5の例を示す図である。
【図9】空間光変調素子115における励起光の空間的位相変調の第6の例を示す図である。
【図10】第1実施形態に係る蛍光相関分光解析装置10を用いた蛍光相関分光測定の手順を示すフローチャートである。
【図11】ステップS3で撮像された被測定試料1の像と、ステップS8で得られた被測定試料1の蛍光検出結果と、を示す図である。
【図12】第2実施形態に係る蛍光相関分光解析装置20の構成図である。
【符号の説明】
【0085】
1…被測定試料、2…透明平板、10…蛍光相関分光解析装置、11…蛍光顕微鏡、12…解析部、13…表示部、20…蛍光相関分光解析装置、21…蛍光顕微鏡、22…解析部、101…対物レンズ、102〜104…ダイクロイックミラー、105…ハーフミラー、106,107…ミラー、111…レーザ光源、112…NDフィルタ、113…ビームエクスパンダ、114…ミラー、115…空間光変調素子、121…レーザ光源、122…NDフィルタ、123…ビームエクスパンダ、124…ミラー、125…空間光変調素子、131…レンズ、132…バンドパスフィルタ、133…空間光変調素子、134…検出部、141…レンズ、142…バンドパスフィルタ、143…空間光変調素子、144…検出部、151…レンズ、152…バンドパスフィルタ、153…CCD。

【特許請求の範囲】
【請求項1】
被測定試料中の励起光照射領域で発生した蛍光を検出する蛍光顕微鏡であって、
励起光を出力する励起光源部と、
前記励起光源部から出力された励起光に対して空間的な変調を与える空間光変調素子を有し、この空間光変調素子により空間的に変調された励起光を前記被測定試料に照射する励起光照射光学系と、
前記励起光照射光学系により励起光が照射された励起光照射領域で発生した蛍光を入力して結像するとともに、当該結像面のうち特定領域に入力した蛍光を選択的に出力する選択出力手段を有する蛍光検出光学系と、
前記選択出力手段から出力された蛍光の強度を検出する検出部と、
を備えることを特徴とする蛍光顕微鏡。
【請求項2】
前記励起光照射光学系に含まれる前記空間光変調素子が位相変調型のものであることを特徴とする請求項1記載の蛍光顕微鏡。
【請求項3】
前記蛍光検出光学系に含まれる前記選択出力手段が空間光変調素子であることを特徴とする請求項1記載の蛍光顕微鏡。
【請求項4】
前記蛍光検出光学系に含まれる前記選択出力手段が強度変調型の空間光変調素子であることを特徴とする請求項1記載の蛍光顕微鏡。
【請求項5】
前記被測定試料を撮像する撮像手段を更に備えることを特徴とする請求項1記載の蛍光顕微鏡。
【請求項6】
前記励起光源部が、互いに波長が異なる第1励起光および第2励起光を出力し、
前記励起光照射光学系が、前記第1励起光および前記第2励起光それぞれについて別個に前記空間光変調素子を有し、前記第1励起光および前記第2励起光を同一光路として前記被測定試料に照射し、
前記蛍光検出光学系が、前記第1励起光が照射された励起光照射領域で発生した第1蛍光と、前記第2励起光が照射された励起光照射領域で発生した第2蛍光とを互いに分離するとともに、前記第1蛍光および前記第2蛍光それぞれについて別個に前記選択出力手段を有し、
前記検出部が、前記選択出力手段から出力された第1蛍光および第2蛍光それぞれの強度を検出する、
ことを特徴とする請求項1記載の蛍光顕微鏡。
【請求項7】
請求項1〜5の何れか1項に記載の蛍光顕微鏡と、
前記蛍光顕微鏡の前記検出部により検出された蛍光の強度の経時変化の自己相関関数を求める解析部と、
を備えることを特徴とする蛍光相関分光解析装置。
【請求項8】
請求項6記載の蛍光顕微鏡と、
前記蛍光顕微鏡の前記検出部により検出された第1蛍光および第2蛍光それぞれの強度の経時変化の相互相関関数を求める解析部と、
を備えることを特徴とする蛍光相関分光解析装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate


【公開番号】特開2006−71611(P2006−71611A)
【公開日】平成18年3月16日(2006.3.16)
【国際特許分類】
【出願番号】特願2004−258927(P2004−258927)
【出願日】平成16年9月6日(2004.9.6)
【出願人】(000236436)浜松ホトニクス株式会社 (1,479)
【Fターム(参考)】